
On the impact of event-driven architecture on performance: An exploratory study

Hebert Cabanea, Kleinner Fariasa

aPPGCA, University of Vale do Rio dos Sinos (Unisinos), Av. Unisinos, 950, Sao Leopoldo, RS, Brazil

Abstract

Event-driven architecture has been widely adopted in the software industry in recent years. This adoption is motivated by the
increase in software modularity, and mainly the desired performance of decomposed monolithic applications. Although it has
become popular, the current literature lacks studies that demonstrate the impact of event-driven architecture on performance. Hence,
developers and architects end up adopting event-driven architecture without empirical evidence, but considering “expert advice.”
This study, therefore, reports an empirical study on the impact of the adoption of event-driven architecture on performance. For this,
the performance of an application implemented with an event-based architecture was compared with the performance of the same
application implemented using monolithic architecture. The comparison was made using metrics such as CPU usage, memory,
response time, throughput, and total packages sent and received. The results, supported by statistical tests, show that the monolithic
architecture, compared to the event-driven architecture, consumes less computational resources and has better response times.
Finally, this study reflects on the adoption of event-driven architecture, as well as points out challenges and implications that need
to be considered by the scientific community in future research.

Keywords: Event-driven architecture, performance, empirical study, distributed applications, software modularity, monolithic
application

1. Introduction

Over the past decade, enterprise application development has
taken place in increasingly unstable business environments in
the software industry. Volatile software requirements, constant
changes in technology and business strategies, pressures for
the fast delivery of functional software [1], and applications
with tightly coupled modules are features that are always
present in most projects in the real world [2]. In this
unstable context, companies have been looking for alternatives
to minimize problems in the development and maintenance of
such applications, for example, the high maintenance cost and
complexity of the applications. The adoption of event-driven
architectures would be one of these alternatives, which aims to
enhance maintenance by decomposing monolithic applications
into independent modules that communicate through events.

Some recent works highlight the decomposition of
monolithic applications into applications based on event-
driven architectures [3] as a reality and necessity. In practice,
the industry seeks to produce less coupled and maintenance-
friendly applications aiming to meet market demands. Laigner
et al. [4] reinforce by performing the decomposition of a
monolithic application into an event-driven architecture one
as they seek to tame the complexity and high cost to maintain
the monolithic application. Given this trend toward the use of
event-driven architecture, some works have been carried out
over the past few years.

Urdangarin et al. [5] investigate the use of multi-objective
and context-based decomposition techniques. Schipor et
al. [6] carried out an empirical study using event-driven

architecture in intelligent environment applications. Laigner et
al. [4] present the obtained results during the decomposition
of a monolithic big data application into an event-driven
application. Tragatschnig et al. [7] carried out an empirical
study to evaluate the use of change patterns in the development
of event-driven applications. Djogic et al. [8] presented the
benefits of rebuilding a monolithic application into an event-
driven application. Bukhsh et al. [9] carried out a comparison
through literature studies between service-oriented and event-
driven architectures. Pienwittayasakul and Liu [10] presented
the benefits of using event-driven architecture over service-
oriented architecture.

Currently, the adoption of event-driven architecture has
not been based on empirical evidence. Rather, it has been
done following expert opinions or heuristics created based
on the experience of the development teams. Today, the
current literature also lacks empirical studies that report
the impact of event-driven architecture on quality criteria,
such as performance. This work, therefore, reports an
exploratory study on the impact of event-driven architecture
on performance. A realistic empirical study was carried out
to evaluate the performance of two versions of the same
application, one implemented using a monolithic architecture
and the other implemented using an event-driven architecture.
The comparison was made using metrics such as CPU usage,
memory, response time, throughput, and total packages sent
and received. This was done through an eight-step process
organized into four phases.

The results, supported by statistical tests, show that
the monolithic architecture, compared to the event-driven

Preprint submitted to Elsevier November 21, 2022

architecture, consumes less computational resources and has
better response times. The results obtained in this work
showed that a monolithic architecture consumes computational
resources more e�ciently, and has better response times
compared to the event-driven architecture. These results
benefit professionals interested in the field of software
architecture such as software architects, software developers,
and researchers.

This work is organized as follows: Section 2 presents
the theoretical foundation of the main concepts needed to
understand this study. Section 3 3 presents a comparative
analysis of related works. Section 4 outlines the study
methodology. Section 5 describes the analysis of the obtained
results. Finally, Section 6 presents the final considerations and
upcoming works.

2. Background

This section presents the main concepts for understanding
the work developed.

2.1. Decomposition of monolithic applications
Decomposition can be understood as a sequence of tasks

that are performed to break a monolithic application into
modules, generating a non-monolithic application [5] with
several interdependent modules. Essentially, both applications
are equivalent, having the same functionalities, but they are
structurally distinct [5]. In an application with a monolithic
architecture, all functionalities are available in a single artifact.
Typically, this unit is restricted to a single executable software
artifact. For example, traditional monolithic applications are
typically composed of a web interface, a domain layer, and a
data access layer. In a monolithic architecture, these layers
are combined into a single instance of the application [5].
Generally, monolithic architectures are suitable for small
applications, but they can become complex as the application
grows. Initially, a small and simple application can become
a complex and di�cult application to maintain because all
functionalities are centralized in a single artifact. Several
challenges are encountered as business rules and application
load increase such as di�culty in scaling the size of existing
features, the complexity of developing new features, the
limitation in the use of new technologies, sharing work
across teams, and the release and implementation of new
versions. These challenges can be minimized by applying
decompositions.

2.2. Event-driven architecture
Event-driven architecture is an architectural pattern that

is composed of single-purpose decoupled components that
asynchronously receive, process, and transmit events [11].
The event-driven architecture advocates the communication
of its components through the producer/consumer model,
with producers having the responsibility to publish events
and consumers to subscribe to and consume events [12].
Through event-based communication, a barrier is established

that ensures the loose coupling and isolation of the components
of the event-driven architecture. Through isolation it is possible
to manage each component independently, making it possible
to control aspects of load control, elasticity, and monitoring,
among other aspects of each component individually [13].

2.3. Performance
Performance is one of the vital characteristics of software

quality. If we improve it, positive e↵ects on the software
quality can be obtained, in addition to o↵ering a better
user experience. Performance can be briefly defined as
the number of responses of an application while executing
its functionalities in a given time interval, and by the
capacity to consume resources such as CPU and memory
appropriately while processing the functionality under the
established conditions [14]. Resources are defined as CPU
(processor) and memory (RAM). Performance is composed of
the following characteristics:

• Behavior over time: Response measures and processing
time, and transfer rates of an application during the
execution of a feature.

• Use of resources: Measures the quantity and resource
types used by an application during the execution of a
feature.

• Capacity: Maximum limit for an application to execute a
feature.

If the source code of an application is optimized, it can
have good e↵ects in terms of performance, such as reducing
response time, increasing the number of responses, reducing
CPU and memory usage, and network consumption [14].
Performance is also known as e�ciency and is part of the
quality attributes, described by ISO/IEC 25010 [15], such
as functionality, e�ciency, compatibility, usability, reliability,
security, maintenance, and portability. Quality attributes
provide a basis for measures and forms of verification to assess
software quality [16].

3. Related Work

This section presents an analysis of related works addressing
the use of monolithic architecture and event-driven architecture.
The selected works are presented in Section 3.1. Comparative
analysis and research opportunities are discussed in Section 3.2.

3.1. Related Work analysis
Laigner et al. (2020) [4] presented some results considering

the redesign of a big data truck fleet monitoring application
for an oil and gas industry. The initial architecture of
the application was of the monolithic type, which was
rebuilt during the project using the event-driven microservices
architecture. The reconstruction aimed to facilitate the
maintenance of the application due to the complexity and
obsolete codes that the application had. With the event-
driven architecture of microservices, some expected results

2

were perceived, such as greater ease of in-service maintenance
and improved service failure control, but due to the complex
data flow generated by the number of microservices, it was
perceived as a disadvantage by the authors.

Schipor et al. (2019) [6] performed an empirical study
using the EUPHORIA1 software architecture developed by
the authors. This new event-driven architecture aims to
orchestrate communication between di↵erent devices in a smart
environment. The study was conducted in three distinct smart
environment scenarios using the new event-driven architecture,
demonstrating in practice the use of the architecture in di↵erent
types of environments. Finally, the result of the empirical study
showed that the processing time of an event can be impacted
by the size of messages or by the complexity of the smart
environment, that is, by the number of connected consumers.

Tragatschnig et al. (2018) [7] carried out an empirical
study on how change patterns can influence the performance
of changes in an application with event-driven architecture. For
this, the authors selected 4 applications based on real industry
context and three change pattern sets. Thus, the experiment
was conducted with 90 students divided into three groups, each
group was in charge of executing a set of specific change
patterns in the previously selected applications. With the result
of the experiment, it was possible to identify that change
patterns with less primitive operations require less time than
change patterns with primitive operations.

Djogic et al. (2018) [8] presented the benefits of rebuilding
an application with a monolithic service-oriented architecture
into an event-driven microservices architecture, the work
was done in a real-estate application. The application’s
reconstruction in a new architecture was performed due to
the increase in the number of messages that are processed
by the application and to support new integrations with it.
Finally, the authors reported that the reconstruction using the
event-driven microservices architecture made it possible to
solve several problems that the monolithic application had, in
addition to simplifying some processes such as the individual
maintenance of the application components, publishing only
what was changed, scalability by service and utilization of
resources.

Bukhsh et al. (2015) [9] performed a comparative
study between service-oriented architecture and event-driven
architecture, an event-driven service-oriented architecture was
also considered in the study. This case study addressed the
use of each architecture studied in a Learning Management
Application (Moodle), with this it was possible to identify the
disadvantages of each architecture. Finally, the study concluded
that both architectures have di↵erent characteristics, mainly
how communications between services are performed, and that
the choice of architecture will depend on the business of the
application and how it should react to certain situations, such as
transaction control, type of communication between services,
data redundancy, and user responses, and other factors.

Pienwittayasakul and Liu (2014) [10] carried out a
comparative study of the definitions and characteristics

1http://www.eed.usv.ro/mintviz/resources/Euphoria/

of service-oriented and event-driven architectures, and the
relationship of the architectures to each other was also
analyzed. The comparison between the architectures was
performed in four categories: how the architectures react
to the application’s business, how each service that makes
up the application is distributed, how each application
service communicates, and how each architecture manages the
information generated by the application. Finally, the authors
concluded that service-oriented architecture and event-driven
architecture interact in several areas, such as event execution,
where simple or complex business operations are performed,
and that event-driven architecture is not just an implementation
of service-oriented architecture, both architectures are peers
and complement to the business and IT context.

3.2. Comparative Analysis and Research Opportunities
The comparative analysis was performed based on criteria,

because other works already published [1, 17] that used this
approach, showed that this is an e↵ective way to generate a
comparison between works and identify research opportunities.
With the performance of the comparative analysis, it was
possible to identify points that are similar and di↵erent between
the current work and the selected related works. This
comparison was necessary to objectively identify research
opportunities, and for this, six Comparison Criteria (CC) were
selected, which are described below:

• Exploratory Study (CC01): Works that carried out the
study in an exploratory manner.

• Performance Attributes (CC02): Studies that consider
performance or e�ciency attributes.

• Metrics (CC03): Studies that used metrics to analyze
resource use e�ciency and to assess application
performance.

• Event-Driven Architecture (CC04): Studies where
event-driven architecture was part of the central research
theme.

• Monolithic Architecture (CC05): Studies where
monolithic architecture was compared with other types of
architecture.

• Application Context (CC06): This criterion addresses
the studies that performed their research on real
applications.

The result of the comparison of related work and the
proposed work based on the Comparison Criteria is shown in
Table 1. Analyzing the result of the comparison, the following
research opportunities were identified:

• only a few works carried out the study empirically on
event-driven architecture;

• no work explored the performance attributes of
applications that use event-driven architecture;

3

Table 1: Related work comparative analysis.

Related work
Comparison Criteria

CC1 CC2 CC3 CC4 CC5 CC6
Current work
Laigner et al. (2020) [4] # # #
Schipor et al. (2019) [6] G# G# # #
Tragatschnig et al. (2018) [7] # # # G#
Djogic et al. (2018) [8] # G# #
Bukhsh et al. (2015) [9] # # # #
Pienwittayasakul and Liu (2014) [10] # # # #

 Similar G# Partially similar # Not similar

• no work has explored the use of metrics to assess and
quantify the use of event-driven architecture.

Research opportunity. Based on the research opportunities
indicated, the following research opportunity was identified:
carrying out empirical studies to understand the impact of
event-driven architecture on performance. This research
opportunity is explored in the following sections.

4. Study methodology

This section presents the main decisions underlying the
experimental design of our exploratory study. Section 4.1
presents the objective and research questions. Section 4.2
introduces the formulation of hypotheses based on research
questions. Section 4.3 describes the context and domain of
the application used in the study. Section 4.4 presents the
considered quantitative variables. Section 4.5 demonstrates the
process of experiment. Finally, Section 4.6 presents the analysis
procedures.

4.1. Objective and Research Questions

This study essentially seeks to grasp the e↵ects of event-
driven architecture and monolithic architecture on performance.
These e↵ects are investigated from concrete evolution scenarios
involving real-world applications so that empirical results
can be generated. Our experimental procedures follow
empirical strategies previously successfully applied in previous
studies [18, 19, 20, 21, 22]. With this in mind, the objective of
this study is stated based on the GQM template [23] as follows:

Analyze architectural styles for the purpose of investigate its
e↵ects with respect to performance from the perspective of

software architect in context of software development

In particular, this study focuses on evaluating the
performance impact of using event-driven architecture and
monolithic architecture. Thus, the study focuses on the
following research question:

• RQ01: Is the performance of event-driven architecture
greater than the performance of monolithic architecture?

4.2. Hypothesis formulation

We conjecture that the use of event-driven architecture
can improve performance as a superior modularization of
software concerns can reduce the consumption of computation
resources [5]. Perhaps, a better modularization can bring
performance benefits, due to the e�ciency related to the
number of resources an application consumes and the code
needed to execute an operation under certain conditions [14].
A better modularization can reduce the use of resources,
converting to better performance. We also conjecture
that although event-driven architectures can provide a more
systematic way to modularize architectural components, the
structure to support it can require additional code and
configuration files, jeopardizing performance issues. In this
sense, event-driven architectures may require much more
structures to support the modularizations at the expense of
performance gains.

This hypothesis assesses whether the performance of event-
driven architecture is di↵erent from the performance of
monolithic architecture. The hypothesis is described as follows:

Null Hypothesis 1, H1�0: The performance of event-
driven architecture is the same as the performance of
monolithic architecture.
H1�0: Performance(event-driven architecture) =
Performance(monolithic architecture)
Alternative Hypothesis 1, H1�1: The performance of
event-driven architecture is di↵erent from the performance
of monolithic architecture.
H1�1: Performance(event-driven architecture) ,
Performance(monolithic architecture)

H1 was refined into a set of 6 sub-hypotheses, each sub-
hypothesis is represented by a performance metric, as presented
as a dependent variable in Section 4.4. The formulation of the
sub-hypotheses can be seen in Table 2. By carrying out the
hypothesis tests, empirical knowledge can be produced about
the impacts on performance as a result of the use of event-driven
architecture and monolithic architecture.

4.3. Target Application

For the execution of the experimental and exploratory
study, it was defined that the independent variable (Section
4.4) should have the following possible values: event-
driven architecture and monolithic architecture. Then, for

4

Table 2: The investigated hypotheses in our study.

Null Hypothesis Alternative Hypothesis
H1�0: Performance(eda) = Performance(mono) H1�1 Performance(eda) , Performance(mono)
H2�0: CPU Usage(eda) = CPU Usage(mono) H2�1 CPU Usage(eda) , CPU Usage(mono)
H3�0: Memory(eda) =Memory(mono) H3�1 Memory(eda) ,Memory(mono)
H4�0: Received Packages(eda) = Received Packages(mono) H4�1 Received Packages(eda) , Received Packages(mono)
H5�0: Transmitted Packages(eda) = Transmitted Packages(mono) H5�1 Transmitted Packages(eda) , Transmitted Packages(mono)
H6�0: Response Time(eda) = Response Time(mono) H6�1 Response Time(eda) , Response Time(mono)
H7�0: Throughput(eda) = Throughput(mono) H7�1 Throughput(eda) , Throughput(mono)

Legend: EDA event-drive architecture, MONO monolithic architecture

each architecture, a target application was selected for the
execution of tests and data collection of selected metrics
for data collection through monitoring tools. The collected
data will be analyzed and submitted to hypothesis tests.
Each selected application essentially corresponds to the same
application having the same developed functionalities, di↵ering
only in the architectural style, that is, the application of
event-driven architecture represents the decomposition of the
application of monolithic architecture. The target application
has the following features of an e-commerce website: product
catalog, shopping cart, order closing, order history, customer
registration, and authentication. The features are described in
Table 3.

Table 3: Target application features.

Feature Description

Product Catalog
Responsible for providing the list of
products available for sale by the
application

Shopping Cart
Responsible for temporarily storing the
data and quantity of products selected
for purchases by customers

Order Closing Responsible for closing and billing
Customer Orders

Order History Responsible for providing the list of
orders placed by customers

Customer base
Responsible for providing the
necessary resources to register
customers in the application

Authentication
Responsible for providing the
necessary resources to authenticate
previously registered customers

The target applications were developed and are currently
maintained by the organization Dotnet Foundation2, this group
is also responsible for promoting the platform .Net3 in the
developer community. The source files of the applications
are versioned using the platform GitHub4, the monolithic
application is located in the repository eShopOnWeb5 and the
event-driven application is located in the eShopOnContainers6

repository. For the development of the applications, the
programming language C# 9.0 and the framework .NET 5.0
were used. Table 4 presents the characteristics of each

2https://dotnetfoundation.org
3https:/ /dotnet.microsoft.com
4https://github.com/
5https://github.com/dotnet- architecture/eShopOnWeb
6https://github.com/dotnet-architecture/eShopOnContainers

application regarding the size and amount of source code
generated during development.

4.4. Measured variables and quantification method
Independent variable. The independent variable of

the formulated hypothesis is the architectural type, which
takes two possible values: ”event-driven architecture” and
”monolithic architecture”. Each value of the independent
variable represents an architectural style used by the target
application (see Section 4.3), which is submitted to evaluation
so that we can collect data regarding the dependent variable
(performance).

Dependent variable. The dependent variable on the
hypothesis is performance. Performance quantifies the
consumption of computational resources and data related to
processing time. Performance is made up of the following
metrics: CPU consumption, RAM consumption, response time,
throughput or responses per minute, and packet tra�c sent and
received over the network. The performance metrics will be
collected through an application execution monitoring tool, the
chosen tool for the study was New Relic7. Table 5 presents the
description of each metric grouped by attributes.

4.5. Experimental design
The experimental process of this study is divided into eight

steps organized into four phases (see Figure ??). The planning
phase consists of the steps of selecting target applications,
selecting metrics and tools to support the experimental process,
such as monitoring tools and load testing; the preparation phase
consists of configuring the data collection tools for the selected
metrics and configuring the tools for load testing the selected
applications; the execution phase consists of the execution
steps of application load tests and data collection of selected
metrics; the analysis phase consists of the steps of analyzing
the collected data. The steps that make up the experimental
process are described below.

Step 1: Select applications. This step aims to select
the target applications to meet the two architectures defined
by the independent variable, that is, to select a monolithic
application and an event-driven application that represents the
decomposition of the monolithic application.

Step 2: Select metrics. This step aims to select the metrics
that make it possible to analyze the performance aspects of

7https://newrelic.com

5

Table 4: Target application characteristics

Architecture Language Framework Files Code
lines

Commented
lines

Blank
lines Total

Event-driven C# 9.0 .NET 5.0 379 16183 485 3333 20001
Monolithic C# 9.0 .NET 5.0 158 5585 110 1129 6824

Table 5: Performance metrics.

Attributes Metrics Definitions

CPU CPU Usage Percentage of CPU (of all types, system, user, I/O) used by the
process.

Memory RAM Total RAM used by a process.

Time
Response Time Average duration of execution of process transactions
Throughput (Responses per minute) Number of transactions per minute of the process

Network
Total Packages Transmitted Total network packages transmitted by the process
Total Packages Received Total network packages received by the process

each target application. The selected metrics correspond to the
dependent variable.

Step 3: Select tools. This step aimed to find tools
for the execution of test scenarios and the collecting of the
application’s data from selected metrics. The New Relic
monitoring tool was selected to collect data from the selected
metrics during the processing of application tests, as in addition
to the agents that perform the capture and collection of
processing data from the target applications, the tool also
provides a portal for real-time visualization and monitoring of
applications during processing, in addition to storing collected
data for future analysis. For the execution of the test cases
in each application, it was necessary to select a tool to carry
out load tests in web interface applications, for that the Apache
JMeter8.

Step 4: Setup environments. This step had the purpose
of performing the installation and configuration of the target
applications for the execution of tests. Moreover, in this
step, the installation of the application’s database, the message
service, and the configuration of the monitoring agents for the
execution of the application will be done.

Step 5: Setup load tests. This step had the purpose of
elaborating the load test scenarios for each target application
in the Apache JMeter test tool. As the event-driven application
is a decomposed version of the monolithic application, the test
scenarios for each application had essentially the same steps,
they are: 1) access the e-commerce home page; 2) login to
the site; 3) access the product catalog; 4) add three random
products to the cart; 5) access the cart details; 6) finish your
cart; 7) confirm payment details; 8) browse order history; 9)
log out of the site. As shown in Table 6, three executions
were prepared for each test scenario, each execution of the
test scenario simulates the simultaneous access of 10, 25, and
50 users, in this way, the behavior of each application can be
observed when reacting with increased concurrent processing.

Step 6: Execute tests. In this step, the objective was
to execute the test cases of each target application. With
the execution of the test cases, it will be possible to collect
data regarding the application execution by the monitoring

8https://jmeter.apache.org

tools. The execution of test cases occurred manually and was
automated through the test tool Apache JMeter.

Step 7: Collect data. This step had the purpose of collecting
the data captured by the monitoring tool New Relic during
the execution of the test cases. For each load test run, data
was collected from selected metrics grouped by metric and test
scenario.

Step 8: Result analysis. In this step, the objective was
to analyze the data descriptively and identify its distribution
and perform hypothesis tests using the collected data. Finally,
we present the discussion of results from the perspective of
dependent variables.

4.6. Analysis Procedures

Descriptive analysis. Descriptive analysis was performed to
analyze the distribution, dispersions, and trends such as means
and medians of data collected from each selected metric for
each type of architecture defined by the independent variable.

Statistical analysis. We performed the statistical analysis
for testing hypotheses. The significance level for the hypothesis
tests was � = 0.05. Statistical analyzes were performed to test
the hypotheses of each metric selected and in each test scenario
executed. To test the H1 hypothesis and its sub-hypotheses,
the Mann-Whitney Unpaired Test was applied to each set of
data collected by the selected metrics. As a result, each metric
will be analyzed and compared across architecture types and
for each test scenario executed. The Shapiro-Wilk test was
also applied to assist in the analysis of data distribution and
in choosing the statistical test.

5. Result

This section analyzes the data obtained by the experimental
process described in Section ??. The findings are derived
from numerical processing of the collected data and graphical
representations of aspects of the obtained results. Section 5.1
introduces the descriptive analysis of the collected data. Section
5.2 presents the data obtained through the hypothesis tests.

6

Figure 1: Experimental design

5.1. Descriptive statistics

This section describes the aspects of the collected data
related to the performance of the architectural types studied
in this work. For this, descriptive analysis was applied
to analyze the distribution of data, trends (means, medians,
etc.), and the dispersion of data sets through standard
deviation. Statistical data were calculated based on 120
compositions for each selected metric (see Table 5), that
is, with 60 compositions applied to event-driven architecture
and 60 compositions applied to monolithic architecture.
Each composition represents one minute in a continuous
60-minute timeline. Each metric analyzed has a set of
60 data compositions for each load test scenario and each
architecture. When performing the analysis of the result of
the descriptive statistics, it was possible to observe that the
monolithic architecture had more positive e↵ects on the event-
driven architecture than the event-driven architecture on the
monolithic architecture. The monolithic architecture had better
values for the consumption of resources and the processing
time during the empirical tests. This result is supported by the
following observations for each metric (Figure ??):

CPU Usage. The CPU usage means for each scenario of
the monolithic architecture were 9.11%, 24.81%, and 38.14%
and for the event-driven architecture they were 2.93%, 7.94%,
and 17.54%. With these values, it is possible to see that the
CPU usage by the monolithic architecture was between two
and three times higher than the event-driven architecture, even
considering the standard deviation of each scenario.

RAM Memory. RAM consumption means for each scenario
of the monolithic architecture were 347.05MB, 349.95MB,
and 344.57MB and for the event-driven architecture, they
were 1723.03MB, 1721.55MB, and 1788.81MB. With these
values, it is possible to verify that the event-driven architecture
consumed a greater amount of RAM than the monolithic
architecture, the di↵erence in memory consumption was five
times greater.

Response Time. The response time means for each
scenario of the monolithic architecture were 13.31, 13.13, and
14.54 milliseconds and for the event-driven architecture, the
means were 43.08, 16.68, and 16.13 milliseconds. Through
these values it is possible to notice that the means are very
close between the types of architectures, even considering

7

Table 6: Scenario of load test

Scenario Description
1 Run load test with 10 concurrent users
2 Run load test with 25 concurrent users
3 Run load test with 50 concurrent users

Table 7: Descriptive statistics - CPU usage

Scenario Architecture N Min 25 Mean 75 Max Median SD

1 EDA 60 1,47 2,90 2,96 4,43 13,10 4,33 2,67
MONO 60 4,90 8,14 9,11 9,95 14,90 9,33 2,40

2 EDA 60 5,20 6,62 7,94 9,19 11,70 7,98 1,52
MONO 60 21,20 22,88 24,81 26,60 35,00 25,13 3,09

3 EDA 60 3,90 15,89 17,54 18,52 59,30 17,78 5,93
MONO 60 32,20 36,48 38,14 39,95 48,60 38,65 2,92

Legend: event-driven architecture (EDA), monolithic architecture (MONO), standard deviation (SD)

the standard deviation, the average values remain very close
without major di↵erences between them.

Throughput. The means responses per minute in each
scenario observed for the monolithic architecture were 801.5,
1592, and 2399 requests per minute and for the event-driven
architecture it had means of 2350, 5161, and 5713 requests
per minute, through these values, the event-driven architecture
had the highest means. This indicates that the event-driven
architecture generated a higher amount of connections between
client and server to handle the processing of the target
application’s functionalities.

Packages received per second. The means of packages
received per second in each test scenario for the monolithic
architecture were 30.89, 60.70, and 86.17 packages per second,
while the event-driven architecture received 77.09, 152.01, and
224.54 packages per second. We observe that the event-driven
architecture had the highest means and it is also noticed that the
number of received packages is directly related to the number
of requests per minute (throughput).

Packages transmitted per second. The means of packages
transmitted per second in each test scenario for the monolithic
architecture were 21.48, 42.28, and 60.98 packages per second
and for the event-driven architecture they were 53.69, 104.60,
and 153.66 packages per second, through these values, as well
as the mean of received packages per second, it is possible to
observe that the event-driven architecture obtained the highest
means, and it is also noticed that the amount of transmitted
packages is also directly the number of requests by minutes
(Throughput).

Finally, the e↵ects of using the monolithic and event-driven
architecture are observed through two aspects: consumption
of computational resources; and response time and throughput.
The details of each aspect observed during descriptive statistics
are presented below.

Aspect 1: Consumption of computational resources.
Regarding resource consumption, the average CPU
consumption was higher in the monolithic architecture
than in the event-driven architecture, but this di↵erence
is smaller compared to the average memory consumption,
which is lower in the monolithic architecture compared to
the event-driven architecture. events. The results showed the

CPU consumption was two and a half times higher in the
monolithic architecture and the memory consumption five
times higher in the event-driven architecture. Through this
aspect, it is identified that monolithic architecture consumes
fewer resources compared to event-driven architecture.

Aspect 2: Response time and throughput. Regarding
performance, the response time means of the monolithic
architecture were higher than the means of the event-driven
architecture, the di↵erence of the means in comparison of
one architecture with the other presents very similar values,
however, the dispersion of the response times of the Event-
driven architecture was greater. Regarding the throughput, the
average response per minute in the event-driven architecture
was higher than the average in the monolithic architecture,
and as well as the average response time, the event-driven
architecture has greater data dispersion than the monolithic
architecture. It was identified that the monolithic architecture
had better response times compared to the event-driven
architecture.

5.2. Hypothesis Test
Statistical tests were performed with the data collected

through performance metrics to assess whether they are
statistically significant. For this, it was hypothesized that
the event-driven architecture has better performance than the
monolithic architecture, that is, it consumes less computational
resources and has better response times. To test the di↵erences
between the averages of the performance metrics, unilateral
tests were performed, considering the significance level at 0.05
(p value <=0.05), as mentioned above.

The Shapiro-Wilk test was applied to evaluate the
distribution of the collected data and they presented a
distribution di↵erent from the normal one (p value <= 0.05)
for all data sets of the executed test scenarios. So, due to data
distribution, it was not possible to apply the T-Test statistical
test, in this case, the non-parametric Mann-Whitney test was
used as the main statistical test.

Hypothesis (H1) and its sub-hypotheses (see Table 2) were
tested to evaluate RQ1 in the test scenarios (see Table 6)
executed. Table 13 contains the values of the independent
comparison between the event-driven architecture and the

8

Table 8: Descriptive statistics - RAM Memory

Scenario Architecture N Min 25 Mean 75 Max Median SD

1 EDA 60 1656,24 1683,07 1723,03 1889,70 1941,85 1772,41 104,02
MONO 60 335,99 340,78 347,05 391,19 684,29 378,96 67,12

2 EDA 60 1672,69 1701,61 1721,55 1732,82 1750,75 1717,59 21,01
MONO 60 338,26 346,04 349,95 352,48 392,29 351,79 9,86

3 EDA 60 1726,06 1764,84 1788,81 1856,11 2049,38 1811,47 74,82
MONO 60 328,51 339,12 344,57 348,19 357,42 343,85 6,15

Legend: event-driven architecture (EDA), monolithic architecture (MONO), standard deviation (SD)

Table 9: Descriptive statistics - Response Time (milliseconds)

Scenario Architecture N Min 25 Mean 75 Max Median SD

1 EDA 60 18,51 35,83 43,08 43,08 49,33 37,67 10,86
MONO 60 13,20 13,20 13,31 14,51 14,51 13,84 0,66

2 EDA 60 16,22 16,68 16,68 16,68 17,09 16,68 0,08
MONO 60 13,13 13,13 13,13 13,16 13,16 13,14 0,02

3 EDA 60 16,13 16,13 16,13 22,80 22,80 18,71 3,25
MONO 60 14,54 14,54 14,54 14,54 15,74 14,56 0,15

Legend: event-driven architecture (EDA), monolithic architecture (MONO), standard deviation (SD)

monolithic architecture in each test scenario. The p values in
bold represent statistically significant results, i.e., p-value <
0.05. These values indicate the rejection of the respective null
hypothesis.

The main finding is that monolithic architecture had higher
mean CPU processing values than event-driven architecture.
But, on the other hand, it was also demonstrated that the
event-driven architecture had higher consumption values of
more memory than the monolithic architecture, the di↵erence
is much higher than the di↵erence in CPU consumption. It was
also demonstrated that the monolithic architecture had better
mean response times compared to the event-driven architecture.
However, the event-driven architecture had better averages in
the throughput of responses per minute, but it needed to receive
and send a higher amount of data packages.

This can indicate the increase in the throughput of responses
per minute, as the event-driven architecture requires a virtual
bus to communicate with the modules’communication. Thus,
the null hypothesis is rejected and this result is supported by
the following observations:

CPU Usage. It was hypothesized that the event-driven
architecture has a higher or equal CPU processing consumption
than the monolithic architecture, but when analyzing the
statistical test results, we observe that the p-value is lower
than the z and below the 0.05 significance level. Therefore,
the null hypothesis of no di↵erence in CPU consumption
between event-driven architecture and monolithic architecture
can be rejected. That is, there is enough evidence to prove
that the di↵erences in CPU consumption between event-
driven architecture and monolithic architecture are statistically
di↵erent. Table 13 depicts the mean CPU usage rank of
the monolithic architecture is higher than the event-driven
architecture.

The Mann-Whitney U statistical test was performed to determine if
there were di↵erences in CPU consumption between an application
with event-driven architecture and another application with monolithic
architecture in the three test scenarios. Distributions of CPU
consumption values for event-driven and monolithic architectures
were similar, as assessed by visual inspection. The average CPU
consumption was statistically significantly higher in the application
of monolithic architecture for all three test scenarios (9.33, 25.13,
and 38.65) than in the application of event-driven architecture (4.33,
7.98, and 17.78), U=3282, 3600 and 3540, z=7.776, 9.445 and 9.130,
p=0.001, 0.001 and 0.001.

RAM Memory. It was hypothesized that the event-
driven architecture has a RAM consumption greater than or
equal to the monolithic architecture, however, when analyzing
the results of the statistical test, it is possible to observe
that the p-value is lower than the z and below the 0.05
significance level. Therefore, the null hypothesis of no
di↵erence in RAM consumption by event-driven architecture
and monolithic architecture can be rejected. In other words,
there is enough evidence to demonstrate that the di↵erences
in RAM consumption between event-driven architecture and
monolithic architecture are statistically di↵erent. Table 13
depicts the average RAM consumption rank of the event-driven
architecture is higher than that of the monolithic architecture.

The Mann-Whitney U statistical test was performed to determine if
there were di↵erences in RAM consumption between an event-driven
architecture application and another application with monolithic
architecture in the three test scenarios. The distributions of RAM
consumption values for event-driven and monolithic architectures
were similar, as assessed by visual inspection. The average RAM
consumption was statistically significantly higher in the event-driven
architecture application for all three test scenarios (1772.41, 1717.59,
and 1811.47) than in the monolithic architecture application (378.96,
351 .79, and 343.85), U=3600, 3600 and 3600, z=9.445, 9.445 and
9.445, p=0.001, 0.001 and 0.001.

Response Time. It was hypothesized that the event-

9

Table 10: Descriptive statistics - Throughput

Scenario Architecture N Min 25 Mean 75 Max Median SD

1 EDA 60 2350,00 2350,00 2350,00 2501,00 2505,00 2398,87 71,01
MONO 60 789,00 789,00 801,50 803,00 803,00 796,18 7,02

2 EDA 60 5161,00 5161,00 5161,00 5161,00 5637,00 5169,97 61,84
MONO 60 1592,00 1592,00 1592,00 1611,00 1611,00 1598,63 9,12

3 EDA 60 3638,00 3638,00 5713,00 5713,00 5713,00 4908,40 1012,55
MONO 60 1859,00 2399,00 2399,00 2399,00 2399,00 2390,00 69,71

Legend: event-driven architecture (EDA), monolithic architecture (MONO), standard deviation (SD)

Table 11: Descriptive statistics - packages received per second

Scenario Architecture N Min 25 Mean 75 Max Median SD

1 EDA 60 67,75 73,62 77,09 80,25 83,68 76,78 4,12
MONO 60 27,22 30,01 30,89 32,58 36,67 31,19 2,13

2 EDA 60 141,50 148,06 152,01 158,08 175,38 152,82 6,46
MONO 60 56,44 59,31 60,70 62,24 65,80 60,82 2,31

3 EDA 60 162,36 217,58 224,54 230,95 479,72 228,44 35,09
MONO 60 80,55 84,17 86,04 88,49 93,49 86,24 2,91

Legend: event-driven architecture (EDA), monolithic architecture (MONO), standard deviation (SD)

driven architecture has a Response Time less than or equal
to the monolithic architecture, but when analyzing the results
of the statistical test, it is possible to observe that the p-
value is inferior to the z and below the 0.05 significance
level. Therefore, the null hypothesis of no response time
di↵erence between event-driven architecture and monolithic
architecture can be rejected. That is, there is enough evidence
to prove that the Response Time di↵erences between event-
driven architecture and monolithic architecture are statistically
di↵erent. Table 13 depicts the average Response Time rank of
event-driven architecture is higher than the one produced by
monolithic architecture.

The Mann-Whitney U statistical test was performed to determine
if there were di↵erences in Response Time between an application
with event-driven architecture and another application with monolithic
architecture in the three test scenarios. The distributions of Response
Time values for the event-driven and monolithic architectures were
similar, as assessed by visual inspection. The mean Response
Time was statistically significantly higher when applying event-driven
architecture for all three test scenarios (37.67, 16.68, and 18.71) than
when applying monolithic architecture (13.84, 13, 14, and 14.56),
U=3600, 3600 and 3600, z=9.445, 9.445 and 9.445, p=0.001, 0.001
and 0.001.

Throughout. It was hypothesized that the event-driven
architecture has a response rate per minute greater than or
equal to the monolithic architecture, but when analyzing the
results of the statistical test, it is possible to observe that the
p-value is lower à z and below the 0.05 significance level.
Therefore, the null hypothesis of no flow di↵erence by event-
driven architecture and monolithic architecture can be rejected.
In other words, there is enough evidence to prove that the flow
di↵erences between event-driven architecture and monolithic
architecture are statistically di↵erent. Table 13 depicts the
average flow rate rank of the event-driven architecture is higher
than that of the monolithic architecture.

The Mann-Whitney U statistical test was performed to determine if
there were di↵erences in the Response Rate per minute between
an event-driven architecture application and another application with
monolithic architecture in the three test scenarios. The distributions of
Response Flow Rates per Minute for the event-driven and monolithic
architectures were similar, as assessed by visual inspection. Average
Response Rate Per Minute was statistically significantly higher when
applying event-driven architecture for all three test scenarios (2398.87,
5169.97, and 4908.40) than when applying monolithic architecture
(796.18, 1598.63, and 2390.00), U=3600, 3600 and 3600, z=9.445,
9.445 and 9.445, p=0.001, 0.001 and 0.001.

Packages received per second. It was hypothesized that
the event-driven architecture has a frequency of receiving
packages per second higher than or equal to the monolithic
architecture, but when analyzing the results of the statistical
test, it is possible to observe that the p-value is lower à z
and below the 0.05 significance level. Therefore, the null
hypothesis of no di↵erence in packages received per second
by event-driven architecture and monolithic architecture can
be rejected. In other words, there is enough evidence to
demonstrate that the di↵erences in the number of packages
received per second between the event-driven architecture and
the monolithic architecture are statistically di↵erent. Table
13 depicts the average flow rate rank of the event-driven
architecture is higher than that of the monolithic architecture.

The Mann-Whitney U statistical test was performed to determine if
there were di↵erences in the Receive Package per second between
an event-driven architecture application and another application
with a monolithic architecture in the three test scenarios. The
distributions of Received packages Per Second values for the event-
driven and monolithic architectures were similar, as assessed by
visual inspection. The average Received packages per Second
was statistically significantly higher in the event-driven architecture
application for all three test scenarios (76.78, 152.82, and 228.44) than
in the monolithic architecture application (31.19, 60.82 and 86.24),
U=3600, 3600 and 3600, z=9.445, 9.445 and 9.445, p=0.001, 0.001
and 0.001.

10

Table 12: Descriptive statistics - Packages sent per second

Scenario Architecture N Min 25 Mean 75 Max Median SD

1 EDA 60 47,46 51,47 53,69 55,69 58,19 53,45 2,70
MONO 60 18,93 20,63 21,48 22,36 24,72 21,53 1,33

2 EDA 60 97,29 101,91 104,60 108,12 123,16 105,10 4,57
MONO 60 39,53 41,27 42,28 43,41 45,92 42,31 1,53

3 EDA 60 104,27 149,54 153,66 157,76 310,19 155,93 21,99
MONO 60 57,29 59,80 60,98 62,49 65,23 61,10 1,91

Legend: event-driven architecture (EDA), monolithic architecture (MONO), standard deviation (SD)

Table 13: Mann-Whitney test

Scenario Statistics CPU
percentage

Memory
RAM

Response
time Throughput Packages

received
Packages

transmitted

1

U’ 3.282 3.600 3.600 3.600 3.600 3.600
U 318 0 0 0 0 0
Z 7,776 9,445 9,445 9,445 9,445 9,445

p-value 0,001 0,001 0,001 0,001 0,001 0,001
Rank sum EDA 2148 5430 5430 5430 5430 5430

Rank sum MONO 5112 1830 1830 1830 1830 1830
Mean Rank EDA 35,8 90,5 90,5 90,5 90,5 90,5

Mean Rank MONO 85,2 30,5 30,5 30,5 30,5 30,5

2

U’ 3.600 3.600 3.600 3.600 3.600 3.600
U 0 0 0 0 0 0
Z 9,445 9,445 9,445 9,445 9,445 9,445

p-value 0,001 0,001 0,001 0,001 0,001 0,001
Rank sum EDA 1830 5430 5430 5430 5430 5430

Rank sum MONO 5430 1830 1830 1830 1830 1830
Mean Rank EDA 30,5 90,5 90,5 90,5 90,5 90,5

Mean Rank MONO 90,5 30,5 30,5 30,5 30,5 30,5

3

U’ 3.540 3.600 3.600 3.600 3.600 3.600
U 60 0 0 0 0 0
Z 9,130 9,445 9,445 9,445 9,445 9,445

p-value 0,001 0,001 0,001 0,001 0,001 0,001
Rank sum EDA 1890 5430 5430 5430 5430 5430

Rank sum MONO 5370 1830 1830 1830 1830 1830
Mean Rank EDA 31,5 90,5 90,5 90,5 90,5 90,5

Mean Rank MONO 89,5 30,5 30,5 30,5 30,5 30,5
Legend: event-driven architecture (EDA), monolithic architecture (MONO), standard deviation (SD)

Packages transmitted per second. It was hypothesized
that the event-driven architecture has a frequency of sending
packages per second higher than or equal to the monolithic
architecture, but when analyzing the results of the statistical
test, it is possible to observe that the p-value is lower à z and
below the 0.05 significance level. Therefore, the null hypothesis
of no di↵erence in packages sent per second by event-driven
architecture and monolithic architecture can be rejected. In
other words, there is enough evidence to prove that the
di↵erences in the number of packages sent per second between
the event-driven architecture and the monolithic architecture are
statistically di↵erent. Table 13 depicts the average flow rate
rank of the event-driven architecture is higher than that of the
monolithic architecture.

The Mann-Whitney U statistical test was performed to determine if
there were di↵erences in the Sending packages per second between an
application with event-driven architecture and another application with
monolithic architecture in the three test scenarios. The distributions
of the packages Sent Per Second values for the event-driven and
monolithic architectures were similar, as assessed by visual inspection.
The average of packages Sent per Second was statistically significantly
higher when applying event-driven architecture for all three test
scenarios (53.45, 105.10, and 155.93) than when applying monolithic
architecture (21.53, 42.31, and 61.10), U=3600, 3600 and 3600,
z=9.445, 9.445 and 9.445, p=0.001, 0.001 and 0.001.

5.3. Discussion
Based on the observations of the results obtained by the

descriptive analysis and by the hypothesis tests, the following
subjects were identified for discussion:

CPU Usage. The monolithic architecture showed higher
CPU consumption than the event-driven architecture, as the
intensity of the load tests increased, it was possible to observe
the increase in CPU consumption in both architectures, but
the monolithic architecture remained with higher consumption
in all test scenarios. The monolithic application has only
one module responsible for processing all the application’s
functionalities, di↵erent from the event-driven architecture
that has several modules, each one responsible for processing
functionality or part of the functionality, so we speculate
that due to this characteristic of the monolithic architecture,
there is a processing overhead by the application causing
high CPU consumption. This can be an important fact
in the contribution of decision-making for reconstructions
of monolithic applications, as in real applications the high
consumption may be limiting the processing and reducing
the application’s performance. These results can contribute
together with comparative studies such as the works carried
out by [10] and [9], as these works carried out based on in the
literature a survey of the advantages and disadvantages of using
each architecture, but without empirical evidence.

RAM Memory. Event-driven architecture showed higher

11

(a) CPU Usage (b) RAM Memory (MB) (c) Response Time

(d) Packages received (e) Packages transmitted (f) Throughput

Figure 2: Box-plot diagrams.

RAM consumption compared to monolithic architecture and
obtained the highest consumption values in all applied test
scenarios. Unlike CPU consumption, RAM consumption
values did not show a very significant increase as the load
increased during the tests performed. The application with
event-driven architecture has 9 sub-applications for processing
all the functionality of the target application (see section 4.3),
di↵erent from the monolithic architecture, which is composed
of only one application. We speculate that the increase in
RAM consumption by the event-driven architecture is due to
the number of objects needed for the execution of each sub-
application, as we saw in Table 4, the event-driven application
has a larger amount of files or classes implemented than the
monolithic application. We must also consider that each
application has a memory consumption for allocating the
resources needed to start and run the application itself, if we
assume that to start an application 50MB of RAM is needed,
then the 9 sub-applications of the event-driven application have
a minimum consumption of 450MB, which is higher than the
total RAM consumption of the monolithic application.

Response Time. The monolithic architecture obtained lower
response times than the event-driven architecture, that is, it
obtained the best values and due to this, it ends up being more
performative. What di↵ers between the architectures is the
way of communication between the application modules, in the
monolithic architecture, all modules are in the same application,
unlike the monolithic architecture, where the modules are sub-
applications that communicate through a bus. It is believed
that this communication bus between the modules of the event-
driven architecture can impact the application response time,
but to confirm this statement, it will be necessary to apply new
tests and analyze new metrics that help evidence this behavior.

Throughput. The event-driven architecture achieved better
response-per-minute throughput values than the monolithic
architecture. Although the application of event-driven
architecture has obtained less performing response time values,
it presented higher values regarding the number of responses
per minute than the application of monolithic architecture. An
indication of the increase in the number of responses per minute
is that the metric is also counting the communication responses

12

between the modules of the event-driven application and not
just the responses that were sent to the client.

5.4. Challenges and Implications

This section presents the challenges and implications that
were derived after analyzing the collected results.

Challenge 1: E↵ects of modularization on performance.
Modularization is a manifestation of the separation of interests,
that is, it is the division or organization of the software into
modules that are integrated to meet one or more functionalities
[24]. In future research, it is suggested to evaluate the e↵ects
caused by modulation on the performance of event-driven and
monolithic architectures, as the communication between event-
driven architecture modules is done through an event bus,
unlike the monolithic architecture, that modularization can be
measured through some groups of metrics, they are: separation
of interests, coupling, cohesion and size [25].

Challenge 2: Analyze performance during development.
Unlike the tests and collected data performed for this work,
in which each selected target application has all functionalities
already implemented, it is recommended to apply similar tests
to collect performance data in each version of the event-driven
and monolithic application.

Implication 1: Refactoring or decomposition indicators.
The results imply looking for factors that make it possible
to indicate the moment when a monolithic application should
be decomposed into an event-driven application or vice-
versa. As seen earlier, the monolithic architecture consumes
a higher percentage of CPU compared to the event-driven
architecture, so we speculate that this might be a factor to be
evaluated during the decomposition decision. For RAM, which,
unlike CPU consumption, in the event-driven architecture, the
consumption is higher compared to the monolithic architecture,
it is also speculated that this may be another factor for
the decision to refactor the event-driven architecture in a
monolithic architecture.

To exemplify the use of refactoring or decomposition
indicators, Figure ?? and Figure ?? demonstrate the
evolutionary cycle of a given application through versions
released over time. For each new version of the application,
exploratory tests can be applied to assess changes in CPU
and RAM consumption as a result of changes applied during
development. The results will be analyzed and compared
with indicators that warn about the increase in resource
consumption or the need to refactor the application due to
excess consumption.

6. Conclusions and Future Work

This work presented an empirical study to evaluate
the performance of directed architecture and monolithic
architecture. During the empirical experiment, an application
with an event-driven architecture and another with a monolithic
architecture were submitted to tests for data collection using
previously selected metrics. The consumption of CPU and
RAM, number and response times, and the number of packages

transferred and received by the network of each application
were analyzed during the tests to observe the e↵ects of each
architecture. Analyzing the results, it is possible to verify in
which aspects each architecture has better performance.

From the results of the data obtained in this study, it
was observed that applications with monolithic architecture
have low consumption of resources such as CPU and RAM
compared to applications with event-driven architecture, but
applications with event-driven architecture have better amounts
and response times. Through these results, this study
contributes empirical knowledge to help decision-making in
choosing the appropriate architecture for software development
and also in the decomposition of monolithic applications into
event-driven applications with evidence of the execution of an
application using two distinct architectures.

To make this work have a more complete approach,
some future work will be carried out: (1) consider new
metrics to assess other performance-related aspects; (2)
consider modularization metrics to analyze possible e↵ects
on performance; (3) collect data from new applications from
other contexts and/or languages and frameworks used in
development. This work is an initial study of the e↵ects on
performance caused by event-driven architecture, serving as
support for further studies related to the topic.

References
[1] M. Rubert, K. Farias, On the e↵ects of continuous delivery on code

quality: A case study in industry, Computer Standards and Interfaces
(2021) 103588.

[2] A. Oliveira, V. Bischo↵, L. J. Gonçales, K. Farias, M. Segalotto, Brcode:
An interpretive model-driven engineering approach for enterprise
applications, Computers in Industry 96 (2018) 86–97.

[3] B. Stopford, Designing Event-Driven Systems, 1st Edition, O’Reilly
Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472,
2018.

[4] R. Laigner, M. Kalinowski, P. Diniz, L. Barros, C. Cassino, M. Lemos,
D. Arruda, S. Lifschitz, Y. Zhou, From a monolithic big data system
to a microservices event-driven architecture, 2020 46th Euromicro
Conference on Software Engineering and Advanced Applications
(SEAA) (2020) 213–220doi:10.1109/SEAA51224.2020.00045.

[5] R. G. Urdangarin, K. Farias, J. Barbosa, Mon4aware: A multi-
objective and context-aware approach to decompose monolithic
applications, XVII Brazilian Symposium on Information Systems
(SBSI 2021), June 7–10, 2021, Uberlândia, Brazil (Jun. 2021).
doi:https://doi.org/10.1145/3466933.3466949.

[6] O.-A. Schipor, R.-D. Vatavu, J. Vanderdonckt, Euphoria: A
scalable, event-driven architecture for designing interactions across
heterogeneous devices in smart environments, Information and Software
Technology Volume 109, May 2019, Pages 43-59 (2019) 43–
59doi:https://doi.org/10.1016/j.infsof.2019.01.006.
URL www.elsevier.com/locate/infsof

[7] S. Tragatschnig, S. Stevanetic, U. Zdun, Supporting the evolution
of event-driven service-oriented architectures using change patterns,
Information and Software Technology Volume 100, August 2018, Pages
133-146 (2018) 133–146doi:https://doi.org/10.1016/j.infsof.2018.04.005.
URL www.elsevier.com/locate/infsof

[8] E. Djogic, S. Ribic, D. Donko, Monolithic to microservices redesign
of event driven integration platform, MIPRO 2018, May 21-25, 2018,
Opatija Croatia (2018) 1411–1414.

[9] Z. A. Bukhsh, M. van Sinderen, P. M. Singh, Soa and eda:
A comparative study: Similarities, di↵erences and conceptual
guidelines on their usage, 2015 12th International Joint Conference
on e-Business and Telecommunications (ICETE) (Jul. 2015).
doi:10.5220/0005539802130220.

13

Figure 3: CPU implication

Figure 4: Memory implication

[10] C. Pienwittayasakul, Y. Liu, Comparative study on service-oriented
architecture and event-driven architecture, Proceedings of the
International conference on Computing Technology and Information
Management, Dubai, UAE, 2014 (2014) 397–405doi:10.1.1.1020.1824.

[11] M. Richards, Software Architecture Patterns, O’Reilly Media, Inc., 2015.
[12] H. Falatiuk, M. Shirokopetleva, Z. Dudar, Investigation of

architecture and technology stack for e-archive system, 2019
IEEE International Scientific-Practical Conference Problems of
Infocommunications, Science and Technology (PIC ST) (October
2019). doi:https://doi.org/10.1109/PICST47496.2019.9061407.

[13] J. Boner, D. Farley, R. Kuhn, M. Thompson, The reactive manifesto,
disponı́vel em: <https://www.reactivemanifesto.org>. Acesso em: 18
novembro 2021 (2014).

[14] A. Kaur, P. S. Grover, A. Dixit, Performance e�ciency assessment for
software systems, Hoda M., Chauhan N., Quadri S., Srivastava P. (eds)
Software Engineering. Advances in Intelligent Systems and Computing,
vol 731 (2019) 83–92doi:https://doi.org/10.1007/978-981-10-8848-38.

[15] ISO - International Organization for Standardization, ISO/IEC 25010:2011:
Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models
(2011).

[16] R. S. Pressman, B. R. Maxim, Engenharia de software: uma abordagem
profissional, eighth Edition, AMGH Editora Ltda, Porto Alegre, 2016.

[17] R. D. Vieira, K. Farias, Usage of psychophysiological data as an improvement
in the context of software engineering: A systematic mapping study,
SBSI’20: XVI Brazilian Symposium on Information Systems (2020) 1–
8doi:https://doi.org/10.1145/3411564.3411580.

[18] K. Farias, A. Garcia, C. Lucena, E↵ects of stability on model composition
e↵ort: an exploratory study, Softw Syst Model (2014) 13:1473–1494 (2013)
13:1473—-1494doi:https://doi.org/10.1007/s10270-012-0308-2.

[19] K. Farias, A. Garcia, J. Whittle, C. von Flach Garcia Chavez, C. Lucena,
Evaluating the e↵ort of composing design models: a controlled

experiment, Softw Syst Model (2015) 14:1349–1365 (2014) 14:1349—-
1365doi:https://doi.org/10.1007/978-3-642-33666-943.

[20] K. Farias, A. Garcia, C. Lucena, Evaluating the e↵ects of stability on model
composition e↵ort: an exploratory study, in: VIII Experimental Software
Engineering Latin American Workshop collocated at XIV Iberoamerican
Conference on Software Engineering, Rio de Janeiro, Citeseer, 2011.

[21] L. F. D’Avila, K. Farias, J. L. V. Barbosa, E↵ects of contextual information on
maintenance e↵ort: a controlled experiment, Journal of Systems and Software
159 (2020) 110443.

[22] K. Farias, A. Garcia, C. Lucena, Evaluating the impact of aspects on
inconsistency detection e↵ort: a controlled experiment, in: International
Conference on Model Driven Engineering Languages and Systems, Springer,
2012, pp. 219–234.

[23] V. R. B.-G. Caldiera, H. D. Rombach, Goal question metric paradigm,
Encyclopedia of software engineering 1 (528-532) (1994) 6.

[24] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, M. Mazzara, From
monolithic to microservices: An experience report from the banking domain,
IEEE Software (Volume: 35, Issue: 3, May/June 2018) (2018) 50–
55doi:https://doi.org/10.1109/MS.2018.2141026.

[25] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, A. von
Staa, Modularizing design patterns with aspects: A quantitative study,
Rashid A., Aksit M. (eds) Transactions on Aspect-Oriented Software
Development I. Lecture Notes in Computer Science, vol 3880 (2006) 36–
74doi:https://doi.org/10.1007/116870612.

14

