
Effects of Event-driven Architecture on Modularity Software:
A Research Agenda

Luan Lazzari
PPGCA, University of Vale do Rio dos Sinos
São Leopoldo, Rio Grande do Sul, Brazil

luanlazzari@edu.unisinos.br

Kleinner Farias
PPGCA, University of Vale do Rio dos Sinos
São Leopoldo, Rio Grande do Sul, Brazil

kleinnerfarias@unisinos.br

ABSTRACT
Event-driven architecture has been widely adopted in the software
industry, emerging as an alternative to modular development to
support rapid adaptations of constantly evolving systems. How-
ever, little is known about the effects of event-driven architecture
on performance, stability, and software monitoring, among oth-
ers. Consequently, professionals end up adopting it without any
empirical evidence about its impact. Even worse, the current litera-
ture lacks studies that point to which emerging research directions
need to be explored. This article proposes an agenda for future
research based on the scarcity of literature in the field of event-
oriented architecture. This agenda was derived from a literature
review and a case study carried out, as well as from the authors’
experience. Five main topics were explored in this work: software
performance, empirical studies, architectural stability, challenges
for software adoption, and monitoring. Finally, this article seeks
to help researchers and professionals by proposing an agenda that
serves as a starting point for their research.

KEYWORDS
Event-driven architecture; EDA; agenda; future works; challenges.

1 INTRODUCTION
The development of software systems currently takes place in in-
creasingly unstable business environments, requiring high flexibil-
ity to support rapid system adaptations [30]. Typically, complex
and volatile business rules, changes in used technologies, pres-
sures for shorter development cycles and continuous delivery of
functional modules [34] are some of the ever-present features of
contemporary software development projects. For this reason, soft-
ware development teams seek to use architectural styles, patterns,
and software design principles to keep the stability of software
system design under development or under maintenance [12]. In
addition, development teams seek to promote collaborative devel-
opment, reduce development and cognitive effort [20, 21], improve
effort estimates [6], and minimize the effort invested to integrate
and maintain critical software artifacts for the development of com-
plex systems [4, 13, 14]. In this sense, D’Avila [9] also outlines some
findings about the effects of contextual information on the reduc-
tion of maintenance effort. Even worse, the lack of documentation
for the design of software systems has been a factor that makes it
even more difficult to maintain current software systems [15, 23].
This absence of UML models in software projects, in part, is moti-
vated by the difficulty of objectively evaluating the generated UML
models [16] and keeping such UML models up to date with each
other [8] and with the current version of the source code.

Some works [5, 25, 37, 38] point out that event-driven architec-
ture promotes loose coupling — essential for the modularization of
application services — but can increase design complexity and sys-
tem understanding [17]. The software industry has adopted the use
of events in architectures. For example, Spotify introduces stream-
ing event delivery to batch to support its applications [1]. Recent
studies [25, 27, 38] point out the possible benefits of event-driven
architecture. Laigner et al. [27] report an empirical study in which
the adoption of event-driven architecture improved the mainte-
nance and fault isolation in a system that was refactored after years
of maintenance, giving rise to a large and complex source code.

The literature on event-driven architecture advocates that de-
signing applications strongly based on events favors the function-
ality modularization, as well as facilitating maintenance activities
and service evolution of applications [5]. In this sense, designing
software adopting event-driven architecture may imply a more sys-
tematic way to promote a better modularization of modern software.
Moreover, event-driven architecture has been widely adopted in the
software industry, emerging as an alternative to modular develop-
ment to support rapid adaptations of constantly evolving systems.
However, little is known about the effects of event-driven archi-
tecture on performance, stability, and software monitoring, among
others. Consequently, professionals end up adopting it without any
empirical evidence about its impact. Even worse, the current litera-
ture lacks studies that point to which emerging research directions
need to be explored.

This article, therefore, aims to identify the challenges, implica-
tions, and future research directions regarding the use of event-
driven architecture in the field of software development. For this,
we carried out a scoping review in the literature, selecting works re-
lated to event-driven architecture for convenience, as there are few
public studies on the areas covered, they adopt well-known research
guidelines [39]. Moreover, a case study on the software modularity
of event-driven architecture was designed and run. Based on these
studies, we propose a research agenda that can be exploited to foster
future research as well as initiatives in the software development
industry. As a result, the article seeks to promote the study and
adoption of event-driven architecture. In particular, researchers
and professionals can benefit from this work. Researchers can ben-
efit from this research by using it to build their research agendas,
direct research efforts, and serve as a guide or starting point for
students. Professionals can use this article as support to improve
software development practices, drive architectural improvements,
and promote software redesign.

This study is structured as follows: Section 2 introduces the
main concepts for understanding the event-driven architecture;
Section 3 addresses related works, exploring the comparing them

Luan Lazzari and Kleinner Farias

Figure 1: Flow of events in the ordering service (source [37])

with the present one; Section 4 describes the methodology for
developing this study; Section 5 brings the proposed agenda; and,
finally, Section 6 draws some conclusions and future works.

2 EVENT-DRIVEN ARCHITECTURE
In event-driven architecture, software components publish data
without knowing the other components or which can consume and
react to the published data, promoting the separation of computa-
tion and event publishing from any subsequent processing [17, 25],
as illustrated in Fig. 1. Furthermore, the communication between
the producer/consumer is asynchronous, and both are indepen-
dent of each other [11]. Consequently, promoting loose coupling
between components — that is the reason event-driven architecture
has become predominant in large-scale distributed applications
[17].

In addition, three-dimensional visual reconstruction using trains
of events with very high temporal resolution, simulation of spiking
neural networks and integration of multi agent systems are among
other applications that EDA plays an important role. Such applica-
tions have some requirements in common, such as responsiveness,
event asynchronicity, and heterogeneous data source [35].

The messaging system allows building loosely coupled services,
as it moves the raw data to a highly coupled location (producer) and
places it in a loosely coupled location (consumer) [37]. Therefore,
any operations that need to be performed on this data are not done
on the producer, but on each consumer [37]. That is, services can
easily be added to the system in plug and play (pluggable) mode,
where they connect to event streams and run when their criteria
is met [25, 37]. It does not only promote loose coupling, but also
manage to store events and data, dispensing with the use of a
database, keeping events “close” to the services [37]. In addition, all
events are stored in the order they arrived, allowing events to be
played back in order. As a result, the performance of event-based
applications is also better, ensuring stability and high performance
for high data flow [37].

Its composition generally comprises components that detect
events, listen for events, process the reaction to an event, and
transmit events or messages between components. Event-driven
architecture is extremely loosely coupled and highly distributed by
design [5]. On the other hand, decoupling between producers and
consumers makes controlling the visibility of data more difficult.

Although there are few studies addressing the disadvantages or
difficulties with EDA, some points prove to be quite challenging.

3 RELATEDWORK
This section discusses works that are close to the objectives of our
article. The selection of related works was carried out following two
steps: (1) search in digital repositories, such as Google Scholar for
articles applying the search string “event-driven architecture OR
event-driven OR EDA”; and (2) filter of selected articles considering
the alignment of such works with the objective of the work and
the formulated research questions (Section 4.1). We selected five
articles from the literature for convenience, using the criterion of
proximity to the topic explored in our research. Such works are
analyzed (Section 3.1) and then compared with the proposed work,
aiming to identify research opportunities (Section 3.2).

3.1 Analysis of Selected Studies
Overeem et al. (2021) [31]. The study analyzes 19 event-sourced
systems to understand the reasons for using the event sourcing
pattern. Its conceptualization is addressed for better understanding,
as well as differentiating from similar architectures such as event-
driven, although very similar, they present differences on event
concepts. To understand the rationale for adopting event sourcing, it
was based on interviews with 25 event sourcing engineers. Through
the analyzed systems, three topics associated with event sourcing
emerged, the use of Domain-driven Design (DDD) as software
design, Command and Query Responsibility Segregation (CQRS)
being a related architectural standard and microservice as a style.
In each topic the reasons for application are discussed. In addition
to the favorable points, five challenges faced by professionals are
discussed: event system evolution, the steep learning curve, lack
of available technology, rebuilding projections, and data privacy.
Finally, from the insights acquired in the analyzed systems and the
challenges found, five tactics and solutions were discovered that
support professionals in the evolution of event sourcing systems.

Petrov et al. (2021) [32]. It analyzes the notions of event pro-
cessing, event processing methods, area context, and urgent issues
of event processing methods. Furthermore, approaches to its so-
lution are proposed, differences in event processing methods are
exemplified, and the disadvantages of the methods are highlighted.
Emphasizing the following problems: out-of-sequence event pro-
cessing; occurrence of duplicates; collisions in event processing;
fault-tolerant distributed architecture; multithreaded event process-
ing; adaptive load balancing circuits; event processing application
monitoring. Various solutions are discussed and tested using the
test bench in order to assess the consequences. Some methods can
lead to performance degradation.

Schmidt et al. (2008) [36]. It conducted a survey of the current
state of the art in event-driven architecture, with a focus on event
and action processing. Where is described the prerequisites of an
entirely new conceptual model to describe the reactivity that is
closest to the way people react to events: based on the ability to
identify the context duringwhich active behavior is relevant and the
situations in which it is necessary. Challenges for event processing
are addressed as a way to manage a very valuable knowledge asset
- knowing how to react (make decisions) in event-driven situations.

Effects of Event-driven Architecture on Modularity Software:
A Research Agenda

By distinguishing between a non-logical and a logic-based view
when dealing with event-triggered reactivity.

Griffin and Pesch (2007) [22]. It presents a survey of service-
oriented architecture and web services in telecommunications. Its
have gone through several changes and technological evolution,
arising from regulations and competition. The article describes the
changes in detail and shows that the need to adopt service-oriented
architecture (SOA) in telecommunications has become an important
item on the agenda of operators. Tomake this possible, event-driven
architecture (EDA) is covered in detail, as SOA and EDA comple-
ment each other and are necessary in a real SOA implementation.
While SOA provides a request/response message exchange, EDA is
capable of long-term asynchronous processing.

Chung-Sheng (2005) [29]. It conducted a study on the evo-
lution of event-driven applications and discusses their potential
implications for system and middleware trends. Applications in-
clude: telecommunications services, trading system for financial
services, logistics and asset management in manufacturing, digital
fuel field for oil and gas production, telematics for automotive main-
tenance, and disease monitoring for healthcare. There is also the
analysis of new middleware components and system architectures
optimized for event processing and routing.

3.2 Comparative Analysis and Research
Opportunities

Comparison Criteria. Seven Comparison Criteria (CC) were de-
fined to identify the similarities and differences between the pro-
posed work and the selected articles. This comparison seeks to
help identify research opportunities using objective rather than
subjective criteria. The criteria are described below:

• Agenda research (CC1): understands studies to address
future work or agenda research;

• Event-driven architecture (CC2): studies that address
concepts or applied the event-driven architecture;

• Empirical Study (CC3): studies that performed exper-
imental studies, especially through case studies, experi-
ments, or observations for data collection in the field;

• Performance analysis (CC4): studies where performance
analyzes were applied;

• Stability analysis (CC5): studies where software stability
was measured;

• Challenges to adopting (CC6): studies that explore the
challenges for the adoption of event-driven architecture;

• Logs (CC7): studies covering techniques for log analysis
in event-driven architecture applications.

Research opportunities. Table 1 presents the comparison of
the selected studies, highlighting the similarities and differences
between them. To sum up, the analyzed works do not present a
purposeful research agenda which can serve as a starting point
for future works. Therefore, this work seeks to fill this gap in the
current literature.

4 METHODOLOGY
This section defines the methodology used to retrieve the state-of-
the-art literature about research agenda regarding the subject of

event-driven architecture in software engineering. From this se-
lected literature, we derived the further challenges and implications
of applying the event-driven architecture in industry. Section 4.1
presents the objective and research questions of this work. Section
4.2 presents the strategy to select the potential studies. Section 4.3
outlines the process of study selection. Section 4.4 briefly describes
the exploratory case study run to identify the benefits of using
event-driven architecture in terms of modularity.

4.1 Objective and Research Questions
This study has two main objectives: (1) to grasp a research agenda
in relation to the event-driven architecture in software engineering;
and (2) to list which implications that the software industry needs
to overcome. For this, this study comprises in one research question:
How to propose a research agenda containing challenges, implica-
tions, and future directions regarding event-driven architecture?

To answer this question, a scoping review was conducted to
select systematically the related literature.

4.2 Search Strategy
This section presents the strategy used to search studies in the
current literature. The strategy consists of building a search string
and defining a main search engine to conduct the search.

Search string. The search string for related works was con-
structed using the main terms of event-driven architecture. The
search string used was as follows:

“event-driven architecture OR event-driven OR EDA”

In addition to works related to event-driven architecture, works
referring to other fields of research are also returned. To address
the topics on the agenda, specific research was carried out on each
topic that generated other search strings in addition to the one
mentioned above, aiming at the most relevant works regardless of
the technologies involved.

Search engine. In this work, Google Scholar was the search
engine used in the selection of works. This engine was selected
because it encompasses works published in the main magazines
and congresses related to computer science, which contain works
related to event-driven architecture.

4.3 Study Selection
The criterion for selecting the works, in short, was for convenience.
Because, the area that studies event-driven architecture still has
few works that address the themes explored in this study. On top of
that, most of the jobs returned by the search engine were related to
other fields of research. Therefore, it becomes impossible to apply
the selection of works as some methodologies apply based on this
return. Thus, the selection criterion was the title of the article and
its abstract, enough points to understand if the article addresses
the research objectives.

4.4 Case Study
As previously mentioned in Section 1, event-driven architecture
has been widely adopted in the software industry, thus emerging as

Luan Lazzari and Kleinner Farias

Related Work Comparison Criteria
CC1 CC2 CC3 CC4 CC5 CC6 CC7

Proposed work
Overeem et al. (2021) [31] # # # # #
Petrov et al. (2021) [32] # # #
Schmidt et al. (2008) [36] # # # # # #
Griffin and Pesch (2007) [22] # # # #
Chung-Sheng (2005) [29] # # # # #

 Attends # Does not attend
Table 1: Comparative analysis of selected relate works

an alternative to the development of enterprise applications based
on REST architectural style, for example. We realize that little was
known about the effects of event-driven architecture on software
modularization while enterprise applications evolve. Consequently,
practitioners ended up adopting it without any empirical evidence
about its impacts on essential indicators, including separation of
concerns, coupling, cohesion, complexity and size [28]. We de-
signed and run an exploratory case study to compare event-driven
architecture and REST style in terms of modularity. A real-world
application was developed using an event-driven architecture and
REST through five evolution scenarios. In each scenario, a feature
was added. The generated versions were compared using ten met-
rics. The initial results suggest that the event-driven architecture
improved the separation of concerns, but was outperformed con-
sidering the metrics of coupling, cohesion, complexity and size.
The findings are encouraging and can be seen as a first step in
a more ambitious agenda to empirically evaluate the benefits of
event-driven architecture against the REST style.

This exploratory case study explored in practice the possible
benefits of using event-driven architecture, which served to build
the proposed research agenda.

5 PROPOSED RESEARCH AGENDA
This section presents the proposed research agenda, which was
structured through five perspectives, including performance anal-
ysis, conducting empirical studies (Section 5.1), stability analysis
(Section 5.3), challenges to adopting the technology (Section 5.4),
and logging (Section 5.5).

5.1 Performance analysis
The main characteristic observed in a distributed system is your
process capacity. The performance of a software indicates the
degree to which the system fulfills its tasks, measured by the re-
sponse time and the efficiency with which it achieves it [26]. While
response time is the time it takes to respond to a request. Sites are
often vulnerable to high traffic, usually on special dates. However,
this is often associated with system scalability. Thus, software per-
formance and scalability are essential to avoid system downtime
due to overload, something common in today’s systems. Certain
characteristics can affect these features, e.g., message size, device
type, and the complexity of the smart environment in terms of the
number of producers and consumers [35].

For that, it is important to explore how the event-driven system
should be configured to extract its scalability to the maximum [25].
Scalability refers to the software’s ability to deliver a continuous
response time and throughput as the demand for the service it pro-
vides increases and resources are added [25, 26]. It can be vertical
or horizontal. Cloud environments allow the infrastructure team to
easily configure as many machines as they need to meet demand.
In addition to allowing you to optimize operating costs, once the
environment is well configured and optimized. The literature [37]
explores the capabilities in terms of configuration of event-driven
platforms, such as Kafka. As the design and implementation of dis-
tributed systems is a challenge, ensuring that the software achieves
the analysis objectives is crucial. Therefore, comparative studies on
different platforms have become opportunities to explore their capa-
bilities, difficulties and best approach. A key challenge is an initial
assessment of performance-related factors, where potential bottle-
necks in modeling, design, and implementation can be identified.
This can reduce the cost of making any changes [24]. Along these
lines, performance comparisons between event-driven architecture
and traditional architectures such as REST are also interesting.

The event-driven architecture stands out for its high event pro-
cessing capacity, handling continuous andhigh-volume data streams [25,
33]. In addition to being chosen for cases that demand scalability,
it can be scalable in streaming events, scalable in the volume of
historical data, scalable in the number of sources and data collectors,
scalable in the number of processing elements, and scalable in terms
of physical infrastructure [18, 25]. Moreover, it facilitates the inter-
action of heterogeneous devices in intelligent environments, where
each one operates on its own operating system, communication
protocol, a form of interaction, among others [35].

5.2 Empirical studies
Due to the differences pointed out between event-driven architec-
ture and traditional architectures, naturally there must be difficul-
ties on EDA. While in traditional software architectures, functions
are nested, and it is easy to locate which functions call a given func-
tion. In event-driven architecture, events trigger services by each
service criterion. Therefore, knowing which functions participate
in a given flow becomes more challenging. Therefore, it is essential
to know what can happen and how to deal with these difficulties,
before the problem happens. The most dangerous time to deal with
this is during a crisis, as taking actions without knowledge can
make it worse.

Effects of Event-driven Architecture on Modularity Software:
A Research Agenda

Therefore, studies that address the drawbacks and benefits of
event-driven architecture are essential for adoption. In Laigner et
al. [27], a monolithic application was replaced, motivated by the
difficulty in the maintenance process. The legacy BDS application
was replaced by a current Big Data application, some benefits were
perceived such as ease of maintenance and fault isolation. However,
the complex data flow generated by the amount of microservices,
as well as the myriad of technologies, have drawbacks.

The literature presents several case studies involving event-
driven architecture. As a Big Data system (BDS) application for
oil industry traffic monitoring [27], Euphoria is a new software in
event-driven architecture aimed at intelligent environments [35],
Digital Twin real-time data stream processing system [2], e-archive
document management system [11]. In general, event-driven archi-
tecture is used to meet imposed needs, such as modularity, scalabil-
ity, and asynchronicity for producing, processing, and transmitting
messages and events [11, 35].

5.3 Stability analysis
Less change propagation in maintenance is desirable for any sys-
tem. Since software lifecycle costs, it is estimated that between
40% and 67% are related to software maintenance [40]. Therefore,
software maintenance can be seen as one of the main attributes
of software quality. A simple change in Service A can interrupt a
Service B, simply because a function call has some parameter added
or removed. Generating some unavailability in these services. In
event-oriented architecture, the weak connection between services
makes it more difficult to track this, since one event triggers another,
when it meets the conditions. Therefore, changes to one service can
propagate to others, so documentation about these relationships
between services can be helpful.

Once the maintenance represent a high cost in a software life-
cycle, stable software is aimed at. For this, studies that explore the
stability promoted by the event-driven architecture explain bene-
fits in terms of lower costs. The first attribute affected when making
a software modification is stability. If the software stability is low,
the impact of anymodification will be high. Therefore, maintenance
will cost more and reliability can also suffer due to the introduc-
tion of possible new errors [40]. The stability of a module can be
defined as the resistance of a change in one module to affect other
modules [40]. Plus, there’s logical and performance stability. Where
logic measures the impact of a change in one module propagating
to another, in logical terms. The performance measures the impact
of changes considering the performance [40]. The literature points
out that the highest costs involving software are related to the lack
of average software measures. Such measures can be attributed to
software quality, which is quite generic [40]. Studies in this area
have contributed to define some software quality attributes such as
correctness, flexibility, portability, efficiency, reliability, integrity,
testability, and maintenance. Therefore, stability can be considered
a very relevant metric for any software. Because, as studies show, it
is directly linked to software maintenance. Comparisons between
the stability promoted by event-driven architecture and traditional
architectures will be able to show which tends to be less expensive.

This shows that the software evolution based on event-driven
architecture has considerable challenges to explore. Current litera-
ture [5, 37] points out that event-driven architecture promotes loose
coupling — essential for the modularization of software services —
but can increase design complexity and system understanding [17].
Such modularization aims to isolate the software modules so that
changes that occur in one module do not affect the others, so the
software would present a better stability. This modularity can be
useful in scenarios where services have been added/removed in sys-
tem software. Since modularity prevents maintenance propagation.
This can be measured through metrics collected between versions
of a software system’s evolution.

5.4 Challenges to adopting
Systems that want to take advantage of the benefits of event-driven
architecture will have some challenges. It would be interesting to
trace the types of systems that benefit from event-driven architec-
ture. A good architecture helps the system meet key requirements
in areas such as performance, reliability, portability, scalability, and
interoperability. Software architecture plays a key role as a bridge
between requirements and implementation [19]. By providing an
abstract description of a system, the architecture exposes certain
properties while hiding others. Ideally, this representation provides
an intellectually traceable guide to the entire system, which allows
designers to reason about the system’s ability to satisfy certain
requirements and to suggest a design for the construction and com-
position of the system [19]. Sometimes when choosing the best
architecture for a system, mistakes can be made when choosing the
least suitable one, either because it is a trend or lack of knowledge
about its strengths and weaknesses. In Overeem et al. (2021) [31]
the cause for the chosen event source for the systems under study
was explored. Some respondents responded that it was because of
the architectural trend and/or curiosity.

Another challenge is its learning curve, as event-driven ar-
chitecture has considerable differences compared to traditional
architectures. Building or rewriting systems will require teams
composed of architects and a developer capable of handling event-
driven architecture are needed to develop a system. However, most
IT professionals deal with traditional architecture, and moving to
event-driven architecture can be expensive. Garlan [19] points out
that software architecture can be useful in at least six aspects of the
system: (i) understanding: simplifies our ability to understand sys-
tems, by the abstraction presented in which the high-level design
of a system can be easily understood; (ii) reuse: it is divided into
several levels, such as reuse of components, as well as structures in
which they can be integrated; (iii) construction: provides a diagram
indicating the main components and dependencies between them;
(iv) evolution: expose the dimensions along which the system is
expected to evolve, as well as assist in maintenance, exposing the
unfolding of changes and, thus, more accurately estimating the
costs involved; (v) analysis: provides opportunities for analysis,
including consistency checking, compliance with constraints im-
posed by an architectural style, compliance with quality attributes,
domain analysis, and dependency for architectures built in specific
styles; (vi) management: successful projects see software architec-
ture as an important milestone in the development process, as it

Luan Lazzari and Kleinner Farias

makes requirements, implementation strategies and potential risks
much clearer.

5.5 Logs
Capture logs from streams is one of the challenges that could
be researched and deepened. Despite efforts to deliver working
software, the size and complexity of the software, combined with
the real time and budget for development, make it increasingly
difficult to deliver fully working software [41]. Software systems
inevitably have flaws, such as bugs triggered by some combination
of errors, environmental issues, or administrative errors. However,
it is not always easy to identify such flaws, which can take time.
They are quite worrisome for two reasons: generally they must
be resolved quickly, as it is in production, so some part of the
software must be inaccessible; second, the difficulty in analyzing
the failure, commonly due to lack of data, making reproduction and
assertiveness in the treatment impossible. A tool widely used by
developers is the System Logs, they make it possible to track and
record the behavior at run-time of the software. They are usually
used for monitoring, fault diagnosis, performance analysis, test
analysis, security and legal compliance and business analysis [7].

Logging consists of two phases: (i) instrumental logging and (ii)
log management. Instrumental logging consists of code inserted by
developers to record information at run-time. Log management is
concerned with analyzing the collected logs to generate relevant in-
formation about the behavior at run-time [7]. Therefore, extracting
information from logs in log management depends on the quality
of the log code produced in the previous phase. The low quality of
the log can imply in the diagnosis of problems, high effort in main-
tenance, low performance, or even software crashes [7]. Therefore,
it is important to record the system logs, mainly to identify failures,
which can make part of the system unavailable, as well as their
analysis to extract relevant data about the system’s functioning. To
mitigate possible failures, improve performance and even help with
maintenance. Tools commonly applied in other technologies can be
used to capture logs. However, high event traffic in an event-driven
system will likely generate a lot of data, so feasibility studies or
better techniques are essential.

As a means of protection to downtime, the service contracting
party has Service Level Agreements (SLAs) which are a service con-
tract in which the service level between the customer and supplier
is defined. SaaS providers are responsible for ensuring that appli-
cations are available 24 hours a day, 7 days a week (24/7), ideally
with no downtime. Downtime tolerance in SaaS apps can be less
than traditional web apps. The effects of downtime on SaaS appli-
cations match the effects of downtime on large-scale e-commerce
applications [3]. This can lead to significant financial losses. For
that, availability measures are used to define uptime and downtime,
such as response time for requests, as well as possible penalties in
case of downtime under the provider.

In addition, distributed log composition is also worth study-
ing. As several differences can be observed in relation to traditional
architectures, mainly in the execution, which occurs individually
in each service as opposed to a stack trace as in traditional architec-
tures. Events are triggered by others, there is no traditional stack,
therefore, how to identify that a service is not being triggered. Tools

like Automated Log Abstraction Techniques (ALAT) can help. How-
ever, there is a gap between academia and industry as engineers
do not know the best ALAT, due to lack of time and resources to
search the literature, and due to lack of studies that describe the
best ALAT [10]. Therefore, logs contain abundant data that can help
engineers understand the runtime properties of a system. However,
large and complex systems produce abundant data to analyze. For
this, ALAT can help reduce the data to be processed through its
record abstraction algorithms [10].

6 CONCLUSION
Event-driven architecture has the potential architecture for the
development of distributed systems, with promising gains in mod-
ularization, scalability and concurrency. Some studies show that it
has been shown to be effective for various applications due to its
characteristics. However, it has few empirical studies about perfor-
mance, stability, log and challenges to adopting. Studies on these
topics can accelerate the adoption by the industry, who has not cer-
tainly about the consequences. Therefore, the objective of this work
was to provide future directions to researches and practitioners
about the use of event-driven architecture on systems.

Overall, the agenda shows that event-driven architecture has
many questions to be studied and presented to better understand
the consequences of being adopted in software engineering. The
challenges also reinforce when the architecture can represent a
considerable part of the costs in the software lifecycle. Therefore,
if event-driven architecture has the potential to decouple services,
it could facilitate the maintenance process, consequently lowering
the cost. We hope that this work will serve as a starting point for
future research.

7 ACKNOWLEDGMENT
This work was partially supported by the Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) under Grant
313285/2018-7.

REFERENCES
[1] [n.d.]. Changing the Wheels on a Moving Bus — Spotify’s Event Delivery

Migration. https://engineering.atspotify.com/2021/10/20/changing-the-wheels-
on-a-moving-bus-spotify-event-delivery-migration/. Accessed: 2021-10-26.

[2] A. B. A. Alaasam, G. Radchenko, and A. Tchernykh. 2019. Stateful Stream
Processing for Digital Twins: Microservice-Based Kafka Stream DSL. (2019),
0804–0809.

[3] Sean Banerjee, Hema Srikanth, and Bojan Cukic. 2010. Log-Based Reliability
Analysis of Software as a Service (SaaS). In 2010 IEEE 21st International Symposium
on Software Reliability Engineering. 239–248. https://doi.org/10.1109/ISSRE.2010.
46

[4] Vinicius Bischoff, Kleinner Farias, Lucian José Gonçales, and Jorge Luis Victória
Barbosa. 2019. Integration of feature models: A systematic mapping study.
Information and Software Technology 105 (2019), 209–225.

[5] Hui Cao, Xing Yang, and Raoyi Deng. 2021. Ontology-Based Holonic Event-
Driven Architecture for Autonomous Networked Manufacturing Systems. IEEE
Transactions on Automation Science and Engineering 18, 1 (2021), 205–215. https:
//doi.org/10.1109/TASE.2020.3025784

[6] Carlos Eduardo Carbonera, Kleinner Farias, and Vinicius Bischoff. 2020. Software
development effort estimation: a systematic mapping study. IET Software 14, 4
(2020), 328–344.

[7] Boyuan Chen and Zhen Ming (Jack) Jiang. 2021. A Survey of Software Log
Instrumentation. ACM Comput. Surv. 54, 4, Article 90 (May 2021), 34 pages.
https://doi.org/10.1145/3448976

[8] McLyndon S de L. Xavier, Kleinner Farias, Jorge Barbosa, Lucian Gonçales,
and Vinicius Bishoff. 2019. UMLCollab: A Hybrid Approach for Collaborative

https://doi.org/10.1109/ISSRE.2010.46
https://doi.org/10.1109/ISSRE.2010.46
https://doi.org/10.1109/TASE.2020.3025784
https://doi.org/10.1109/TASE.2020.3025784
https://doi.org/10.1145/3448976

Effects of Event-driven Architecture on Modularity Software:
A Research Agenda

Modeling of UML Models. In Proceedings of the XV Brazilian Symposium on
Information Systems. 1–8.

[9] Leandro Ferreira D’Avila, Kleinner Farias, and Jorge Luis Victória Barbosa. 2020.
Effects of contextual information onmaintenance effort: A controlled experiment.
Journal of Systems and Software 159 (2020), 110443.

[10] Diana El-Masri, Fábio Petrillo, Yann-Gaël Guéhéneuc, Abdelwahab Hamou-Lhadj,
and Anas Bouziane. 2020. A systematic literature review on automated log
abstraction techniques. Inf. Softw. Technol. 122 (2020), 106276.

[11] H. Falatiuk, M. Shirokopetleva, and Z. Dudar. 2019. Investigation of Architecture
and Technology Stack for e-Archive System. In IEEE Inter. Scientific-Practical
Conference Problems of Infocommunications, Science and Technology. 229–235.

[12] Kleinner Farias, Alessandro Garcia, and Carlos Lucena. 2014. Effects of stability
on model composition effort: an exploratory study. Software & Systems Modeling
13, 4 (2014), 1473–1494.

[13] Kleinner Farias, Alessandro Garcia, Jon Whittle, Christina von Flach Garcia
Chavez, and Carlos Lucena. 2015. Evaluating the effort of composing design
models: a controlled experiment. Software & Systems Modeling 14, 4 (2015),
1349–1365.

[14] Kleinner Farias, Alessandro Garcia, Jon Whittle, and Carlos Lucena. 2013. Ana-
lyzing the effort of composing design models of large-scale software in industrial
case studies. In International Conference on Model Driven Engineering Languages
and Systems. Springer, 639–655.

[15] Kleinner Farias, Lucian Gonçales, Vinicius Bischoff, Bruno Carreiro da Silva,
Everton T Guimarães, and Jacob Nogle. 2018. On the UML use in the Brazilian
industry: A state of the practice survey (S).. In SEKE. 372–371.

[16] Kleinner Farias and Bruno C da Silva. 2020. What’s the grade of your diagram?
towards a streamlined approach for grading UML diagrams. In Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings. 1–2.

[17] L. Fiege, G. Mühl, and F. Freiling. 2002. Modular event-based systems. Knowl.
Eng. Rev. 17 (2002), 359–388.

[18] Fabiana Fournier, Alexander Kofman, Inna Skarbovsky, and Anastasios Skarla-
tidis. 2015. Extending Event-Driven Architecture for Proactive Systems. CEUR
Workshop Proceedings 1330.

[19] David Garlan. 2000. Software Architecture: A Roadmap. Proc. of the 22nd
International Conference on Software Engineering, Future of Software Engineering
Track (02 2000). https://doi.org/10.1145/336512.336537

[20] Lucian Gonçales, Kleinner Farias, Bruno da Silva, and Jonathan Fessler. 2019.
Measuring the cognitive load of software developers: A systematic mapping
study. In 2019 IEEE/ACM 27th International Conference on Program Comprehension
(ICPC). IEEE, 42–52.

[21] Lucian Gonçales, Kleinner Farias, and Bruno C da Silva. 2021. Measuring the
cognitive load of software developers: An extended Systematic Mapping Study.
Information and Software Technology (2021), 106563.

[22] D. Griffin and D. Pesch. 2007. A Survey on Web Services in Telecommunications.
IEEE Communications Magazine 45, 7 (2007), 28–35. https://doi.org/10.1109/
MCOM.2007.382657

[23] Ed Júnior, Kleinner Farias, and Bruno Silva. 2021. A Survey on the Use of UML in
the Brazilian Industry. In Brazilian Symposium on Software Engineering. 275–284.

[24] Razib Khan and Poul Heegaard. 2015. Software Performance Evaluation Utilizing
UML Specification and SRN Model and Their Formal Representation. Journal of
Software 10 (05 2015), 499–523. https://doi.org/10.17706/jsw.10.5.499-523

[25] Sabrine Khriji, Yahia Benbelgacem, Rym Chéour, Dhouha El Houssaini, and
Olfa Kanoun. 2022. Design and implementation of a cloud-based event-driven
architecture for real-time data processing in wireless sensor networks. The
Journal of Supercomputing 78, 3 (2022), 3374–3401.

[26] Samuel Kounev. 2008. Software Performance Evaluation. Ameri-
can Cancer Society, 1–10. https://doi.org/10.1002/9780470050118.ecse390
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470050118.ecse390

[27] Rodrigo Laigner, Marcos Kalinowski, Pedro Diniz, Leonardo Barros, Carlos
Cassino, Melissa Lemos, Darlan Arruda, Sérgio Lifschitz, and Yongluan Zhou.
2020. From a Monolithic Big Data System to a Microservices Event-Driven Ar-
chitecture. In 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). 213–220.

[28] Luan Lazzari and Kleinner Farias. 2021. Event-driven Architecture and
REST: An Exploratory Study on Moadularity. arXiv preprint arXiv,
http://arxiv.org/abs/2110.14699 (2021).

[29] Chung-Sheng Li. 2005. Real-time event driven architecture for activity monitor-
ing and early warning. In Conference, Emerging Information Technology 2005. 4
pp.–. https://doi.org/10.1109/EITC.2005.1544382

[30] Anderson Oliveira, Vinicius Bischoff, Lucian José Gonçales, Kleinner Farias, and
Matheus Segalotto. 2018. BRCode: An interpretive model-driven engineering
approach for enterprise applications. Computers in Industry 96 (2018), 86–97.

[31] Michiel Overeem,Marten Spoor, Slinger Jansen, and Sjaak Brinkkemper. 2021. An
empirical characterization of event sourced systems and their schema evolution
— Lessons from industry. Journal of Systems and Software 178 (Aug 2021), 110970.
https://doi.org/10.1016/j.jss.2021.110970

[32] Valery Petrov, Anna Gennadinik, Elena Avksentieva, and Konstantin Bryukhanov.
2021. CURRENT ISSUESANDMETHODSOF EVENT PROCESSING IN SYSTEMS
WITH EVENT-DRIVEN ARCHITECTURE. Journal of Theoretical and Applied
Information Technology 99 (05 2021), 1943–1954.

[33] Amir Rahmani, Zahra Babaei, and Alireza Souri. 2021. Event-driven IoT archi-
tecture for data analysis of reliable healthcare application using complex event
processing. Cluster Computing 24 (06 2021), 1–14. https://doi.org/10.1007/s10586-
020-03189-w

[34] Maluane Rubert and Kleinner Farias. 2021. On the Effects of Continuous Delivery
on Code Quality: A Case Study in Industry. Computer Standards & Interfaces
(2021), 103588.

[35] Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Jean Vanderdonckt. 2019. Eu-
phoria: A Scalable, event-driven architecture for designing interactions across
heterogeneous devices in smart environments. Information and Software Tech-
nology 109 (2019), 43–59.

[36] Kay-Uwe Schmidt, Darko Anicic, and Roland Stühmer. 2008. Event-driven
Reactivity: A Survey and Requirements Analysis. In In 3rd International Workshop
on Semantic Business Process Management. 72–86.

[37] Ben Stopford. 2018. Designing Event-Driven Systems. O’Reilly Media, Incorpo-
rated.

[38] Nico Surantha, Oei K. Utomo, Earlicha M. Lionel, Isabella D. Gozali, and Sani M.
Isa. 2022. Intelligent Sleep Monitoring System Based on Microservices and Event-
Driven Architecture. IEEE Access 10 (2022), 42069–42080. https://doi.org/10.
1109/ACCESS.2022.3167637

[39] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[40] S.S. Yau and J.S. Collofello. 1980. Some Stability Measures for Software Main-
tenance. IEEE Transactions on Software Engineering SE-6, 6 (1980), 545–552.
https://doi.org/10.1109/TSE.1980.234503

[41] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. 2011.
Improving Software Diagnosability via Log Enhancement. SIGARCH Comput.
Archit. News 39, 1 (March 2011), 3–14. https://doi.org/10.1145/1961295.1950369

https://doi.org/10.1145/336512.336537
https://doi.org/10.1109/MCOM.2007.382657
https://doi.org/10.1109/MCOM.2007.382657
https://doi.org/10.17706/jsw.10.5.499-523
https://doi.org/10.1002/9780470050118.ecse390
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470050118.ecse390
https://doi.org/10.1109/EITC.2005.1544382
https://doi.org/10.1016/j.jss.2021.110970
https://doi.org/10.1007/s10586-020-03189-w
https://doi.org/10.1007/s10586-020-03189-w
https://doi.org/10.1109/ACCESS.2022.3167637
https://doi.org/10.1109/ACCESS.2022.3167637
https://doi.org/10.1109/TSE.1980.234503
https://doi.org/10.1145/1961295.1950369

	Abstract
	1 Introduction
	2 Event-driven architecture
	3 Related Work
	3.1 Analysis of Selected Studies
	3.2 Comparative Analysis and Research Opportunities

	4 Methodology
	4.1 Objective and Research Questions
	4.2 Search Strategy
	4.3 Study Selection
	4.4 Case Study

	5 Proposed Research Agenda
	5.1 Performance analysis
	5.2 Empirical studies
	5.3 Stability analysis
	5.4 Challenges to adopting
	5.5 Logs

	6 Conclusion
	7 Acknowledgment
	References

