

Model Comparison A Systematic Mapping Study

Lucian Gonçales, Kleinner Farias, Murillo Scholl, Toacy Oliveira,

Maurício Veronez

PIPCA – Universidade do Vale do Rio dos Sinos (UNISINOS) Iucianjosegoncales@gmail.com

SEKE 2015, 6-8 July 2015, Pennsylvania-Pittsburgh, USA

Model comparison is the activity of comparing at least two input models.

It can be used for Matching, calculate similarity, clone detection, pattern detection...

Then, this activity plays a pivotal role in Model Driven Engineering (MDE):

Current approaches still is not providing a precise and large-scale computation in synchronizing and matching models

Then....

Craftsmanship era!

- A comprehensive understanding about the stateof-the-art is crucial for evolving the current comparison techniques;
- A systematic mapping study to
 - (1) scrutinize those contributions produced over time,
 - (2) characterize previously published model comparison approaches

Study Methodology

Search strategy for comparison approaches

 Definition of terms to form Search Strings for performing searches in the main digital libraries

Inclusion and exclusion criteria

- \odot Search was limited to studies published in electronic digital libraries;
- \circ No restriction on the publication year of studies until November 2014.
- Papers and studies witch not focus on model comparison;
- $\,\circ\,$ Duplicated studies returned by different search engines; and
- Papers and works that focus in low-level comparison (XML, source code and text).

Classify extracted data

- \circ (1) publication date, publication fora, and search engine; and
- \circ (2) basic attributes of studies: main author and title; and finally
- (3) information related to research questions

RQ1: What are the types of diagrams addressed by comparison techniques?

- Find out the types of diagrams that comparison techniques support;
- Reveal the diagrams that have been considered important

RQ1 - Results

Inside MDE, capability to dealing with many kinds of model are required

- RQ2: What are the data structures commonly used in the comparison algorithms?
 - Pintpoint which data structures are used in the comparison algorithms

RQ2 - Results

- What are the types or categories used for evaluating diagrams in similarity approaches?
 - Understand the different aspects is required to evaluate diagrams:
 - (1) Structural: compare diagrams considering modules and its relationships;
 - (2) Syntatic: comparing taking account the sintaxes of diagrams;
 - (3) Semantic: comparing diagrams considering the meaning;
 - (4) Layout: the comparison approaches aim at view issues;
 - (5) Lexical: implement a name-based model comparison;
 - (6) Multi-Strategy: approahes combine at least two comparison strategies to improve comparison results.

RQ3 - Results

• How Fine-Grained are the comparison techniques?

- Grasp how accurate and detailed are the comparison techniques in relation to model signatures:
 - Coarse-grained: low level of detail
 - Partial: a consensus
 - Fine-grained: high level of detail

• What are the comparison types?

- Explore what kind of comparison the techniques are responsible for:
 - (1) Matching: Find the correspondent element in another diagrams
 - (2) Similarity: the score of correspondence between elements or between the whole diagram.

RQ5 - Results

RQ6 - Results

- Which empiral strategies are used to evaluate the comparison techniques?
 - Check the empiral strategies used to evaluate comparison techniques
 - (1) Evaluation research;
 - (2) Proposal of solution;
 - (3) Philosophical paper;
 - (4) Personal Experience;
 - (5) Opinion paper.

RQ6 - Results

- Is the approach automatic, semi-automatic or manual?
 - To Summarize the autonomous level of approaches.

RQ7 - Results

Quantity of papers per Event/Journal

Publication Place	Quantity of approaches	Percentage
IEEE/ACM International Conference on Automated Software Engineering (ASE)	4	10%
IEEE Transactions on software Engineering	3	8%
European Software Engineering Conference and the ACM SIGSOFT	2	5%
International Conference on Software Maintenance (ICSM)	2	5%

Publications by year

Rank of authors publications

Author	Quantity of Papers	Percent
Zhenchang Xing	3	8%
Christian Gerth	2	5%
Hamza Onoruoiza Salami	2	5%
Kleinner Farias	2	5%
Mark van den Brand	2	5%
Segla Kpodjedo	2	5%
Shiva Nejati	2	5%

Combined research questions

Threats to validity

- (1) difficulty to relate all works to the topic due the constant changes in publications;
- (2) the conduction of data extraction of the papers, such as:
 - (1) The search string we used has the main terms such as "model" and "matching". However, "matching" and its synonyms (comparison, similarity, etc.) are generic and this string retrieved broad results;
 - (2) The inclusion of thesis and dissertations published online that are not peer reviewed and,
 - (3) The limitation to the main six search engines defined in the SMS planning.

Conclusion

- This paper identified and classified publication fora, and performed thematic analysis of the existing literature in model comparison.
- The most studies have concentrated more effort on producing generic comparison techniques:
 - 1º There is not a widely-adopted modeling language in industry.
 - 2º The wide variations of modelling notations and diagrams types, it would be challenging to provide an approach that can have a broad adoption.
 - 3^o Model comparison is not a trivial task to deal with.

References

[1] S. Kent, "Model-driven engineering," In: 3rd Int. Conf. on Integrated Formal Methods (IFM '02), pages 286-298, 2002.

[2]B. Kitchenham, P. Brereton, D. Budgen, "The educational value of mapping studies of software engineering literature," *32nd Int. Conf. on Software Engineering, vol.* 1, New York, NY, USA, pp. 589-598, 2010.

[3] D. Kolovos, D. Ruscio, A. Pierantonio, R. Paige, "Different models for model matching: an analysis of approaches to support model differencing", *Workshop on Comparison and Versioning of Software Models* (CVSM '09), pages 1-6, 2007.

[4] M. Stephan, J. Cordy, "A survey of model comparison approaches and applications," in International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp.265-277, 2013.

[5] K.Farias, A. Garcia, & C. Lucena "Effects of stability on model composition effort: an exploratory study". *Software & Systems Modeling*, vol. *13, number* 4, pp. 1473-1494, 2014.

[6] K. Farias. *Empirical Evaluation of Effort on Composing Design Models* (Doctoral dissertation, PUC-Rio). 2012.

[7] K. Farias. Empirical evaluation of effort on composing design models. In 2010 ACM/IEEE 32nd International Conference on Software Engineering, vol. 2, pp. 405-408, IEEE, 2010.