
1

Comparative Performance Analysis between Spring Boot and Quarkus:
An Empirical Study

Gabriel Ferreira da Rosa, Kleinner Farias, Carlos Fernando Santos Xavier

PPGCA, University of Vale do Rio dos Sinos, São Leopoldo, RS, Brazil
gabrielfr97@gmail.com, kleinnerfarias@unisinos.br, xavier@edu.unisinos.br

Abstract: Performance plays a key role in web application designs, and the topic is
widely researched in the literature. Over the past few years, several Java
frameworks, such as Spring Boot and Quarkus, have sought to improve their
performance to remain relevant in the market. However, the current literature lacks
comparative analyzes that help developers to choose one of the frameworks. Despite
being widely used, few studies seek to provide comparative analysis, which leads
many developers to rely on their experiences and not on empirical knowledge. This
study, therefore, reports a comparative performance analysis between Spring Boot
and Quarkus. For this, a case study was carried out in the context of communication
scenarios via messages and their persistence in a database. And two applications
were developed using their respective frameworks. Data from the Central Processing
Unit (CPU), Random Access Memory (RAM) consumption and message processing
time were used to measure the performance of each target application. The
indicators obtained showed, statistically, that Quarkus presents a slightly superior
performance in most of the analyzed scenarios. However, this is an initial study that
seeks to explore the topic and pave the way for future research with other scenarios
and elements.

Keywords: Spring Boot; Quarkus; RabbitMQ; native; performance.

1 INTRODUCTION

Performance, a non-functional requirement, is of paramount importance, being

more important even than individual functional requirements. A poor performance

can mean the disposal of an entire service or even a set of services, consequently

resulting in financial losses (SOMMERVILLE, 2011). Based on the premise, several

Java frameworks sought to improve their performance, either through internal

refactoring or the implementation of new technologies. Technologies such as Ahead-

of-time (AOT), java compilation for native code, Hot Reload of Live Code, container

affinity, among others, lead to modifications of existing frameworks and the creation

of new ones. However, the literature in these cases does not follow at the same

speed of the changes made, thus creating questions such as: "Which framework

should I use?".

2

It may seem like a simple question. However, as Sommerville (2011, p. 302)

points out: "They are inherently complex and can take months for someone to learn

how to use them. It can be difficult and expensive to evaluate frameworks available

for choosing the most appropriate framework."

 Choosing the tool that best meets customer needs, in this case a framework,

brings a set of benefits such as: reducing infrastructure costs, reducing response

time, and a better user experience (LARSSON, 2020). Therefore, analysis studies

between Spring Boot and Quarkus help in this evaluation process, as studies on the

most diverse scenarios are elaborated.

Some studies on the subject seek to perform this analysis between Spring

Boot and Quarkus. The study by Almeida (2020) analyzes applications compiled in

native code and code to be executed by the Java Virtual Machine (JVM) through

HTTP (Hypertext Transfer Protocol) requests. However, analysis studies between

Spring Boot and Quarkus, both native, using RabbitMQ as a message broker, were

not found. Therefore, this gap motivated the development of this work, based on the

cited work.

Therefore, this article reports a comparative performance analysis between

Java frameworks: Spring Boot and Quarkus. For this, a case study was carried out to

evaluate Spring Boot and Quarkus in the context of an asynchronous messaging

application, in terms of CPU consumption, memory consumption and processing

time. A messaging application was developed with Spring Boot and Quarkus. We try

to keep the code as close as possible between applications, avoiding specific

features of each framework. Such applications were submitted to 3 message loading

scenarios, 150,000, 250,000 and 500,000, each one being executed 10 times. The

results obtained show that Quarkus has an advantage over Spring Boot in most

variables analyzed. The results obtained can benefit future developers in choosing

the framework that will bring the best result in an asynchronous message context.

 The study is structured as follows: Section 2 contains the theoretical

foundation, which brings concepts that are used in research; Section 3 deals with

related work, bringing a brief summary; Section 4 describes the methodology used,

elucidating the objectives and hypotheses of the research as well as its variables and

data capture and analysis process; Section 5 presents the results obtained through

tables and graphs; and finally, Section 6 addresses conclusions and future work.

3

2 THEORETICAL FOUNDATION

This section discusses the theoretical concepts used during the construction

and development of the study.

2.1 Native code and GrailVM

 Java is known to be an interpreted language, in which Bytecode runs on the

JVM. In older versions, they performed much lower than languages compiled directly

to native code. However, versions were released that brought techniques to mitigate

this problem, such as JIT-compilers. However, new technologies such as GraalVM

seek to make it even faster by precompiling Java into native code, thus allowing you

to get closer to languages that compile to native code such as C (LARSON, 2020).

 GraalVM came up with the proposal to be the next generation of virtual

machines of very high performance. For this purpose, it has brought together a set of

features such as Grail Compiler, GraalVM Native Image Mechanism, Truffle

Language Implementation Framework, and Sulong, which are essential to ensure

polyglot capability (Šipek; Muharemagić; Mihaljević; Radovan, 2020).

2.2 RabbitMQ

RabbitMQ is a message broker developed by Rabbit Technologies, which

aims to manage messages on distributed systems. Therefore, it can integrate

different systems with different languages, providing load, fault, and messaging

management (IONESCU, 2015). RabbitMQ uses the Advanced Message Queuing

Protocol (AMQP), which enables asynchronous communication between the entities

that interact with it. In addition, entities do not need to be working at the same time to

communicate, RabbitMQ can save messages until a consumer is available and fits

into the processing rules (SHARVARI; NAG, 2019).

Messages are received and sent according to rules that are defined at the time of

configuration. When a message is published, it must have a routing key that will

address the correct queue. When there is processing, or consumption as it is also

known, the entity that processes this message receives the message, performs all

4

the processing on it, and at the end sends RabbitMQ an acknowledgment (ACK),

which indicates that the message has been processed without the occurrence of

problems (SHARVARI; NAG, 2019).

2.3 Frameworks

Spring Boot is a framework that came from a simplification of the Spring Framework.

The objective was to make the setup time as small as possible, that is, from the

moment the project was created in a few steps the application is ready to move up to

the production environment (GUTIERREZ, 2019). Another major advantage is its

integration with third-party market applications, where Spring Boot offers a fast

integration process through its annotations and configuration management (MOHAN,

2022).

Quarkus is a versatile Java framework, ideal for serverless, microservices, and

containers. To do so it offers a low boot time, low RSS (Resident Set Size) memory

consumption, and good scalability (PLESSIS; Mendes, MENDES, CORREIA, 2021).

Quarkus has a different treatment when it comes to Java Reflection, because this

mode is the opposite of the premise of the native mode. In native mode, you want to

know all the information of the classes at the time of compilation, while Java

Reflection gets the information when the application is running. To get the best of

both, Quarkus offers configuration files and annotations to make use of Java

Reflection (KOLEOSO, 2020).

2.4 Case study

 Case study is a form of empirical investigation that seeks to investigate a situation

within a given context, using quantitative and qualitative methods. It is a

comprehensive research strategy, which can be carried out in several ways,

depending on the procedures chosen by the researcher according to the situation.

However, procedures should be followed to ensure the quality of research (YIN,

2001). According to Wohlin (2012), it is several sources of evidence in order to

investigate phenomena in a given context, especially when there is no clarity

between phenomenon and context.

5

Due to the characteristic of both the case study and the frameworks mentioned in

section 2.3, they are aligned with specific contexts and also because a clear

separation between the phenomena and the context of the object under study cannot

be achieved. The case study was chosen because it consists of an investigation to

evaluate how the two frameworks behave in a given context.

3 RELATED WORK

The search for the related works was carried out in the digital repository

Google Scholar. The main term used to perform the selection of works was "spring

boot quarkus performance".

3.1 Analysis of related works

(ALMEIDA, 2020). The work presents a comparison between native Spring

Boot, Spring Boot JVM, Native Quarkus, and Quarkus JVM. Through these forms of

compilation, execution and Java frameworks, tests were performed to compare the

performance of applications. The number of HTTP (Hyper Text Transfer Protocol)

requests and the response time obtained for each application were taken into

account. The author presents the difficulties encountered inherent to the use of new

technologies that are being matured. In this study, there was a superiority of native

Quarkus in almost all executed scenarios. Finally, it brings an important observation

noted both by the author and in Larsson's study (2020, p. 1).

"[...] we compared the performance of the community edition and enterprise
edition versions of GraalVM to OpenJDK and OracleJDK, using Java 8 and
Java 11 [...]. We found that the performance of the different JDKs vary
significantly depending on the test, which makes it difficult to make any
definitive conclusion." Larsson, R. [Our translation].

(BACK, 2016). It presents a comparative analysis between the methods of

integration of REST (Representational State Transfer) and AMQP (Advanced

Message Queuing Protocol) services. Several tests were performed in the local

environment and Heroku where the latency and flow of the two approaches were

measured. Also reporting the complexity observed in each method.

6

(BUONO; PETROVIC, 2016). In this study, the authors propose a new form

of communication between microservices, replacing text-based communication with

binary-based communication through Protocol Buffers. To do so, they use a modern

architecture with Quarkus and GraalVM. It also highlights its integration with

Kubernetes that allows during a moment of heavy data traffic and the need for more

instances, Quarkus provides the rapid rise of a new instance. In this sense, the

authors conclude that the use of binary communication leads to a considerable

reduction in response time.

(RITZAL, 2020). It introduces the technologies that GraalVM uses and how

they become faster than other Virtual Machines for Java. In addition, there is a brief

introduction to major Java frameworks such as Spring, Micronaut, and Quarkus. With

the use of Grailvm it is possible to optimize these frameworks. The paper presents a

comparison between the JVM and the GraalVM regarding application startup time,

memory usage, and runtime.

(SOUZA, 2020). Provides an overview of RabbitMQ and Apache Kafka

technologies. It makes an analysis both in qualitative terms such as time decoupling

and delivery assurance, as well as in quantitative terms through latency and tests of

controlled environment. It also provides an analysis of which scenarios each

technology performs best.

(FONG; RAED, 2021). The paper presents a Java Development Kits (JDKs),

GraalVM Enterprise Edition (EE) and Community Edition (CE) performance test

against Oracle JDK and OpenJDK for Java 8 and 11. For this, a collection of test

cases was used where each JDK was tested. The results obtained show that

GraalVM EE 11 obtained a better performance in most tests, however it was also

verified that the hardware plays a fundamental role in its performance.

3.2 Comparative analysis of related works

Comparison Criteria. The Comparison Criteria (CC) are used to perform the

comparison between the proposed work and the selected related papers.

● Empirical Study (CC1): the conclusions are based on concrete

empirical evidence and can be validated through data obtained in

experiments and tests.

7

● Memory consumption analysis (CC2): the ability to check the

memory consumption of the tested application.

● CPU consumption analysis (CC3): the ability to check the processing

consumption of the tested application.

● Message processing time analysis (CC4): the ability to check

message processing time.

 The result of comparing the related works and the proposed work is presented

in Table 1. From the analysis, the following points were observed: only 3 studies

analyze resource consumption; only 1 job checks the processing time of the

messages; no paper presents an analysis of message processing time combined

with resource consumption.

Table 1 - Comparative Analysis of Selected Related Papers

Related Work
Comparison Criterion

CC1 CC2 CC3 CC4

Proposed Work X X X X

(ALMEIDA, 2020) X X X 0

(BACK, 2016) X 0 0 X

(BUONO; PETROVIC, 2016) X X 0 0

(RITZAL, 2020) X X 0 0

(SOUZA, 2020) X 0 0 X

(FONG; RAED, 2021) X 0 0 0

Research opportunities. Based on the points highlighted in Table 1, the

following research opportunity was identified: execution of a empirical study case on

the performance of Spring Boot and Quarkus, native, in a context of asynchronous

message, using the criteria explained above. The research opportunity is explored in

the sections below.

8

4 METHODOLOGY

The section reports the methodology used in the execution of empirical

research. Section 4.1 presents the objective and question of the proposed research.

Section 4.2 presents the hypotheses. Section 4.3 presents the variables and metrics.

Section 4.4 the artifacts and tools that were used to carry out the study. Section 4.5

displays the applications that will be evaluated. Section 4.6 describes the

experimental process. Section 4.7 describes the analysis process. The methodology

is based on previous studies: (LAZZARI, 2021), Evaluating the effort of composing

design models: a controlled experiment (FARIAS; Garcia, GARCIA, 2010 WHITTLE;

CHAVEZ; LUCENA, 2013) and Wohlin (2012).

4.1 Research Objective and Question

The primary objective of this research is to make a comparative analysis of

performance between the Spring Boot and Quarkus frameworks, in the context of

asynchronous messaging applications. This objective seeks to understand the effects

of frameworks on three different variables: CPU consumption, RAM consumption and

message processing time. Such frameworks are analyzed through synthetic

message processing scenarios (Section 4.6), using RabbitMQ as a messaging

platform. Next, the objective of this research is formulated following in the MQM

model (BASILI, 1992):

Analyze Java frameworks

for the purpose of investigating its effects

in relation to performance

through the perspective of developers

in the context of asynchronous messaging applications.

The article aims to produce empirical evidence on the performance of Spring

Boot and Quarkus, both using GraalVM, in message processing scenarios. In this

sense, the following research question (QP) was formulated:

9

QP: Is Quarkus performance superior to Spring Boot in the context of

asynchronous messaging applications and compiled in native code with GraalVM?

4.2 Hypotheses

Hypothesis one. It is conjecture that Quarkus can present a superior

performance to Spring Boot, since the research conducted by Almeida (2020)

indicates this advantage in a context of HTTP requests. Quarkus seeks other

mechanisms for optimization, such as the disincentive of using the reflection API that

has high cost, unlike spring boot that makes extensive use (KOLEOSO, 2020).

Another point to be observed is that the native Spring Boot is still in the experimental

phase, unlike Quarkus which has a final version. Despite this, Spring Boot has

integration libraries with RabbitMQ and MongoDB developed specifically for it, which

can translate into better performance.

In this way, the performance will be a resume of the use of hardware

resources and processing time of messages, therefore declaring the null and

alternative hypotheses as follows:

Null Hypothesis, Null H: Spring Boot uses less (or equal) hardware
resources and has less (or equal) message processing time than Quarkus.

 H1null : Performance(Quarkus) ≤ Performance(Spring Boot)

Alternative Hypothesis, Halt: Quarkus uses fewer hardware resources
and has shorter message processing time than Spring Boot.

 H1alt : Performance(Quarkus) > Performance(Spring Boot)

By testing this hypothesis, it will allow you to check the use of hardware

resources and time of consumption of messages. Thus comparing through these

variables the two target applications. The data collected served as an insum for the

decision-making of future users of these frameworks.

4.3 Variables and Metrics

Independent variable. The independent variable in this hypothesis is that of

frameworks and message-oriented architecture.

10

Dependent variable. The dependent variable in this hypothesis is that of

performance metrics defined in Table 1. The knowledge of this variable allows the

performance of analyses to understand the impact of each framework on the tests.

The variable is divided into three facets: CPU consumption, RAM consumption, and

message processing time.

CPU consumption. Data represents the percentage of cpu usage of the

system, which is captured every five seconds by Prometheus and displayed in

Grafana graphics. The data is obtained by an average of all values captured during

the test period.

RAM consumption. Data represents in MebiByte the use of RAM, which is

captured every five seconds by Prometheus and displayed in Grafana graphics. The

data is obtained by an average of all values captured during the test period.

Message Processing Time. Obtained by the time difference between the

target application start command and the last message written to the MongoDB

database. This information is contained in the date field, in the body of the message.

When the target application under test processes the message, this field receives the

current date and time and writes the message to the database.

The performance metric is represented in Table 2.

Table 2 - Performance metrics

Name Description Tool

Memory consumption Memory resource consumption during
load testing in MebiByte.

Grafana

CPU consumption CPU resource consumption during load
tests in percentage.

Grafana

Message processing time Time elapsed between the target
application start command and the
recording of the last message in the
database.

MongoDB

4.4 Artifacts and tools used in this research

The study requires tools and artifacts to be done. Therefore, Table 3 presents

the list with all the elements used and their respective versions.

11

Table 3 - Artifacts and tools used in the research

Artifact Version

Maven 3.6.3

Spring Boot 2.6.4

Spring Boot Actuator 2.6.4

Spring Boot Web 2.6.4

Spring Boot AMQP 2.6.4

Spring Boot Mongodb Data 2.6.4

Spring Boot Native (experimental) 0.11.3

GraalVM 22.0.0.2

MongoDB 5.0.6

Rabbitmq 3.8.4

Grafana 8.5.0

Prometheus 2.35.0

Prometheus Registry Micrometer 1.8.3

Quarkus 2.7.4

Quarkus Camel Good 2.7.4

 RabbitMQ Client Quarkus 0.5.0

 Resteasy Quarkus 2.7.4

 Mongo Client Quarkus 2.7.4

Jackson Databind 2.12.4

12

The machine used to perform the tests was a Lenovo notebook with 16GB of

DDR4 RAM, 256GB Solid State Drive (SSD), Intel Core i7 10610U 1.8GHz processor

and Ubuntu operating system.

4.5 Target applications

Two applications have been developed for research. One being developed

using Spring Boot and the other using Quarkus, both use the Java language and

GraalVM to perform the build for native code. The applications are small, perform

only the processing of messages consisting of receiving the message, setting the

date field, saving to the bank and returning the ACK to RabbitMQ. Therefore, it is

possible to avoid possible interference during the processing of a message and the

data obtained are actually related to the framework under test.

The applications connect with three tools: message broker RabbitMQ,

MongoDB database and with prometheus monitoring tool. Figure 1 has a squeematic

illustration of the data flow of target applications. In step 1 a message-generating

application is triggered; in step 2 the target application, under test, connects to the

RabbitMQ message broker to receive the messages and send the reading

confirmation; in step 3 saves the messages in the MongoDB database; in step 4

there is sending information containing resource consumption to Prometheus and

finally in step 5 there is communication between Prometheus and Grafana so that

the graphics are generated in Grafana. It is important to note that step 2 starts only

when step 1 finishes, that is, when you finish sending the defined batch of messages.

Step 4 data flow takes place independently of steps 2 and 3.

13

Figure 1 - Illustration of the data flow

4.5.1 Load tests

Load tests start when the message generator fires, as a parameter, receiving

as a parameter the number of messages that must be generated. Figure 2 shows the

structure of the message. As soon as all messages are sent, the target application

starts up and consumes the messages. When initializing, communication with

Prometheus is initialized and soon after the graphics begin to be formed in Grafana,

thus allowing to follow the test and start capturing the metrics.

Some important points:

● The startup period of the application, where there is no message consumption

yet, is taken into account in metrics.

● Each test all data from the previous test is removed from the database.

Figure 2 shows the message structure used in the tests. The message

generator populates the fields: id, name, description, and status with random data.

The date field is populated in the target application, under test, before the message

persists in the database.

14

Figure 2 - Message structure

The strategy adopted for this research was to produce a certain number of

messages, send them to RabbitMQ and then consume them. The reason is that

there is no interference of the producer agent on the metrics collected from the target

application, that is, if the producer has a lower production capacity than the

consumer's consumption capacity, it will not impact the result.

4.6 Experimental process

Figure 3 shows the experimental process adopted, which consists of three

steps: developing the applications (1), defining and collecting metrics (2) and

analyzing the collected data (3). Each step is elucidated below.

15

Figure 3 - Experimental process

Step 1: Develop target applications. In this stage the research focuses on

the search for studies and documentation of the frameworks that serve as an input

for the development of target applications. The result was the implementation of two

applications that are aligned with the latest studies and technologies used by the

community. As well as a code that uses good practices and follows the

documentation made available.

16

Step 2: Define and collect metrics. Metrics are defined in this step

according to the list of resource consumption metrics made available by Java and the

message consumption time metric. From the definition, the load tests defined in

Section 4.5.1 start, at the same time the metrics are collected and grouped. The

result are indicators that served as an input for Step 3.

Step 3: Analyze the collected data. The study now searches through the

indicators collected in Step 2 and application of the Wilcoxon test, analyze and

confirm or refute the hypotheses proposed in Section 4.2. To this end, the indicators

are displayed in tables and graphs that allow the visual identification of the results of

the study.

4.7 Analysis process

Quantitative analysis. Statistical inference is used to perform the test of the proposed

hypothesis. Wilcoxon's nonparametric test is applied, as it does not require two

separate sets of identically distributed samples. A significant difference is found when

p-value ⩽ 0.05.

Qualitative analysis. Qualitative data are collected from what is observed during the

development of the research. Thus, non-tangible evidence, only by quantitative data,

can be presented and enrich the research.

5 RESULTS

 This section aims to present the results regarding the research questions

formulated in Section 2. Section 5.1 presents descriptive analysis of the collected

data. Section 5.2 presents a discussion of the hypothesis elaborated in section 4.

Section 5.3 presents a discussion about the results of the variables analyzed.

Section 5.4 presents the limitations of the study. Finally, section 5.5 reports some

observations made during the study.

5.1 Descriptive statistic

 The section discusses the aspects of the collected data regarding the

performance of the frameworks studied. For this, trends such as means and medians

17

and dispersions are used by means of the standard deviation to perform an analysis

on the distribution of data of the observed variables.

5.1.1 Memory Consumption

 Descriptive statistic. The average ram usage for each scenario with Spring

Boot were 115.6MiB, 124.5MiB and 135.8MiB, while for the scenarios with Quarkus

were 110MiB, 96.3MiB and 101.3MiB. Therefore, it was found that on average

Quarkus uses less RAM, it was also found that Quarkus presents a higher standard

deviation, especially in the scenarios of 150,000 and 250,000 messages. Table 4

better evidences these behaviors.

Table 4 - Memory Consumption Result (measured in MebiByte - MiB)

Target
application

Number of
messages

N Minor Q1 Median Q3
Bigge

r
Avera

ge
Standard
deviation

Spring Boot 150000 10 108 111,25 117,5 120 120 115,6 5,21

Quarkus 150000 10 84 91 110 128,5 138 110 21,5

Spring Boot 250000 10 115 120 122,5 130 135 124,5 7,61

Quarkus 250000 10 81 82,25 93 105 135 96,3 17,04

Spring Boot 500000 10 120 122,5 136,5 148,75 150 135,8 12,81

Quarkus 500000 10 90 94,5 100 105 120 101,3 9,03

18

Figure 4 - Box-plot diagram of memory consumption.

5.1.2 CPU consumption

Descriptive statistic. The average CPU usage for scenarios with Spring

Boot were 46.5%, 47.5% and 49.4%, while for the scenarios with Quarkus were

35.4%, 34.4% and 37%. Soon, it was found that Quarkus consumes less CPU

resources than Spring Boot. In addition, Spring Boot presented a higher standard

deviation than Quarkus in all scenarios, noting that in scenarios where there are

fewer messages (150,000 and 250,000), this difference is greater.

Table 5 - CPU Consumption Results
Target

application
Number of
messages N Minor Q1 Median Q3 Bigger Average Standard

deviation

Spring Boot 150000 10 45 45 45 48,75 50 46,5 2,41

Quarkus 150000 10 35 35 35 35,75 37 35,4 0,69

Spring Boot 250000 10 45 45 47,5 50 50 47,5 2,63

Quarkus 250000 10 33 34 35 35 35 34,4 0,84

Spring Boot 500000 10 45 46,25 48,5 52,75 55 49,4 3,8

Quarkus 500000 10 35 35 36 39,5 40 37 2,3

19

Figure 5 - CPU consumption box-plot diagram.

5.1.3 Runtime

 Descriptive statistic. The average processing time for the spring boot

scenario was 39s, 68s and 137.5, while for the scenarios with Quarkus were 24s,

41.2s and 89.3s. Through these values it was possible to notice that Quarkus can

process messages faster in all scenarios. With the increase in the number of

messages the standard deviation had a large increase in scenarios with Spring Boot,

jumping from 1.49s with 150,000 messages to 28.2s with 500,000 messages, as

shown in table 6.

Table 6 - Message consumption time results (in seconds)

Target
application

Number of
messages N Minor Q1 Median Q3 Bigger Average Standard

deviation

Spring Boot 150000 10 37 38 39 40 41 39 1,49

Quarkus 150000 10 23 23 23 24,75 27 24 1,49

Spring Boot 250000 10 60 62 66 73 79 68 6,99

Quarkus 250000 10 40 41 41 41,75 42 41,2 0,63

Spring Boot 500000 10 121 125 128 131,5 214 137,5 28,2

Quarkus 500000 10 83 85,5 90,5 93 94 89,3 4,19

20

Figure 6 - Box-plot diagram of message processing time.

5.2 Hypothesis Test

 Statistical tests were performed in order to verify that there is a difference in

performance between the frameworks. Performance is given through three variables:

CPU consumption, RAM consumption and message processing time. The

conjugated analysis of the three indicates whether the hypothesis that Quarkus has a

superior performance is true. The Wilcoxon test was applied with significance in 0.05

(p-value ⩽ 0.05).

 It is verified that the null H can be discarded since, according to the data

presented in section 5.1, Quarkus presents better results. Therefore, it can be

affirmed that, considering all the scenarios executed and analyzed, Halt is true to the

extent that only the scenario of 150,000 messages in the RAM consumption variable,

when statistically analyzing Quarkus, is not superior to Spring Boot, according to

Table 7.

21

Table 7 - Wilcoxon statistical test

Scenario Statistics CPU RAM Time of
Processing

150000 P-value 0,005 0,374 0,005

250000 P-value 0,005 0,009 0,006

500000 P-value 0,006 0,006 0,006

RAM consumption. It has been conjectured that Quarkus has a lower

consumption, which means higher performance than the Spring Boot framework.

According to Table 7, the alt H can be confirmed for the scenarios of 250,000 and

500,000, however, for the scenario of 150,000 this hypothesis, statistically, cannot be

confirmed where the p-value is 0.374.

CPU consumption. It has been conjectured that Quarkus has a lower CPU

consumption. According to Table 7, null H can be discarded since in all scenarios,

statistically, Quarkus consumes less, so it gets better performance.

Processing time. It has been conjectured that Quarkus has a shorter

processing time than Spring Boot. According to Table 7, null H can be discarded as

in all scenarios, statistically, Quarkus processes faster than Spring Boot, so it gets

better performance.

5.3 Discussion

 Memory consumption analysis. When analyzing the memory consumption

of both applications, it was possible to notice that Quarkus has a significantly lower

consumption compared to Spring Boot. However, Quarkus also has a significantly

higher consumption variation than Spring Boot, but memory consumption has not

increased, even though it has increased the number of messages. It is speculated in

the face of the data that Spring Boot presents better resource management, so

although it consumes more, there are no major variations as in Quarkus.

 CPU consumption analysis. When analyzing the CPU consumption of both

applications, it is noted that the two maintained linear consumption, regardless of the

size of the batch of messages. As well as it was evidenced that Quarkus had a

slightly lower consumption than spring boot. It is speculated that this consumption is

22

best due to the techniques that Quarkus uses to obtain better resource consumption,

such as restricted use of Java Reflection.

 Analysis of processing time. By analyzing the CPU consumption of both

applications, it is noted that Quarkus was able to process messages faster than

Spring Boot. A highlight is the high variation observed in a sample with 500,000

messages in Spring Boot, however this variation can be explained by possible

parallel, unintentional processing being performed on the machine on which the test

was performed.

5.4 Study limitations

 It is initial research that seeks to bring a light on the theme, explores new

technologies that are still being developed and matured. Therefore, the research has

some limitations that should be taken into account. The data collected refers to the

scenario and specific settings, any change, even if applied to both, can lead to

completely different data.

5.5 Observations

 Changing the interaction settings between MongoDB and Quarkus can

increase or decrease message consumption by more than 120 times per second. In

this sense, there is a lack of documentation on the configurations referring to the

connection between the two (especially the Quarkus). The shortage of

documentation makes development time consuming and application susceptible to

errors.

 The compilation of Spring Boot in native mode proved to be extremely time-

consuming compared to the normal build, as well as consuming all the machine

resources and often causing it to stop due to a lack of RAM.

Because Quarkus is a relatively new framework, the amount of

documentation, articles, academic papers, and discussions on the Internet is smaller

compared to Spring Boot. This translates into a more time-consuming development

and prone to less performative code, since they have not been widely tested.

23

6 CONCLUSION AND FUTURE WORK

This work carried out an empirical study to analyze the Spring Boot and

Quarkus performance in an asynchronous messaging environment. The systems

were submitted to a set of tests in order to collect previously selected data. Data

such as CPU consumption, RAM consumption, and message processing time were

observed and analyzed. The results show that in most tests Quarkus showed better

results than Spring Boot.

The results obtained in this study point to the consumption of smaller

hardware resources with Quarkus compared to Spring Boot. Thus, the processing

time was shorter with Quarkus. It is possible to make decisions based on empirical

knowledge when choosing a Java framework. It is important to highlight that the

conclusions of this study are linked to the context where the tests were performed,

and a generalization is not possible.

 As future work, we seek to perform: (1) other test scenarios, with other

communication protocols; (2) conducting intermittent load tests; (3) considering more

parameters for evaluation. This work seeks to increase the existing work in the area

of performance analysis between frameworks, so it brought a new scenario with

other technologies involved with RabbitMQ. It also serves as an initial study involving

Java, GraalVM, Spring Boot, Quarkus, RabbitMQ and MongoDB technologies,

providing space for related or deeper studies.

REFERENCES

ALMEIDA, Matheus Santos De. A Comparative Performance Analysis Between
Different Server-Side Web Application Execution Technologies. Monograph.
Federal University of São Carlos. (Computer Engineering). San Carlos 2020.
Available in: <https://bit.ly/3N8IztG>. Accessed: 30 May 2022.

BACK, Renato Pereira. Comparative Analysis of Microservices Integration
Techniques. Federal University of Santa Catarina. Florianópolis, 2016. Available in:
<https://bit.ly/3N3qxIW>. Accessed: 30 May 2022.

BASILI, V. R. Software modeling and measurement: the Goal/Question/Metric
paradigm. [S.l.], 1992.

BUONO, Vincenzo; PETROVIC Petar. Enhance Inter-service Comminication In
Supersonic K-Native REST-based Java Microservice Architectures. Kristianstad

24

University Sweden, 2021. Available in: <https://bit.ly/3wWshhJ>. Accessed: 30 May
2022.

FARIAS, Kleinner; GARCIA, Alessandro, WHITTLE, Jon; CHAVEZ, Christina von
Flach Garcia; LUCENA, Carlos. Evaluating the effort of composing design models: a
controlled experiment. Model Driven Engineering Languages and Systems.
Berlin, pp. 676–691, vol. 7590, 2013. Available in: <https://bit.ly/3PQJNv9>.
Accessed: 30 May 2022.

FARIAS, Kleinner; GARCIA, Alessandro, LUCENA, Carlos. Effects of Stability on
Model Composition Effort: An Exploratory Study. Journal on Software and
Systems Modeling, vol. 13, Issue 4, pp. 1473–1494, 2014.

FONG, Fredric; RAED, Mustafa. Performance comparison of GraalVM, Oracle
JDK and OpenJDK for optimization of test suite execution time. 2021. Available
in: <https://bit.ly/3wYwW2t>. Accessed: 30 May 2022.

GUTIERREZ, Felipe. Pro Spring Boot 2 An Authoritative Guide to Building
Microservices, Web and Enterprise Applications, and Best Practices. Library of
Congress Centrol. 2019.

IONESCU, Manuel Valeriu. The Analysis of the Performance of RabbitMQ and
ActiveMQ. IEEE 2015. Available in: <https://bit.ly/38wo8aX>. Accessed: 30 May
2022.

KOLEOSO, Tayo. Beginning Quarkus Framework: Build Cloud-Native Enterprise
Java Applications and Microservices. 2020.

LARSSON, Robin. Evaluation of GraalVM Performance for Java Programs.
2020. Available in: <https://bit.ly/3LUtcnb>. Accessed: 25 May 2022.

LAZZARI, Luan; FARIAS, Kleinner. The effects of event-driven architecture on
software modularity: An exploratory study. 2021. Available in:
<https://bit.ly/3t7w8Gl>. Accessed: 15 May 2022.

Mohan, Anand. "Kafka Streaming Application using Java Spring Boot." (2022).
Available in: <https://bit.ly/3lUqDXy>. Accessed: 15 May 2022.

PLESSIS, Shani du; MENDES, Bruno; CORREIA, Noélia. A Comparative Study of
Microservices Frameworks in IoT Deployments. 2021 International Young
Engineers Forum (YEF-ECE), pp. 86-91, 2021. Available in:
<https://bit.ly/3GwOXbq>. Accessed: 15 May 2022.

RITZAL, Roman. Optimizing Java For Serverless Applications. (Master's thesis)
University of Applied Sciences, FH Campus Wien 2020. Available in:
<https://bit.ly/3wVRXK4>. Accessed: 30 May 2022.

SHARVARI, T.; Nag, K. Sowmya. A study on Modern Messaging Systems-
Kafka, RabbitMQ and NATS Streaming. Cornell University, 2019. Available in:
<https://arxiv.org/ ABS/1912.03715>. Accessed: 30 May 2022.

25

ŠIPEK M.; MUHAREMAGIĆ, D.; MIHALJEVIĆ, B.; RADOVAN, A. Enhancing
Performance of Cloud-based Software Applications with GraalVM and Quarkus.
43rd International Convention on Information, Communication and Electronic
Technology (MIPRO), 2020, pp. 1746-1751, 2020. Available in:
<https://bit.ly/3azWLxr>. Accessed: 30 May 2022.

SOMMERVILLE, Ian. Software Engineering. 9.ed. Translation Ivan Bosnic and
Kalinka G O Gonçalves. São Paulo: Pearson Prentice \hall, 2011.

SOUZA, Ronan de Araújo. Perfomance Analysis Between Apache Kafka And
RabbitMQ. (Course Completion Work) Federal University of Campina Grande 2020.
Available in: <https://bit.ly/3t4y4zA>. Accessed: 30 May 2022.

WOHLIN, Claes, et al. Experimentation in software engineering. Springer
Science & Business Media, 2012.

YIN, Robert. Case Study Planning and Methods 2. ed. Porto Alegre: Bookman,
2001.

