
A Software Product Line for Web Applications
Maicon Azevedo da Luz

Universidade do Vale do Rio dos Sinos
São Leopoldo, RS, Brazil

pnpinformatica@gmail.com

Kleinner Farias
Universidade do Vale do Rio dos Sinos

São Leopoldo, RS, Brazil
kleinnerfarias@unisinos.br

ABSTRACT
Companies developing Web applications have faced an increasing
demand for high-quality products with low cost and production
time ever smaller. However, developing such applications is still
considered a time-consuming and error-prone task, mainly due to
the difficulty of promoting the reuse of features (or functionalities)
and modules, and the heterogeneity of Web frameworks. Nowa-
days, companies must face ever-changing requirements. Software
product lines emerged as an alternative to face this challenge by
creating a collection of applications from a core of software as-
sets. Despite the potential, the current literature lacks works that
propose a product line for Web applications. This paper, therefore,
presents WebSPL, a product line for Web applications that supports
the main features found in Wed applications in real-world settings.
The proposed WebSPL was evaluated by comparing it with a Web
application developed according to a traditional approach. A case
study that involves the development of two Web applications en-
abled data collection. Two Web applications were developed — one
with and another without the support of the proposed WebSPL. We
compared these two applications using software design metrics,
including complexity, size, duplicate lines, and technical debt. The
initial results were encouraging and show the potential for using
WebSPL to support the development of Web applications.

KEYWORDS
Software Product Line, SPL, Web, Web Application, Software Ar-
chitecture, Software

1 INTRODUCTION
Nowadays, companies have faced the challenge of developing Web
applications with high quality, at low cost, and in a short time [6, 25].
Such companies have as primary goals the constant search to in-
crease the quality of the developed Web applications, act in dif-
ferent business domains, and be agile in production and delivery.
Moreover, they seek to promote the reduction of cost development
and increase productivity, and use technologies that facilitate the
customization of Web applications, avoiding highly coupling appli-
cations [32]. Achieving these goals is decisive for such companies,
as it will have a direct impact on their profits and, consequently,
on their survival.

In this context, companies seek to adopt methodologies that en-
hance the systematic reuse of software product modules, allowing
the construction of interchangeable modules between applications
and favoring the lifecycle management of their products to be made
available to customers [19]. By adopting such practices, it is ex-
pected that the challenge of building high-quality products in a
shorter period and at a lower cost will be overcome or, at least,

minimized. Moreover, developing software has become a compo-
sitional practice [11, 14, 15], where developers produce artifacts
by accommodating building blocks. Previous studies demonstrate
this concern when reporting empirical studies on the integration
of software artifacts [4] and their stability [12, 13].

Currently, to face this problem, companies have been using tra-
ditional development methodologies, including development based
on components, and services and based on the object-oriented para-
digm. Although these methodologies have been widely used, when
compared to Software Product Lines (SPL), they are not as com-
petitive, or even productive, for the development of high-quality
software at low cost and in a short period, especially when ap-
plied without traceability between the software artifacts created. It
has been observed that such methodologies are strictly related to
implementation issues such as, for example, the definition of sub-
routines, modules, objects, components, and services, as opposed to
promoting a consistent alignment between the companies’business
objectives and the software products offered by them. This mis-
alignment has been critical for companies that develop and market
Web applications, including business management Web systems
and social networks.

Academia and industry have invested efforts to understand the
features of such Web applications to systematize the development
process. Previous studies [29] show evidence that companies pro-
duce and maintain product families that share common character-
istics and that have some particularities that differentiate them.
Given the inefficiency of traditional methodologies, software prod-
uct lines (SPL) [28] emerged as an alternative to face the challenge
of creating a collection of applications from a core of software as-
sets. SPL emerged as an approach considered promising for Web
development, as it allows the alignment between the companies’
business strategies and the software development paradigm, allow-
ing for a gain in productivity by leveraging the traceability and,
consequently, the reuse of software artifacts. To sum up, SPL is a
promising approach for reusing knowledge and artifacts among
similar software products [30].

Northrop [23] shows that the use of SPL was decisive for the de-
velopment of software products in large companies (such as Nokia
and Microsoft), in the areas of command and control systems for
terrestrial spacecraft, control systems and warship (known as Cel-
siustech), and Web systems for the stock market. The use of SPL
has allowed us to systematically deal with: (1) different types of
keys and screen sizes; (2) localization features applied in differ-
ent regions around the world; (3) the internationalization of cell
phones through support for multiple languages; (4) interoperability
of cell phones through the support of multiple network protocols;
(5) maintainability of compatibility between different versions of
the company’s products; (6) support for configurable device fea-
tures; and (7) the need to manage product functionality during the

Maicon Luz and Kleinner Farias

development phase and their maintenance and evolution phase. In
[19], the authors demonstrate that SPL enables the development of
products that share the same architecture and, consequently, the
components that configure this architecture; the difference between
them being represented by their variability.

Although applications are increasingly developed and made
available on the Web, such as e-commerce and government applica-
tions, their development is still costly and often exceeds established
deadlines. That said, the need for studies that try to solve, or even
mitigate, the challenge of developing high-quality Web applications
with short deadlines and reduced budget is characterized. Therefore,
the great contribution of this work is to use SPL to develop families
of Web applications based on the traceability and systematic reuse
of their modules, managing to produce new products faster through
the effective management of their variant parts.

To overcome the challenge of developing high-quality web ap-
plications in less time and at a lower cost, it is necessary to solve
three core problems. Given that Web applications usually share a
common core, and these are differentiated by some particularities,
developers need to adequately understand what the application’s
features are and how the variability betweenWeb applications man-
ifests itself. However, in practice, developers do not understand the
features, as well as the variability between application products.
This can be explained by some reasons: (1) the inadequate repre-
sentation of application features and dependencies between them;
(2) not specifying the differences between the products, as well as
their variability; and (3) the lack of definition of which features
are needed to configure a particular product. Therefore, the com-
prehension of application features is hampered by the inadequate
representation of the features that make up the products, as well as
their variability.

The lack of understanding can be explained by some reasons:
(1) the features that make up the product family are rarely defined,
specified, and validated, as well as mapped precisely to software
artifacts. This implies that developers commonly do not have ac-
cess to mapping features to structural and behavioral diagrams of
applications. That is, developers find it difficult to navigate from
artifacts that specify requirements, to artifacts that define the de-
sign and implementation of features, and vice versa. Therefore,
there is an imprecision in the traceability between features, their
artifacts, and modules that implement them. The current literature
fails to provide details and evidence that proves whether the use
of SPL can bring real benefits, including greater reusability and
better modularity of the generated products, when compared to
Web applications developed following traditional practices. It could
be, for example, that the nature of the Web applications domain
compromises the real expected gains with SPL.

Despite the potential of software product lines, the current liter-
ature lacks works that propose a product line for Web applications.
This paper, therefore, presents WebSPL, a product line for Web
applications that supports the main features found in Wed applica-
tions in real-world settings. The proposed WebSPL was evaluated
by comparing it with a Web application developed according to a
traditional approach. A case study that involves the development
of two Web applications enabled data collection. Two Web applica-
tions were developed (one with and another without the support of
the proposed WebSPL). We compared these two applications using

software design metrics, including complexity, size, duplicate lines,
and technical debt. The initial results were encouraging and show
the potential for using WebSPL to support the development of Web
applications.

The paper is organized as follows. Section 2 introduces the main
concepts used in this work. Section 3 presents a comparative anal-
ysis of related works. Section 4 introduces the proposed software
product line. Section 5 discusses evaluation. Finally, Section 6 de-
scribes some conclusions and future work.

2 BACKGROUND
This section presents the main concepts needed to understand the
proposed work.

2.1 Software product lines (SPL)
Software product lines. SPL [28] represents a software develop-
ment methodology that seeks to define techniques to increase the
productivity of organizations through the systematic reuse of soft-
ware assets. This methodology aims to replace the ad hoc reuse
practiced until then with a systematic reuse approach, one that
enhances and manages the reuse of organizational assets. Clements
and Northrop [7] define SPL as a set of software systems that share
a common and managed set of features, which satisfy specific needs
of a market segment, and which are developed in a predefined way
from a common set of assets. Czarnecki and Eisenecker [9] define
a feature as being “a property of a system that is relevant to a cus-
tomer and that is used to capture the common and different aspects
between products in a line.” Typically, these features are classified
as mandatory, optional, and alternative. Furthermore, systematic
reuse is only achieved when it is possible to understand how a
family of software systems share features; and understand how the
differences between such systems manifest themselves.

The SPL concept offers a new strategy to allow advancement in
the productivity gains of development teams in companies. This
strategy tends to enhance reuse by identifying the common and
different parts between the products in such a way that each prod-
uct can be elaborated through the systematic reuse of the com-
mon/different parts between the products. By implementing an
SPL [29], companies can (1) increase the productivity and quality of
software products; (2) reduce development cost in a short time; (3)
decrease product rework and delivery time; and (4) enhance com-
panies’adaptation to reach new markets by being able to develop
new products faster and with quality.

Feature-oriented domain analysis. Software development us-
ing SPL methodology can be divided into two steps: (1) domain
engineering, where SPL requirements are defined, specified, and
validated. The definition of the structure used in the product line
occurs in domain engineering, defining the points that will be com-
mon to the products as well as the points of variability; and (2)
application engineering, where the products in the line are ana-
lyzed, designed, and implemented.

The concept of Feature-OrientedDomainAnalysis (FODA) emerged
in 1990 [18]. Feature-oriented modeling seeks to identify and ana-
lyze the requirements (or characteristics) that are common and the
variability in an SPL. Feature modeling is the activity of identifying
visible external features in the product line and arranging those

A Software Product Line for Web Applications

features in a model. Features are also a way to identify product line
requirements, which are functional or non-functional requirements.
The variability of these features can be divided into mandatory
(common to different products), optional, and alternative.

2.2 Variability
Variability is essential to the product line and is associated with the
ability to adapt to changes, more precisely with planned changes.
It is introduced during the product management sub-process when
common features and variables are identified in the product line.
Domain requirements detail the features defined in the product
management, thus the features exert a strong influence not only on
domain requirements but also on design, development, and testing.
It is possible to use different levels of abstraction, with each new
level of abstraction the previous level is refined and new features
are added, resulting in a refinement. For this, it is necessary to
introduce variability from the architecture so that the components
can be compatible with different versions of the product line [29].

Within this context, there are points of variability, a point of
variability represents an opportunity for variation within the SPL
domain. Variation points are modeled to allow customization of
applications using defined reuse, allowing customizations to adjust
to meet the proposed needs.

2.3 Web Applications
Web applications allow anyone with a browser to use them. With
the increasing popularity of web applications, it is possible to access
not only common computers but also mobile devices such as tablets
and smartphones. More and more web applications are developed
and made available. In this scenario, it is important to note that
reuse plays an important role. SPL has become a key factor for the
successful development of Web applications. However, it is possible
to observe the lack of specific technologies and the lack of strategy
applied to the Web application domain [37].

Web applications have proven to be an excellent area for ap-
plying SPL, as it makes development more agile. According to [3],
web applications can be considered software products derived from
a common infrastructure, where the core is the domain abstrac-
tion, for example, shopping cart, login, user registration, and retail
system.

2.4 Platform Architecture
One of the most important assets of a product line is the architec-
ture, known as Product Line Architecture (PLA), also known as
the platform. Through a common platform, products can be cus-
tomized, where it is possible to produce different products based
on a platform. The architecture must make explicit the commonali-
ties and variability, allowing the sharing of common SPL elements,
facilitating the customization of the products, it defines the main
SPL assets that were identified during the domain analysis: require-
ments, design, implementation, testing, etc. It is a strategic point
for the organization that seeks to adopt a product line approach,
the creation or removal of a platform exerts a strong influence on
business success [29].

The construction of the platform requires an initial investment by
the organization, as it will be necessary tomake an initial effort, only

after its completion the products will be developed. The removal or
addition of new features on the platform affects all products that
use it, so it is possible to maintain and evolve the platform, allowing
the organization to adapt to market needs. Other requirements that
must be met by the platform are security and performance, the
platform must abstract these particularities for the products.

2.5 Software Metrics
Software metrics are the way to measure software. Used as a tool
to analyze the software produced, providing information that can
assist in its development. Software metrics can be divided into two
groups: software product metrics and software process metrics.
While software product metrics are metrics extracted from source
code or code design, for example, software process metrics are
metrics extracted from the process used to develop the software.

The use of metrics is important to guide the organization and
assist in decision-making. It is recommended that the extraction
of metrics be carried out from the early stages of the project [21].
The extraction of PLA metrics has two objectives: to assess the
quality and to serve as a basis for analyzing the management and
economic value of the product line. Variability impact analysis can
determine the added value of a product line to the organization.
The application of metrics in PLA provides efficient indicators to
assess whether PLA is fulfilling its role within the product line of
which it is part [26].

3 RELATEDWORK
This section aims to present and compare other studies that pro-
posed or used software product lines, or some reuse methods.
Through this comparison, it is possible to identify the similari-
ties and opportunities to be explored to expand the research. Five
works that are similar to this research were selected.

3.1 Analysis of the Related Work
Aziz et al. [2]. This study argues that using software product line
engineering practices as the basis of a web application framework
can make web application development cheaper, faster and better
in terms of quality. In this sense, the study proposes a framework to
solve issues found in the development of product lines. The worker
uses Abstract Behavioral Specification (ABS) and various SPL engi-
neering tools to manage implementation variability and generate
the final product. A feasibility study shows that the framework can
be used to develop a family of web applications in the Adaptive
Information System for Charitable Organizations domain.

Constantino et al. [8]. The study argues that the adoption of
SPL in the industry depends a lot on technological support, mainly
on the tool usage factor. The article presents a visualization envi-
ronment, called ViSPLatform, which aims to portray data related
to experiments focused on SPL tools. ViSPLatform has been pre-
liminarily evaluated to analyze the extent to which the platform is
effective in supporting the understanding of the characteristics of
SPL tools. It is noteworthy that the study does not propose an SPL
for the development of Web applications, but an environment for
visualization. Preliminary results reported in the study show that
ViSPLatform can somehow indicate strengths and opportunities
for improvement in the analyzed SPL tools. The study highlights

Maicon Luz and Kleinner Farias

that the SPLOT tool has automatic analysis as its strength, but the
interface still needs improvement.

Horcas et al. [17]. It performs an analysis of different tools that
support the development and use of SPL, evaluating within the
main features of SPL if they meet the promised requirements and
the improvement points found.

Mendonca et al. [22]. It presents a web tool that allows the
analysis and configuration of an SPL. In the end, it provides a
repository of generated models to foster further research.

Yoshida and Iwane [35]. It introduces a tool to generate code
to instantiate new SPL for web applications, demonstrating its use
through a real web application.

3.2 Comparative Analysis and Opportunities
For the comparison between the related works, the Comparison
Criteria (CC) were established, the results are in Table 1.

• Web Applications (CC01): Studies related to the develop-
ment of web applications;

• Case Study/Prototype (CC02): Papers that used a case
study or developed a prototype;

• No code generation (CC03): Searches that do not involve
code generation to instantiate the SPL.

• Assessment tools (CC04): Studies that applied or created
a form of SPL analysis involving software metrics;

Table 1: Comparative analysis of related works

Related Work
Comparison Criterion

CC01 CC02 CC03 CC04

Proposed work
Yoshida and Iwane [35] # #
Mendonca et al. [22] G# # # #
Horcas et al. [17] # # #
Constantino et al. [8] G# # # #
Aziz et al. [2] # #

 Completely fills G# Partially fills # Does not fill

Research opportunities. Based on the comparative analysis
we highlight some research opportunities: (1) no study proposes a
software product line; (2) the main features of a Web Application
are not revealed; (3) a case study supported by metrics was not
performed, aiming to produce empirical knowledge and (4) the use
of real-world technology to develop an SPL for Web applications is
still scarce.

4 PROPOSED SOFTWARE PRODUCT LINE
This section introduces WebSPL, a product line of Web applications.
WebSPL was designed and implemented following good practices
documented in the software product line literature [27, 28]. Thus,
the design and implementation of WebSPL proposed in this article
have two stages: domain engineering and application engineering.
Section 4.1 explains how WebSPL’s domain engineering was per-
formed, describing the features that makeup WebSPL. Section ??
describes the application engineering, highlighting how the pro-
posed product line was implemented.

4.1 Domain Engineering
The Domain Engineering stage focuses on eliciting requirements,
specifying variability, and defining the configuration of the products
in the line. Thus, a set of activities are performed, including (1)
the description of the proposed SPL requirements, as well as the
possible versions of the line; (2) the identification of SPL variability
and specification of the feature diagram; and (3) description of
product configurations that may be derived from SPL.

Description of requirements and versions.The development
of the proposed product line uses a proactive approach, which ac-
cording to [19], is suitable for mature and stable domains, allowing
the characteristics of the product line to be planned. The construc-
tion of the product line was divided into versions, allowing the
addition of new features and improving existing features as each
new version is released. The use of versions is also focused on
modularity, allowing stable and functional versions of the product
line to be released at each new version, facilitating the maintenance
and evolution of the features that are developed.

The first version of the product line is based on some common
features in a web application, the ability to manage and maintain
the information handled by web applications is a basic feature, and
serves as the basis for the other functionalities. The other features
of this version focus on managing people and supporting interna-
tionalization. To facilitate the visualization of the versions, Table 2
summarizes the features of each version and Figure 1 presents the
features diagram.

Table 2: Software Product Line Versions

Version Description

Version 1 Mandatory and Most Important Features for the Web Appli-
cations Product Line.

Version 2 Addition of the remaining optional features related to user
management.

Version 3 Added mandatory features that relate to optional feature man-
agement adds the ability to manage user permissions.

Version 4 Added an optional feature for data export. Refactoring of
other features to provide the export option.

Product configurations. The product line configuration has
as its main objective to define a product configuration, as well as
allow the identification of possible product configurations. Figure 1
present the WebSPL feature diagram. WebSPL has four built-in
features, including data management, internationalization, user
profile control, and profile management. Based on the feature dia-
gram presented, two configurations of two products are presented.
The product configurations were generated using the FODA nota-
tion (feature-oriented domain analysis) through the FeatureIDE [24]
tool. Figure 2 and Figure 3 show examples of possible variability
with the features of the proposed SPL.

4.2 Application Engineering
To carry out the implementation of WebSPL, the Java language
was chosen. For the development of Web applications, the Java
language allows the use of several frameworks, such as Spring Tools,
JPA, Maven, and JSF, among others. Some of these frameworks
are present in the language’s standard API, while others can be

A Software Product Line for Web Applications

Figure 1: Feature diagram

Figure 2: Configuration of a product with mandatory fea-
tures

incorporated into the application to increase productivity, add new
functionality and implement an API specification.

Context and dependency injection. Seeking a loose coupling
between the features and a greater facility to integrate them into
the products, we chose to use dependency injection in all features.
Fowler [16] recommends when classes are used by multiple applica-
tions. One of the approaches used to control feature dependencies

Figure 3: Configuration of a product with all the features

and variability is the use of aspect-oriented programming (AOP).
However, it is known that AOP has some limitations, such as code
with low comprehensibility, difficulty in maintaining the scope of
performance of the pointcuts of the applications, and the overlap-
ping of aspects. Another point that should be noted in the case
of the Java language is the lack of a standard API for AOP in the
language, forcing developers to choose a single framework, and

Maicon Luz and Kleinner Farias

losing code portability, as each framework implements AOP differ-
ently. Given this scenario, we chose to use Context and Dependency
Injection (CDI), as it is a standard API in Java from Version 6 of
Java EE. CDI provides the dependency injection mechanism as
well as mechanisms that can replace the use of AOP as events and
interceptors.

WebSPL’s proposed architecture. Figure 4 presents the Web-
SPL architecture, highlighting the layers, technologies used, and
the MVC (model-view-controller) model used as a basis.

The presentation layer (view) of the features uses Java Server
Faces1 (JSF) together with the component library Primefaces2. This
approach allows the final product to be customized with another
look through the use of Cascading Style Sheets (CSS) if necessary.
It was defined that SPL supports two languages by default, Brazil-
ian Portuguese (pt_BR) and American English (en_US), but SPL
allows the final product to be configured with the other language or
have the messages already defined by default, allowing the user to
choose the language. The central layer uses CDI to implement con-
trollers and services. Information persistence uses Hibernate as a
persistence framework, allowing SPL to run on different databases.

The WebSPL is divided into four layers (Figure 4). Each layer has
its responsibilities described as follows:

• EXtensibleHypertextMarkupLanguage (XHTML): Con-
tains the visual components of the SPL that will be displayed
in the browser;

• Controller: It implements the user navigation control logic,
transfers requests to the service layer, and interacts with the
user by presenting success or failure messages;

• Service: It implements SPL services, business rules, and SPL
operating logic;

• Data Access Object (DAO): It implements the database and
transaction access logic.

Dependency management. Dependency management occurs
through Maven [1], thus allowing dependencies between features
considered mandatory to occur automatically. This is one of the
main features of Maven and it proves to be suitable for the SPL
environment, as it facilitates the configuration of the products. In
this way, the SPL features were logically separated into independent
Java projects (Figure 5), allowing easy reading of the implemented
features.

Another feature used by Maven is the integration with the Sonar
quality inspection and analysis tool, performing an immediate anal-
ysis of code quality through software metrics.

For the development of the SPL, the Integrated Development
Environment (IDE) MyEclipse was used, based on the Eclipse IDE,
but with a commercial license, using the Mercurial versioning tool
through the BitBucket versioning repository. The execution en-
vironment used consists of a Glassfish application server and a
PostgreSQL database. Figure 6 shows the structure of the develop-
ment environment and metrics extraction.

1JSF: https://www.oracle.com/java/technologies/javaserverfaces.html
2Primefaces: https://www.primefaces.org/

5 EVALUATION
This section discusses the methodology followed to evaluate the
proposed WebSPL. The evaluation seeks to compare products de-
rived from WebSPL with web applications developed without the
use of a product line. This comparison seeks to reveal the benefits of
using SPL from the perspective of some metrics. For this, Section 5.1
discusses the SPL developed. Section 5.2 describes the metrics used
in the evaluation. Section 5.3 discusses the results obtained.

5.1 WebSPL developed
To assess the benefits of using WebSPL, two web applications with
the same functionalities were developed, which were evaluated
using software metrics. The first application, named in this arti-
cle as complete-web-application, was developed with all features
previously mentioned (Table 2). The second application, named in
this article as application-web-spl-full, was fully developed using
the proposed WebSPL, extracting a product derived from WebSPL.
It is important to emphasize that the applications had the same
architectural pattern, used the same technologies, and had the same
functionalities.

5.2 Used Metrics
To collect the application metrics, the SonarQube3 tool was chosen,
which is a robust, open source web application that provides a set of
software metrics, recognized and used in the market, for example,
complexity per class, number of lines per class, and others. Sonar
allows: (1) metrics to be combined or configured; (2) new metrics
can be added via plug-ins; and (3) allows metrics to be compared
based on a historical basis.

No SonarQube metrics have been customized. Thus, the metric
extraction used the standard Sonar Java language profile, which
already has a set of predefined metrics. Sonar has a considerable
number of metrics, which are grouped by category, including com-
plexity, size, duplicity (or clone), and technical debt. According
to the characteristics of the proposed SPL project, the following
metrics were chosen:

• Complexity per class: It is the average cyclomatic com-
plexity per class. Cyclomatic complexity is also known as
the MacCabe metric and represents the number of different
paths a method or class can take.

• Lines of code: Number of lines of code present in each
project, excluding comments, blank lines, or lines of docu-
mentation. Through this number, it is possible to visualize
the size of each project.

• Package cycles: Number of unwanted package cycles. This
metric can be applied to projects, modules, or directories
and indicates that there may be an unwanted number of
dependencies indicating code coupling.

• Duplicate lines: Number of lines considered to be dupli-
cated. Metric that can be used to indicate the need for code
refactoring or finding code points that originated from snip-
pets that were copied and pasted.

• Technical debt: Technical debt is a metric based on the
open-source SQALEmethodology, which can be summarized

3SobarQube: https://www.sonarqube.org/

A Software Product Line for Web Applications

Figure 4: The architecture of the proposed SPL

Figure 5: Projects that make up the WebSPL

Figure 6: Development environment structure and metrics
extraction

as the organization of non-functional requirements related to
code quality. Through a code analysis looking for violations
of rules defined in Sonar’s quality profile and prioritizing in
order of importance reusability, portability, maintainability,
security, efficiency, readability, and testability, the technical
debt metric is generated. The technical debt represents the
effort based on the number of days that must be used to

remove all the technical debts found, in this case, the default
configuration used was that each day has eight hours of
work.

It is noteworthy that both compared projects have the same
object-relational mapping (ORM), this approach, in addition to
reusing the classes that represent the domain entities, avoids the
distortion of the metrics in favor of any project. The sum of the
metrics of the Web application that derives from SPL is composed
of the sum of the metrics of the web project itself and the sum of
the metrics of the features implemented in SPL. In practice, the
derived web project did not influence the final sum of the metrics,
as it has only one line of Java code, all features were added to the
project using Maven for dependency management.

5.3 Results obtained
Table 3 presents the results obtained from the metrics used. It is
possible to observe the increasing complexity, number of lines of
code, as well as technical debt of SPL applications. On the other
hand, there is a reduction in the number of lines of code, as well
as a reduction in the occurrence of code duplication in SPL ap-
plications. It is also important to highlight that the formation of
cyclical dependency between the packages that constituted the SPL-
derived applications and the non-SPL-derived applications was not
observed.

Increase the complexity of applications with SPL. The con-
struction of an SPL through a hierarchical model increases the
complexity of components due to the need to implement features
in the most flexible way possible. This is necessary to propagate
the use of features at various hierarchical levels that SPL can take
over time [10]. The increase in complexity can be seen in Table 3,
the size of complexity increased by 56 units in the case of SPL
presented in this article. According to [34], an SPL with many vari-
ations can make software development more complex and difficult
to maintain.

Increase in the number of lines of code. The increase in com-
plexity is directly associated with the lines of code metric, according
to [29]. This is due to the need to satisfy customers’wishes. This
way, adding more functionality in the code to satisfy the needs,
with that more lines of code will be used. As highlighted by [5]
[36], SPL leads to a reduction of lines of code in the final product,

Maicon Luz and Kleinner Farias

Table 3: Collected results

Category Metric CWA SPL DWA SAWS

Complexity Complexity per class 447 503 0 503
Size Number of Code Lines 3091 3324 1 3325
Design Package Cycles 0 0 0 0
Duplicity Duplicate Lines 186 100 0 100
Technical Debt Technical Debt Level 10.6 12.2 0 12.2
Legend:
AWC: Complete Web application
SPL: Software product line
DWA: Derived Web application from the complete SPL
SAWS: SPL and application-Web-SPL-full

however, the authors do not account for SPL overhead on the prod-
uct, focusing only on the evaluation of the final derived product. In
the example presented in this article, there is a drastic reduction in
the number of lines and other metrics extracted from the derived
final product.

Cycles between packages were not detected. The design in
an SPL architecture seeks to provide and increase the reuse of fea-
tures, focusing on evolution and ease of maintenance, allowing
products to be customized. Coupling is one of the metrics used to
evaluate the design of the classes that make up the project, accord-
ing to [33] coupling allows a view of how modular the software is,
that is, how much the relationship between classes and packages is.
they are independent. It is possible to observe that the coupling be-
tween packages remained the same in the derived web application
and in the web application that does not use SPL, in both cases the
coupling between packages reported by Sonar was equal to zero.

Reduction in the number of duplicated code. Code duplica-
tion should be avoided as much as possible, however, through Sonar,
it was possible to observe that the lines considered duplicated in
the SPL correspond to the model classes, more specifically in the
hashCode by a method using an attribute with the same name. As
it is highly recommended by the Java language that each class must
have its hashCode method implemented separately, it is clear in
this case that, despite being considered duplicity of code, it will not
be necessary to perform the refactoring.

Increase in technical debt. Technical debt is due to the rush
to deliver the software. Consequently, best practices are not used,
which may lead to future rework. According to [31], technical debt
is a metaphor that conceptualizes the balance between short-term
value and long-term value, decisions made in the short term in-
fluence the long term. The management of technical debt is an
increasingly critical aspect, as through it it is possible to concretely
discuss the value and priority of product quality. According to
[20] the SQALE analysis method4 can be used as a tool to man-
age technical debt, as it has an approach based on code analysis
using defined quality indicators by the International Organization
for Standardization (ISO) and quality standards such as testabil-
ity, maintainability, portability, etc. The technical debt reported by
Sonar points a way for SPL evolution and improvement, helping not
only to improve quality but quantifying in days the time of rework
effort, thus supporting schedule adjustments and time estimates.

Improved the maintainability of the proposed SPL. Each
feature was implemented and modularized in a single project. This
4Software Quality Assessment based on Lifecycle Expectations

was possible when using CDI and Maven to control the dependency
injection process and systematically manage dependencies between
features. This better modularization of features also provided better
support for possible changes in SPL, typically in evolution andmain-
tenance scenarios, something that was not found in applications
not derived from SPL. When such changes happen, each feature can
evolve separately, minimizing, as much as possible, the chances of
unwanted propagation. This lesser tendency to propagate changes
is observed when trying to change the code of a feature. All modi-
fications end up being confined in the context of the feature code
itself, they do not propagate to the code related to other features.

Finally, although there are different ways to implement an SPL,
no approach similar to the one presented in this article was found
in the literature. It is also observed that, with an approach using
the standard Java API, it is not necessary to use a solution as an
aspect-oriented approach, which is typically pointed out as a trend
in SPL implementation.

6 CONCLUSIONS AND FUTUREWORK
This article presented a product line of software for web appli-
cations. The SPL presented in this article uses Maven to manage
dependencies between features, allowing an accurate and automatic
mapping of mandatory features present in the feature diagram, thus
becoming available to the end product through the use of CDI de-
pendency injection. The interaction between features enabled in
SPL makes use of features present in the CDI API such as event sup-
port. As such, the coupling can be significantly reduced. Avoiding
the use of aspect-oriented programming it is possible to implement
an SPL that uses purely Java language syntax, without relying on
frameworks external to the standard API.

With the use of software metrics, it was possible to measure the
features and classes that makeup two web applications, comparing
an ad hoc web application and an SPL-derived web application. It
is clear that SPL requires greater care due to its addition of lines
and, consequently, complexity and technical debt, but it is possible
to observe a real gain in the resulting final product when compared
to the ad hoc web application. According to [10], the use of metrics
is common in several areas and aims to help in different situations,
learning from the past, evaluating the present, and, in some cases,
predicting the future.

In the future, new features or new metrics can be added to enrich
this study with a broader view. We can observe that this article is an
initial step in the search for new ways of implementing SPL and in
the search for continuous improvement, serving as a reference for
evaluating new empirical studies, which can be compared in other
real-world contexts. Finally, we hope that the questions presented
throughout this article will encourage other researchers to carry
out their studies following the quality model proposed here and
also evaluate it in the future, in different contexts.

REFERENCES
[1] Apache. 2021. Welcome to Apache Maven. https://maven.apache.org/
[2] A. Aziz, M. R. A. Setyautami, and A. Azurat. 2019. AWeb-based Software Product

Line Engineering Framework. In 2019 International Conference on Advanced
Computer Science and information Systems (ICACSIS). 21–26. https://doi.org/10.
1109/ICACSIS47736.2019.8979729

[3] L. Balzerani, D. Di Ruscio, A. Pierantonio, and G. De Angelis. 2005. A product
line architecture for web applications. In Proceedings of the 2005 ACM symposium

https://maven.apache.org/
https://doi.org/10.1109/ICACSIS47736.2019.8979729
https://doi.org/10.1109/ICACSIS47736.2019.8979729

A Software Product Line for Web Applications

on Applied computing - SAC ’05. ACM Press, New York, New York, USA, 1689.
https://doi.org/10.1145/1066677.1067059

[4] Vinicius Bischoff, Kleinner Farias, Lucian José Gonçales, and Jorge Luis Vic-
tória Barbosa. 2019. Integration of feature models: A systematic mapping study.
Information and Software Technology 105 (2019), 209–225.

[5] R. Capilla and J.C. Duenas. 2003. Light-weight product-lines for evolution
and maintenance of Web sites. In Seventh European Conference onSoftware
Maintenance and Reengineering, 2003. Proceedings. IEEE Comput. Soc, 53–62.
https://doi.org/10.1109/CSMR.2003.1192410

[6] Carlos Eduardo Carbonera, Kleinner Farias, and Vinicius Bischoff. 2020. Software
development effort estimation: a systematic mapping study. IET Software 14, 4
(2020), 328–344.

[7] Paul Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns (3 ed.). Addison-Wesley Professional. 608 pages.

[8] Kattiana Constantino, Eduardo Figueiredo, Glauco Carneiro, and Raquel Minardi.
2016. Multiple View Interactive Environment to Analyze Software Product Line
Tools. In Proceedings of the XII Brazilian Symposium on Information Systems on
Brazilian Symposium on Information Systems: Information Systems in the Cloud
Computing Era - Volume 1 (Florianopolis, Santa Catarina, Brazil) (SBSI 2016).
Brazilian Computer Society, Porto Alegre, BRA, 240–247.

[9] Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative programming:
methods, tools, and applications (1 ed.). Addison-Wesley Professional. 864 pages.

[10] Ebru Dincel, Nenad Medvidovic, and André van der Hoek. 2006. Measuring
Product Line Architectures. In Software Product-Family Engineering, Frank Linden
(Ed.). Lecture Notes in Computer Science, Vol. 2290. Springer Berlin Heidelberg,
Berlin, Heidelberg. https://doi.org/10.1007/3-540-47833-7_31

[11] Kleinner Farias. 2010. Empirical evaluation of effort on composing design models.
In 2010 ACM/IEEE 32nd International Conference on Software Engineering, Vol. 2.
IEEE, 405–408.

[12] Kleinner Farias, Alessandro Garcia, and Carlos Lucena. 2011. Evaluating the
effects of stability on model composition effort: an exploratory study. In VIII
Experimental Software Engineering Latin American Workshop collocated at XIV
Iberoamerican Conference on Software Engineering, Rio de Janeiro. Citeseer.

[13] Kleinner Farias, Alessandro Garcia, and Carlos Lucena. 2014. Effects of stability
on model composition effort: an exploratory study. Software & Systems Modeling
13, 4 (2014), 1473–1494.

[14] Kleinner Farias, Alessandro Garcia, and Jon Whittle. 2010. Assessing the impact
of aspects on model composition effort. In Proceedings of the 9th International
Conference on Aspect-Oriented Software Development. 73–84.

[15] Kleinner Farias, Alessandro Garcia, Jon Whittle, and Carlos Lucena. 2013. Ana-
lyzing the effort of composing design models of large-scale software in industrial
case studies. In International Conference on Model Driven Engineering Languages
and Systems. Springer, 639–655.

[16] Martin Fowler. 2004. Inversion of Control Containers and the Dependency
Injection pattern. http://martinfowler.com/articles/injection.html

[17] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2019. Software Product
Line Engineering: A Practical Experience. In Proceedings of the 23rd International
Systems and Software Product Line Conference - Volume A (Paris, France) (SPLC
’19). Association for Computing Machinery, New York, NY, USA, 164–176. https:
//doi.org/10.1145/3336294.3336304

[18] Kyo Kang, Sholom Cohen, James Hess, William Novak, and Spencer Peterson.
1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report. Software Engineering Institute. 161 pages. http://www.sei.cmu.edu/
library/abstracts/reports/90tr021.cfm

[19] KC Kang, V Sugumaran, and S Park. 2010. Applied software product line engineer-
ing. Taylor and Francis Group, LLC.

[20] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. 2012. Technical Debt:
From Metaphor to Theory and Practice. IEEE Software 29, 6 (nov 2012), 18–21.
https://doi.org/10.1109/MS.2012.167

[21] W. Li. 2000. Software product metrics. IEEE Potentials 18, 5 (2000), 24–27.
https://doi.org/10.1109/45.807276

[22] Marcilio Mendonca, Moises Branco, and Donald Cowan. 2009. S.P.L.O.T.: Software
Product Lines Online Tools. In Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and Applications
(Orlando, Florida, USA) (OOPSLA ’09). Association for Computing Machinery,
New York, NY, USA, 761–762. https://doi.org/10.1145/1639950.1640002

[23] Linda Northrop. 2008. Software product lines essentials. Software Engineering
Institute, Carnegie Mel-Ion . . . (2008). http://www.sei.cmu.edu/library/assets/spl-
essentials.pdf

[24] University of Magdeburg. 2014. FeatureIDE: An extensible framework for feature-
oriented software development. https://featureide.github.io/

[25] Anderson Oliveira, Vinicius Bischoff, Lucian José Gonçales, Kleinner Farias, and
Matheus Segalotto. 2018. BRCode: An interpretive model-driven engineering
approach for enterprise applications. Computers in Industry 96 (2018), 86–97.

[26] Edson A. Oliveira Junior, Jose C. Maldonado, and Itana M. S. Gimenes. 2010. Em-
pirical Validation of Complexity and Extensibility Metrics for Software Product
Line Architectures. In 2010 Fourth Brazilian Symposium on Software Components,
Architectures and Reuse. IEEE, 31–40. https://doi.org/10.1109/SBCARS.2010.13

[27] Linda Northrop Paul Clements. 2002. Software Product Lines: Practices and Patterns.
Addison-Wesley.

[28] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. 2005. Software product
line engineering: foundations, principles, and techniques. Vol. 1. Springer.

[29] Klaus Pohl, Günter Böckle, and Frank J. Van der Linden. 2005. Software Product
Line Engineering. SPLC ’11, Vol. 49. Springer. 29 – 35 pages. https://doi.org/10.
1007/3-540-28901-1

[30] Iris Reinhartz-Berger and Mark Kemelman. 2020. Extracting core requirements
for software product lines. Requirements Engineering 25, 1 (2020), 47–65.

[31] SEI. 2014. Architectural Technical Debt. http://www.sei.cmu.edu/architecture/
research/arch{_}tech{_}debt/

[32] Roger Gonçalves Urdangarin, Kleinner Farias, and Jorge Barbosa. 2021.
Mon4Aware: A multi-objective and context-aware approach to decompose mono-
lithic applications. In XVII Brazilian Symposium on Information Systems. 1–9.

[33] A. van der Hoek, E. Dincel, and N. Medvidovic. 2003. Using service utilization
metrics to assess the structure of product line architectures. In Proceedings. 5th
International Workshop on Enterprise Networking and Computing in Healthcare
Industry (IEEE Cat. No.03EX717). IEEE Comput. Soc, 298–308. https://doi.org/10.
1109/METRIC.2003.1232476

[34] Jilles van Gurp, Christian Prehofer, and Jan Bosch. 2010. Comparing practices
for reuse in integration-oriented software product lines and large open source
software projects. Software—Practice & Experience 40, 4 (2010), 285–312. https:
//doi.org/10.1002/spe.v40:4

[35] M. Yoshida and N. Iwane. 2005. Knowledge-based experimental development of
Web application systems. In The Fifth International Conference on Computer and
Information Technology (CIT’05). 876–880. https://doi.org/10.1109/CIT.2005.136

[36] Makoto Yoshida and Noriyuki Iwane. 2006. An approach to the software product
line system for web applications. In 2006 International Conference on Computing
& Informatics. IEEE, 1–6. https://doi.org/10.1109/ICOCI.2006.5276435

[37] Jingang Zhou, Yong Ji, Dazhe Zhao, and Jiren Liu. 2010. Platform Engineering
in Enterprise Application Development. In 2010 International Conference on E-
Business and E-Government. IEEE, 112–115. https://doi.org/10.1109/ICEE.2010.36

https://doi.org/10.1145/1066677.1067059
https://doi.org/10.1109/CSMR.2003.1192410
https://doi.org/10.1007/3-540-47833-7_31
http://martinfowler.com/articles/injection.html
https://doi.org/10.1145/3336294.3336304
https://doi.org/10.1145/3336294.3336304
http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm
http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1109/45.807276
https://doi.org/10.1145/1639950.1640002
http://www.sei.cmu.edu/library/assets/spl-essentials.pdf
http://www.sei.cmu.edu/library/assets/spl-essentials.pdf
https://featureide.github.io/
https://doi.org/10.1109/SBCARS.2010.13
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
http://www.sei.cmu.edu/architecture/research/arch{_}tech{_}debt/
http://www.sei.cmu.edu/architecture/research/arch{_}tech{_}debt/
https://doi.org/10.1109/METRIC.2003.1232476
https://doi.org/10.1109/METRIC.2003.1232476
https://doi.org/10.1002/spe.v40:4
https://doi.org/10.1002/spe.v40:4
https://doi.org/10.1109/CIT.2005.136
https://doi.org/10.1109/ICOCI.2006.5276435
https://doi.org/10.1109/ICEE.2010.36

	Abstract
	1 Introduction
	2 Background
	2.1 Software product lines (SPL)
	2.2 Variability
	2.3 Web Applications
	2.4 Platform Architecture
	2.5 Software Metrics

	3 Related work
	3.1 Analysis of the Related Work
	3.2 Comparative Analysis and Opportunities

	4 Proposed Software Product Line
	4.1 Domain Engineering
	4.2 Application Engineering

	5 Evaluation
	5.1 WebSPL developed
	5.2 Used Metrics
	5.3 Results obtained

	6 Conclusions and Future Work
	References

