
Softw Syst Model (2014) 13:1473–1494
DOI 10.1007/s10270-012-0308-2

REGULAR PAPER

Effects of stability on model composition effort: an exploratory
study

Kleinner Farias · Alessandro Garcia · Carlos Lucena

Received: 4 July 2011 / Revised: 17 August 2012 / Accepted: 7 November 2012 / Published online: 9 January 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Model composition plays a central role in many
software engineering activities, e.g., evolving design models
to add new features. To support these activities, developers
usually rely on model composition heuristics. The problem
is that the models to-be-composed usually conflict with each
other in several ways and such composition heuristics might
be unable to properly deal with all emerging conflicts. Hence,
the composed model may bear some syntactic and semantic
inconsistencies that should be resolved. As a result, the pro-
duction of the intended model is an error-prone and effort-
consuming task. It is often the case that developers end up
examining all parts of the output composed model instead of
prioritizing the most critical ones, i.e., those that are likely
to be inconsistent with the intended model. Unfortunately,
little is known about indicators that help developers (1) to
identify which model is more likely to exhibit inconsisten-
cies, and (2) to understand which composed models require
more effort to be invested. It is often claimed that software
systems remaining stable over time tends to have a lower
number of defects and require less effort to be fixed than
unstable systems. However, little is known about the effects
of software stability in the context of model evolution when
supported by composition heuristics. This paper, therefore,
presents an exploratory study analyzing stability as an indi-

Communicated by Prof. Lionel Briand.

K. Farias (B) · A. Garcia · C. Lucena
OPUS Research Group, LES, Informatics Department,
Pontifical Catholic University of Rio de Janeiro,
Rio de Janeiro, RJ, Brazil
e-mail: kleinner@gmail.com; kfarias@inf.puc-rio.br

A. Garcia
e-mail: afgarcia@inf.puc-rio.br

C. Lucena
e-mail: lucena@inf.puc-rio.br

cator of inconsistency rate and resolution effort on model
composition activities. Our findings are derived from 180
compositions performed to evolve design models of three
software product lines. Our initial results, supported by sta-
tistical tests, also indicate which types of changes led to lower
inconsistency rate and lower resolution effort.

Keywords Model composition · Software development
effort · Design stability

1 Introduction

Model composition plays a central role in many software
engineering activities [18], e.g., evolving design models to
add new features and reconciling multiple models developed
in parallel by different software development teams [28,38].
The composition of design models can be defined as a set of
activities that should be performed over two input models,
MA and MB, in order to produce an output intended model,
MAB. To put the model composition in practice, software
developers usually make use of composition heuristics [9]
to produce MAB. These heuristics match the model elements
of MA and MB by automatically “guessing” their semantics
and then bring the similar elements together to create a “big
picture” view of the overall design model.

The problem is that, in practice, the output composed
model (MCM) and the intended model (MAB) often do not
match (i.e., MCM �= MAB) because MA and MB conflict
with each other in some way [18]. Hence, these conflicts
are converted into syntactic and semantics inconsistencies in
MCM. Consequently, software developers should be able to
anticipate composed models that are likely to exhibit incon-
sistencies and transform them into MAB. In fact, it is well
known that the derivation of MAB from MCM is considered

123

1474 K. Farias et al.

an error-prone task [18,35]. The developers do not even have
practical information or guidance to plan this task. Their
inability is due to two main problems.

First, developers do not have any indicator to reveal which
MCM should be reviewed (or not), given a sequence of out-
put composed models produced by the software development
team. Hence, they have no means to identify or prioritize parts
of design models that are likely to have a higher density of
inconsistencies. They are often forced to go through all out-
put models produced or assume an overoptimistic position,
i.e., all output composed models produced is a MAB. In both
cases, the inadequate identification of an inconsistent MCM

can even compromise the evolution of the existing design
model (MA) as some composition inconsistencies can affect
further model compositions.

Second, model managers are unable to grasp how much
effort the derivation of MAB from MCM can demand, given
the problem at hand [35]. Hence, they end up not designating
the most qualified developers for resolving the most critical
effort-consuming cases where severe semantic inconsisten-
cies are commonly found. Instead, unqualified developers
end up being allocated to deal with these cases. In short,
model managers have no idea about which MCM will demand
more effort to be transformed into a MAB [35]. If the effort
to resolve these inconsistencies is high, then the potential
benefits of using composition heuristics (e.g., gains in pro-
ductivity) may be compromised.

The literature in software evolution highlights that soft-
ware remaining stable over time tends to have a lower number
of flaws and require less effort to be fixed than its counterpart
[21,32]. However, little is known whether the benefits of sta-
bility are also found in the context of the evolution of design
models supported by composition heuristics. This is by no
means obvious for us because the software artifacts (code and
models) can have different level of abstraction. In fact, design
model has a set of characteristics (defined in language meta-
model expressing it) that are manipulated by composition
heuristics and can assume values close to what is expected (or
not), i.e. MCM ≈ MAB. If the assigned value of a character-
istic is close to the one found in the intended model, then the
composed model is considered stable concerning that charac-
teristic. For example, if the difference between the coupling
of the composed model and the intended model is small, then
they can be considered stable considering coupling.

Although researchers recognize software stability as a
good indicator to address the two problems described above
in the context of software evolution, most of the current
research on model composition is focused on building new
model composition heuristics (e.g., [9,25,34,44]). That is,
nothing has been done to evaluate stability as an indicator
of the presence of semantic inconsistencies and of the effort
that, on average, developers should spend to derive MAB from
MCM. Today, the identification of critical MCM and the effort

estimation to produce MAB are based on the evangelists’
feedback that often diverge [28].

This paper, therefore, presents an initial exploratory study
analyzing stability as an indicator of composition inconsis-
tencies and resolution effort. More specifically, we are con-
cerned with understanding the effects of the model stability
on the inconsistency rate and inconsistency resolution effort.
We study a particular facet of model composition in this
paper: the use of model composition in adding new features
to models for three realistic software product lines. Software
product lines (SPLs) commonly involve model composition
activities [20,43] and, while we believe the kinds of model
composition in SPLs are representative of the broader issues,
we make no claims about the generality of our results beyond
SPL model composition. Three well-established composi-
tion heuristics [9], namely override, merge, and union, were
employed to evolve the SPL design models [1,20] along
eighteen releases. SPLs are chosen because designers need
to maximize the modularization of features allowing the
specification of the compositions. The use of composition
is required to accommodate new variabilities and variants
(mandatory and optional features) that may be required when
SPLs evolve. We analyze if stability is a good indicator of
high inconsistency rate and resolution effort.

Our findings are derived from 180 compositions per-
formed to evolve design models of three software product
lines. Our results, supported by statistical tests, show that
stable models tend to manifest a lower inconsistency rate
and require a lower resolution effort than their counterparts.
In other words, this means that there is significant evidence
that the higher the model stability, the lower the model com-
position effort.

In addition, we discuss scenarios where the use of the
composition heuristics became either costly or prohibitive.
In these scenarios, developers need to invest some extra effort
to derive MAB from MCM. Additionally, we discuss the main
factors that contributed to the stable models outnumber the
unstable one in terms of inconsistency rate and inconsistency
resolution effort. For example, our findings show that the
highest inconsistency rates are observed when severe evo-
lution scenarios are implemented, and when inconsistency
propagation happens from model elements implementing
optional features to ones implementing mandatory features
(Sect. 4.1.3). We also notice that the higher instability in the
model elements of the SPL design models realizing optional
features, the higher the resolution effort. To the best of our
knowledge, our results are the first to investigate the potential
advantages of model stability in realistic scenarios of model
composition. We therefore see this paper as a first step in a
more ambitious agenda to assess model stability empirically.

The remainder of the paper is organized as follows: Sect. 2
describes the main concepts and knowledge that are going
to be used and discussed throughout the paper. Section 3

123

Effects of stability on model composition effort 1475

presents the study methodology. Section 4 discusses the study
results. Section 5 compares this work with others, presenting
the main differences and commonalities. Section 6 points
out some threats to validity. Finally, Sect. 7 presents some
concluding remarks and future work.

2 Background

2.1 Model composition effort

To produce an output intended model (MAB), a set of activi-
ties is performed over MA and MB. MA is the current design
model, while MB is the model expressing the evolution (delta
model), for example, the upcoming changes being added. MB

is inserted into the MA using some composition heuristics,
which are responsible for defining the semantics of the com-
position and specify how MA and MB should be manipulated
in order to produce MAB. We will use the terms composed
model (MCM) and intended model (MAB) to differentiate
between the output model produced by a composition heuris-
tic and one is desired by the developers. As previously men-
tioned, usually MCM and MAB do not match (MCM �= MAB)
because the input models conflict with each other in some
way. The higher the number of inconsistencies in MCM, the
more distant it is from the intended model. This may mean
a high effort to be spent to derive MAB from MCM (or not).
Once MCM has been produced, the next step is to measure
the effort to transform MCM into MAB, i.e., the effort to
resolve inconsistencies. If MCM is equal to MAB, then this
implies that the design characteristics of MCM keep stable
over composition. Therefore, the inconsistency resolution
effort is equal to zero. Otherwise, the effort is higher than
zero.

The composition effort can be understood by using the
equation defined in Fig. 1. The equation gives an overview
of how composition effort can be measured and what part
we focus our study on. The equation makes it explicit that
the model composition effort includes: (1) the effort to
apply a composition heuristic: f(MA, MB); (2) the effort
to detect undesirable inconsistencies in the output model:
diff(MCM, MAB); and (3) the effort to resolve inconsisten-

Fig. 1 Model composition effort: an equation

cies: g(MCM). Once MCM has been produced, the next step
is to measure the effort to transform MCM into MAB. If MCM

is equal to MAB, then diff(MCM, MAB) and g(MCM) are equal
to zero. Otherwise, diff(MCM, MAB) and g(MCM) are higher
than zero. This study focuses specifically on evaluating the
effort to inconsistency resolution (i.e., g(MCM)) rather than
inconsistency detection and algorithm application.

2.2 Model stability

According to [21,30], a design characteristic of software is
stable if, when compared to other, the differences in the indi-
cator associated with that characteristic are considered, in the
context, to be small. In a similar way in the context of model
composition, MCM can be considered stable if its design char-
acteristics have a low variation concerning the characteristics
of MAB. In [21], Kelly studies stability from a retrospective
view, i.e., comparing the current version to previous ones. In
our study, we compare the current model and the intended
model.

We define low variation as being equal to (or less than)
20 %. This choice is based on previous empirical studies [21]
on software stability that has demonstrated the usefulness
of this threshold. For example, if the measure of a particu-
lar characteristic (e.g., coupling and cohesion) of the MCM

is equal to 9, and the measure of the MAB is equal to 11.
So MCM is considered stable concerning MAB (because 9 is
18 % lower than 11) with respect to the measure under analy-
sis. Following this stability threshold, we can systematically
identify weather (or not) MCM keeps stable considering MAB,
given an evolution scenario. Note that threshold is used more
as a reference value rather than a final decision maker. The
results of this study can regulate it, for example. The dif-
ferences between the models are computed comparing the
measures obtained by a set of metrics (Table 1) [12].

We adopt the definition of stability from [21] (and its
threshold) because of some reasons. First, it defines and
validates the quantification method of stability in practice.
This method is used to examine software systems that have
been actively maintained and used over a long term. Second,
the quantification method of stability has demonstrated to be
effective to flag evolutions that have jeopardized the system
design.

Third, many releases of the system under study was con-
sidered. This is a fundamental requirement to test the use-
fulness of the method. As such, all these factors provided
a solid foundation for our study. These metrics were used
because previous works [21] have already observed the effec-
tiveness of these indicators for the quantification of software
stability. Knowing the stability in relation to the intended
model it is possible to identify evolution scenarios, where
composition heuristics are able to accommodate upcoming
changes effectively and the effort spent to obtain the intended

123

1476 K. Farias et al.

Table 1 Metrics used in our
study Type Metric Description

Size NClass The number of classes

NAttr The number of attributes

NOps The number of operations

NInter The number of interfaces

NOI The number of operations in each interface

Inheritance DIT The depth of the class in the inheritance hierarchy

InhOps The number of operations inherited

InhAttr The number of attributes inherited

Coupling DepOut The number of elements on which a class depends

DepIn The number of elements that depend on this class

model. The stability quantification method is presented later
in Sect. 3.4.

2.3 Composition heuristics

Composition heuristics rely on two key activities: matching
and combining the input model elements [14]. Usually they
are used to modify, remove, and add features to an exist-
ing design model. This paper focuses on three composition
heuristics: override, merge, and union [9]. These heuristics
were chosen because they have been applied to a wide range
of model composition scenarios such as model evolution,
ontology merge, and conceptual model composition. In addi-
tion, they have been recognized as effective heuristics in
evolving product-line architectures (e.g., [4]). In the follow-
ing, we briefly define these three heuristics, and assume MA

and MB as the two input models. The input model elements
are corresponding if they can be identified as equivalent in
a matching process. Matching can be achieved using any
kind of standard heuristics, such as match-by-name [9]. The
design models used are typical UML class and component
diagrams [37] (see Fig. 2), which have been widely used
to represent software architecture in mainstream software
development [26]. In Fig. 2, for example, R2 diagram plays
the role of the base model (MA) and Delta(R2, R3) dia-
gram plays the role of the delta model (MB). The components
R2.BaseController and Delta(R2, R3).BaseController
are considered as equivalent. We defer further considerations
about the design models used in our study to Sect. 3.3. The
composition heuristics considered in our study are discussed
in the following paragraphs.

Override For all pairs of corresponding elements in MA

and MB, MA’s elements should override MB’s correspond-
ing elements. The model elements that do not match remain
unchanged. They are just inserted into the output model. For
example, Fig. 2 shows an example where the output com-

posed model, R3, is produced following this heuristic applied
to R2 and Delta(R2, R3).

Merge For all corresponding elements in MA and MB, the
elements should be combined. The combination depends on
the element type. Elements in MA and MB that are not equiva-
lent remain unchanged and are inserted into the output model
directly (see Fig. 2).

Union For all elements in the MA and MB that are cor-
responding elements, they should be manipulated in order
to preserve their distinguished identification; it means that
they should coexist in the output models with different iden-
tifiers; elements in the MA and MB that are not involved
in a correspondence match remain unchanged and they are
inserted into the output model, MAB. For example, the
Delta(R2, R3).BaseController has its name modified to
R3.BaseController (see Fig. 3).

2.4 Inconsistencies

Inconsistencies emerge in the composed model when its
properties assume values other than those would be expected.
These values can affect the syntactic and semantic properties
of the model elements. Usually such undesired values come
from conflicting changes that were incorrectly realized. We
can identify two broad categories of inconsistencies: (i) syn-
tactic inconsistencies, which arise when the composed model
elements do not conform to the modeling language’s meta-
model; and (ii) semantic inconsistencies, which mean that
static and behavioral semantics of the composed model ele-
ments do not match those of the intended model elements.

In our study, we take into account syntactic inconsistencies
that were identified by the IBM Rational Software Architec-
ture’s model validation mechanism [35]. For example, this
robust tool is able to detect the violation of well-formedness
rules defined in the UML metamodel specification [37]. In
order to improve our inconsistency analysis, we also con-
sidered the types of inconsistencies shown in Table 2 [12],

123

Effects of stability on model composition effort 1477

Fig. 2 Practical examples of model composition of the Mobile Media product line

which were checked by using the SDMetrics tool [46]. In par-
ticular, these inconsistencies were used because their effec-
tiveness has been demonstrated in previous works [13–16].
In addition, both syntactic and semantic inconsistencies are
manually reviewed as well. All these procedures were fol-
lowed in order to improve our confidence that a representa-
tive set of inconsistencies were tackled by our study. Many
instances of these inconsistency types (Table 2) were found
in our study. For example, the static property of a model ele-
ment, isAbstract, assumes the value true rather than false.
The result is an abstract class where a concrete class was
being expected. Another typical inconsistency considered in
our study was when a model element provides (or requires)
an unexpected functionality or even requires a functionality
that does not exist.

The absence of this functionality can affect other design
model elements responsible for implementing other func-
tionalities, thereby propagating an undesirable ripple effect
between the model elements of MCM. In Fig. 3 (override),
for example, the AlbumData does not provide the service
“update image information” (from the feature “edit photo’s
label”) because the method updateI mageI n f o():void is not
present in the ManagePhotoInfoInterface. Hence, the Photo-
Sorting component is unable to provide the service “sorting
photos.” This means that the feature “sorting photo” (fea-
ture ‘F’ in Fig. 2)—a critical feature of the software product
line—is not correctly realized. On the other hand, this prob-
lem is not present in Fig. 2 (merge), in which the Album-
Data implements two features (C, model management, and
E, edit photo’s label). We defer further discussion about the

123

1478 K. Farias et al.

Fig. 3 The intended model (left) and composed model (right) produced following the union heuristic

Table 2 The inconsistencies
used in our case study Metric Description

NFCon The number of functionality inconsistencies

NCCon The number of model elements that are not compliant with the intended model

NDRCOn The number of dangling reference inconsistencies

NASCon The number of abstract syntax inconsistencies

NUMECon The number of non-meaningful model elements

NBFCon The number of behavioral feature inconsistencies

examples and the quantification of these types of inconsis-
tencies to Sect. 3.4.

3 Study methodology

This section presents the main decisions underlying the
experimental design of our exploratory study. To begin with,
the objective and research questions are presented (Sect. 3.1).
Next, the study hypotheses are systematically stated from
these research questions (Sect. 3.2). The product lines used
in our studies are also discussed in detail as well as their
evolutionary changes (Sect. 3.3). Then, the variables and
quantification methods considered are precisely described
(Sect. 3.4). Finally, the method used to produce the releases
of the target architectures is carefully discussed (Sect. 3.5).
All these methodological steps were based on practical guide-
lines on empirical studies [42,45].

3.1 Objective and research questions

This study essentially attempts to evaluate the effects of
model stability on two variables: the inconsistency rate and
inconsistency resolution effort. These effects are investigated

from concrete scenarios involving design model composi-
tions so that practical knowledge can be generated. In addi-
tion, some influential factors are also considered into pre-
cisely revealing how they can affect these variables. With
this in mind, the objective of this study is stated based on the
GQM template [3] as follows:

analyze the stability of design models
for the purpose of investigating its effect
with respect to inconsistency rate and resolution effort
from the perspective of developers
in the context of evolving design models with composi-
tion heuristics.

In particular, this study aims at revealing the stability
effects while evolving composed design models (Sect. 3.3)
on inconsistency rate and the inconsistency resolution effort.
Thus, we focus on the following two research questions:

• RQ1: What is the effect of stability on the inconsistency
rate?

• RQ2: What is the effect of stability on the developers’
effort?

123

Effects of stability on model composition effort 1479

3.2 Hypothesis formulation

3.2.1 First hypotheses: effect of stability on inconsistency
rate

In the first hypothesis, we speculate that a high variation of
the design characteristics of the design models may lead to
a higher incidence of inconsistencies; since, it increases the
chance for an incorrect manipulation of the design charac-
teristic by the composition heuristics. In fact, modifications
from severe evolutions may lead the composition heuristics to
be ineffective or even prohibitive. In addition, these inconsis-
tencies may also propagate. As a higher incidence of changes
is found in unstable models, we hypothesize that unstable
models tend to have a higher (or equal to) inconsistency rate
than stable models. The first hypothesis evaluates whether the
inconsistency rate in unstable models is significantly higher
(or equal to) than in stable models. Thus, our hypotheses are
summarized as follows:

Null Hypothesis 1, H1−0:
Stable design models have similar or higher inconsis-
tency rate than unstable design models.
H1−0: Rate(stable design models)≥Rate(unstable design
models).
Alternative Hypothesis 1, H1−1:
Stable design models have a lower inconsistency rate than
unstable design models.
H1−1: Rate(stable design models)<Rate(unstable design
models).

By testing this first hypothesis, we evaluate if stability is
a good indicator to identify the most critical MCM in term of
inconsistency rate from a sequence of MCM produced from
multiple software development teams. Hence, developers can
then review the design models having a higher density of
composition inconsistencies. We believe that this strategy is
a more effective one than going through all MCM produced
or assuming an overoptimistic position where all MCM pro-
duced is a MAB.

3.2.2 Second hypothesis: effect of stability on developer
effort

As previously mentioned, developers tend to invest different
quantity of effort to derive MAB from MCM. Today, model
managers are unable to grasp how much effort this trans-
formation can demand. This variation is because developers
need to resolve different types of problems in a composed
model, from a simple renaming of elements to complex mod-
ifications in the structure of the composed model. In fact,
the structure of the composed models may be affected in
different ways during the composition, e.g., creating unex-

pected interdependences between the model elements. Even
worse, these modifications in the structure of the model may
cause ripple effects, i.e., inconsistency propagation between
the model elements. The introduction of one inconsistency
can often lead to multiple other inconsistencies because of a
“knock-on” effect. An example would be the inconsistency
whereby a client component is missing an important opera-
tion in the interface of a server component (see example in
Sect. 2.4). This semantic inconsistency leads to a “knock-
on” syntactic inconsistency if another component requires
the operation. In the worst case, there may be long chains
of inconsistencies all derived from a single inconsistency.
Given a composed model at hand, developers need to know
if they will invest little or too much effort to transform MCM

into MAB, given the problem at hand. Based on this knowl-
edge, they will be able to prioritize the review of the output
composed models and to better comprehend the effort to be
invested, e.g., reviewing the models that require higher effort
first and those requiring less effort after. With this in mind,
we are interested in understanding the possible difference of
effort to resolve inconsistencies in stable and unstable design
models. The expectation is that stable models require a lower
developers’ effort to produce the output intended model. This
expectation is based on the speculation that unstable mod-
els may demand more restructuring modifications than stable
models; hence, requiring more effort. This leads to the second
null and alternative hypotheses as follows:

Null Hypothesis 2, H2−0:
Stable models require similar or higher effort to resolve
inconsistencies than unstable models.
H2−0: Effort(stable models) ≥ Effort(unstable models).
Alternative Hypothesis 2, H2−1:
Stable models tend to require a lower inconsistency res-
olution effort than unstable ones.
H2−1: Effort(stable models) < Effort(unstable models).

By testing this first hypothesis, we evaluate if stability is a
useful indicator to identify the most critical effort-consuming
cases in which severe semantic inconsistencies in archi-
tectural components are more often. This knowledge helps
model managers to allocate qualified developers to overcome
the composition inconsistencies in MCM.

3.3 Target cases: evolving product-line design models

Model Composition for Expressing SPL Evolution We apply
the composition heuristics (Sect. 2.3) to evolve design mod-
els of three realistic SPLs for a set of evolution scenarios
(Table 3). That is, the compositions are defined to generate
the new releases of the SPL design models. These three SPLs
are described below and soon after the evolution scenarios
are presented.

123

1480 K. Farias et al.

Table 3 Descriptions of the
SPL releases

The transition from one release
to another one represents an
evolution scenario

Releases Descriptions

Mobile Media

R1 MobilePhoto core [17]

R2 Exception handling included

R3 New feature added to count the number of times a photo has been viewed and sorting
photos by highest viewing frequency. New feature added to edit the photo’s label

R4 New feature added to allow users to specify and view their favorite photos

R5 New feature to allow users to keep multiple copies of photos

R6 New feature to send photo to other users by SMS

Checkers Game

R1 Checkers Game core

R2 New feature to indicate the movable pieces

R3 New feature to indicate possible movements

R4 New feature to allow the users to save and load the game

R5 New feature added to customize the pieces

R6 New feature added to log the game

Shogi Game

R1 Shogi Game core

R2 New feature to customize pictures

R3 New feature to customize pieces

R4 New feature to indicate the piece movement

R5 New feature to indicate the movable pieces

R6 New feature to allow the users to save and load the game

The first target case is a product-line called MobileMedia
[17], whose purpose is to support the manipulation of photos,
music, and videos on mobile devices. The last release of its
design model consists of a UML component diagram with
more than 50 component elements. Figures 2 and 3 show a
practical example of the use of composition to evolve this
SPL.

The second SPL, called Shogi Game [12], is a two-player
board game, whose purpose is to allow users to move, cus-
tomize pieces, save, and load the game. All these pieces’
movements are governed by a set of well-defined rules. The
last SPL, called Checkers Game [12], is a draughts board
game played on an eight by eight-squared board with 12
pieces on each side. The purpose of Checkers is to essentially
move and capture diagonally forwards. In [12], it is possible
to find a fine-grained description about their characteristics
and details about their evolutions.

The reason for selecting these SPLs in our evaluation is
manifold. Firstly, the models are well designed. Next, 12
releases of Mobile Media’s architectural models are consid-
ered by independent developers using the model composition
heuristics. These releases are produced from five evolution
scenarios. Note that an evolution is the production of a release
from another one, e.g., from R1 to R2 (see Table 3). In
addition, 12 releases of Shogi’s and Checkers’ architectural

models were available as well. In both cases, six releases
were produced from five evolution scenarios. Together the
36 releases provide a wide range of SPL evolution scenarios
to enable us to investigate our hypotheses in detail. These
36 releases were produced from the 18 evolution scenarios
described in Table 3. Moreover, these releases were available
for our investigation and had a considerable quantity of struc-
tural changes in the evolution scenarios. Table 3 describes
the evolution scenarios. Each scenario represents the addi-
tion of a feature. All evolution scenarios were obtained
from the addition of optional features, totaling 15 optional
features.

Another reason to choose these SPLs is that the original
developers are available to help us to validate the identi-
fied list of syntactic and semantic inconsistencies. In total,
eight developers worked during the development of the SPLs
used in our study being three developers from the Lan-
caster University (UK), two from the Pontifical Catholic
University of Rio de Janeiro (Brazil), two from University
of São Paulo (Brazil), one from Federal University of Per-
nambuco (Brazil). These are fundamental requirements to
test our hypotheses (Sect. 3.2) in a reliable fashion. Equally
important, each SPL has more than one hundred modules
and their architecture models are the main artifact to reason
about change requests and derive new products. Moreover,

123

Effects of stability on model composition effort 1481

the SPL designs are produced by the original developers with-
out any of the model composition heuristics under assessment
in mind. It helped to avoid any bias and entailed natural soft-
ware development scenarios.

Finally, these SPLs have a number of other relevant char-
acteristics for our study, such as: (i) proper documentation of
the driving requirements; and (ii) different types of changes
are realized in each release, including refinements over time
of the architecture style employed. After describing the SPLs
employed in our empirical studies, the evolution scenarios
suffered by them are explained in Table 3.

3.4 Measured variables and quantification method

First dependent variable The dependent variable of hypoth-
esis 1 is the inconsistency rate. It quantifies the amount of
composition inconsistencies (Sect. 2.4) divided by the total
number of elements in the composed model. That is, it allows
computing the density of composition inconsistencies in the
output composed models. This metric makes it possible to
assess the difference between the inconsistency rate of sta-
ble models and unstable models (H1). It is important to point
out that the inconsistency rate is defined from multiple incon-
sistency metrics (see Table 2).

Second dependent variable The dependent variable of the
hypothesis 2 is the inconsistency resolution effort, g(MCM)—
that is, the number of operations (creations, removals, and
updates) required to transform the composed model into the
intended model. We compute these operations because they
represent the main operations performed by developers to
evolve software in realistic settings [28]. Thus, this computa-
tion represents an estimation of the inconsistency resolution
effort. The collected measures of inconsistency rate are used
to assess if the composed model has inconsistencies after
the composition heuristic is applied (diff(MCM, MAB) > 0).
Then, a set of removals, updates, and creations are performed
to resolve the inconsistencies. As a result, the intended model
is produced and the inconsistency resolution effort is com-
puted.

Independent variable The independent variable of hypothe-
ses 1 and 2 is the Stability (S) of the output composed model
(MCM) with respect to the output intended model (MAB).
The Stability is defined in terms of the Distance (D) between
the measures of the design characteristics of MCM and MAB.
Table 1 defines the method used to quantify the design char-
acteristics of the models, while Formula 1 shows how the
Distance is computed.

Distance(x, y) = |Metric (x) − Metric(y)|
Metric(y)

(1)

where Metric are the indicators defined in Table 1, X is
the output composed model, MCM, Y is the output intended
model, MAB.

The Stability can assume two possible values: one, indi-
cating that MCM and MAB are stable, and zero, indicating that
MCM and MAB are unstable. MCM is stable concerning MAB

if the distance between MCM and MAB (considering a partic-
ular design characteristic) assumes a value equal (or lower
than) to 0.2. That is, if 0 ≤ Distance(MCM, MAB) ≤ 0.2),
then Stability(MCM, MAB) = 0. On the other hand, MCM

is unstable if the distance between MCM and MAB (regard-
ing a specific design characteristic) assumes a value higher
than 0.2. That is, if Distance(MCM, MAB) > 0.2), then Sta-
bility (MCM, MAB) = 0. We use this threshold to point out
the most severe unstable models. For example, we check if
architectural problems happen even in cases where the output
composed models are considered stable. In addition, we also
analyze the models that are closer to the threshold in Sect.4.
Formula 2 shows how the measure Stability is computed.

Stability (x, y) =
{

1, if 0 ≤ Distance (x, y) ≤ 0.2
0, if Distance (x, y) > 0.2

(2)

For example, MCM and MAB have the number of classes
equals to 8 and 10, respectively (i.e., NClass = 8 and NClass =
10). To check the stability of MCM regarding this metric, we
calculate the distance between MCM and MAB considering
the metric NClass as described below.

Distance(MCM, MAB) = |NClass (MCM)−NClass (MAB)|
NClass (MAB)

= |8 − 10|
10

= 0.2

As the Distance(MCM, MAB) = 0.2, then we can consider
that MCM = 1. Therefore, MCM is stable considering MAB in
terms of the number of classes. Elaborating on the previous
example, we can now consider two design characteristics: the
number of classes (NClass), the afferent coupling (DepOut),
and the number of attributes (NAttr). Assuming DepOut
(MCM) = 12, DepOut(MAB) = 14, NAttr (MCM) = 6, and
NAttr(MAB) = 7, the Distance is calculated as follows:

Distance (MCM, MAB)= |DepOut (MCM)−DepOut (MAB)|
DepOut (MAB)

= |12−14|
14

=0.14

Distance (MCM, MAB)= |NAttr (MCM) − NAttr (MAB)|
NAttr (MAB)

= |7 − 9|
9

= 0.22

Therefore, MCM is stable concerning MAB in terms of NClass
and DepOut. However, MCM is unstable in terms of NAttr.
In this example, we evaluate the stability of MCM consid-
ering three design characteristics, which was stable in two

123

1482 K. Farias et al.

cases. As developers can consider various design character-
istics to determine the stability of the MCM, we define the
Formula 3 that calculates the overall stability of MCM with
respect to MAB. Refining the previous example, we evaluate
the stability of MCM considering two additional design char-
acteristics: the number of interfaces (NInter) and the depth of
the class in the inheritance hierarchy (DIT). Supposing that
NInter(MCM) = 15, NInter(MAB) = 17, DIT(MCM) = 11,
and DIT(MAB) = 13, the Distance is calculated as follows:

Distance(MCM, MAB) = |NInter (MC M) − NInter (MAB)|
NInter (MAB)

= |15 − 17|
17

= 0.11

Distance(MCM, MAB) = |DIT (MC M) − DIT (MAB)|
DIT (MAB)

= |11 − 13|
13

= 0.15

In both cases, MCM is stable as the values 0.1 and 0.15 are
≥ 0 and ≤0.2. Investigating this overall stability, we are able
to understand how far the measures of the design character-
istics of MCM in relation to MAB are. The overall stability of
MCM in terms of NClass, DepOut, NAttr, NInter, and DIT is
calculated as follows: As the overall stability is equal to 0.2,
we can consider that MCM is stable considering MAB.

Stability(x, y)overall =1 −
∑ j−1

k=0

(
Stabilityk

)
j

(3)

Legend: j : number of metrics used (e.g., 10 metrics in case
of Table 1).

Stability(x, y)overall =1 −
∑4

k=0 (Stability(x, y))

5
4∑

k=0

(Stability (x, y)) = |NClass (MC M) − NClass (MAB)|
NClass (MAB)

+|DepOut (MC M) − DepOut (MAB)|
DepOut (MAB)

+|NAttr (MC M) − NAttr (MAB)|
NAttr (MAB)

+|N I nter(MC M)−NInter(MAB)|
NInter(MAB)

+ |DIT(MC M)−DIT(MAB)|
DIT(MAB)

= 0.2+0.14+0.22+0.11+0.11 (applying the Formula 2)

= 1 + 1 + 0 + 1 + 1 = 4

Then,

Stability(x, y)overall = 1 − 4

5
= 1 − 0.8 = 0.2.

3.5 Evaluation procedures

3.5.1 Target model versions and releases

To test the study hypotheses, we use the releases described
in Table 3. Our key concern is to investigate these hypothe-
ses considering a larger number of realistic SPL releases
as possible in order to avoid bias of specific evolution
scenarios.

Deriving SPL model releases For each release of the three
product-line architectures, we have applied each of the com-
position heuristics [override, merge, and union (Sect. 2.3)] to
compose two input models in order to produce a new release
model. That is, each release was produced using the three
algorithms. Similar compositions were performed using the
override, merge, and union heuristics. This has helped us to
identify scenarios where the SPL design models succumb (or
not). For example, to produce the release three (R3) of the
Mobile Media (Table 3), the developers combine R3 with a
delta model that represents the model elements that should
be inserted into R3 in order to transform it into R4. For this,
the developers use the composition heuristics described in
Sect. 2.3. A practical example about how these models are
produced can be seen in Figs. 2 and 3.

Model releases and composition specification In Table 3, the
releases were selected because visible and structural modi-
fications in the architectural design were carried out to add
new features. For each new release, the previous release was
changed in order to accommodate the new features. To imple-
ment a new evolution scenario, a composition heuristic can
remove, add, or update the entities present in the previous
model release. Throughout the design of all releases, a main
concern was to use good modeling practices in addition to the
design-for-change principles. For example, assuming that the
mean of the coupling measure of MCM and MAB = 9 and 11,
respectively. So MCM is stable regarding MAB (because nine
is 18 % lower than 11). Following this stability threshold, we
can systematically identify if the MCM keeps stable over the
evolution scenarios.

3.5.2 Execution and analysis phase

Model definition stage This step is a pivotal activity to define
the input models and to express the model evolution as a
model composition. The evolution has two models: the base
model, MA, the current release, and the delta model, MB,
which represents the changes that should be inserted into MA

to transform it into MCM, as previously discussed. Consider-
ing the product-line design models used in the case studies,
MB represents the new design elements realizing the new fea-
ture. Then, a composition relationship is specified between

123

Effects of stability on model composition effort 1483

MA and MB so that the composed model can be produced,
MCM.

Composition and measurement stage In total, 180 composi-
tions were performed, being 60 in the Mobile Media, 60 in
the Shogi Game and 60 in the Checkers Game. The composi-
tions were performed manually using the IBM RSA [19,35].
The result of this phase was a document of composition
descriptions, including the gathered data from the applica-
tion of our metrics suite and all design models created. We
used a well-validated suite of inconsistency metrics applied
in previous work [14] focused on quantifying syntactic and
semantic inconsistencies. The syntactic inconsistencies were
quantified using the IBM RSA’s model validation mecha-
nism. The semantic inconsistencies were quantified using
the SDMetrics tool [46]. In addition, we also check both
syntactic and semantic inconsistencies manually because
some metrics, e.g., “the number of non-meaningful model
elements” depends on the meaning of the model elements
and the current modeling tools are unable to compute this
metric.

The identification of the inconsistencies was performed in
three review cycles in order to avoid false positives and false
negatives. We also consulted the developers as needed, such
as checking and confirming specific cases of semantic incon-
sistencies. On the other hand, the well-formedness (syntac-
tic and semantic) rules defined in the UML metamodel were
automatically checked by the IBM RAS’s model validation
mechanism.

Effort assessment stage The goal of the third phase was to
assess the effort to resolve the inconsistencies using the quan-
tification method described in Sect. 3.4. The composition
heuristics were used to generate the evolved models, so that
we could evaluate the effect of stability on the model com-
position effort. In order to support a detailed data analy-
sis, the assessment phase was further decomposed in two
main stages. The first stage is concerned with pinpointing
the inconsistency rates produced by the compositions (H1).
The second stage aims at assessing the effort to resolve a set
of previously identified inconsistencies (H2). All measure-
ment results and the raw data are available at [12].

4 Result analysis

This section analyzes the data set obtained from the exper-
imental procedures described in Sect. 3. Our findings are
derived from both the numerical processing of this data set
and the graphical representation of interesting aspects of the
gathered results. Section 4.1 elaborates on the gathered data
in order to test the first hypothesis (H1). Section 4.2 discusses
the collected data related to the second hypothesis (H2).

4.1 H1: Stability and inconsistency rate

4.1.1 Descriptive statistics

This section describes aspects of the collected data with
respect to the impact of stability on the inconsistency rate.
For this, descriptive statistics are carefully computed and dis-
cussed. Understanding these statistics are key steps to know
the data distribution and grasp the main trends. To go about
this direction, not only the main trend was calculated using
the two most used statistics to discover trends (mean and
median); the dispersion of the data around them was also
computed mainly making use of the standard deviation. Note
that these statistics are calculated from 180 compositions, i.e.,
with 60 compositions applied to the evolution of MobileMe-
dia SPL, 60 compositions applied to the Shogi SPL, and 60
compositions applied to the Checkers SPL.

Table 4 shows descriptive statistics about the collected
data regarding inconsistency rate. Figure 4 depicts the box-
plot of the collected data. By having carried out a thorough
analysis of this statistic, we can observe the positive effects
of high level of stability on the inconsistency rate. In fact, we
observe only harmful effects in the absence of stability. The
main outstanding finding is that inconsistency rate in the sta-
ble design model is lower than in the unstable design model.
This result is supported by some observations described as
follows (see Fig. 4):

First, the median of inconsistency rate in stable models is
considerably lower than in unstable models. That is, a mean
of 0.31 in relation to the intended model instead of 3.86 pre-
sented by unstable models. This means, for example, that
stable SPL models can present no inconsistencies in some
cases. On the other hand, unstable models probably hold a
higher inconsistency rate than that presented by stable mod-
els. This comprises normally 3.86 inconsistencies in relation
to the intended model. This implies, for example, that if the
output composed model is unstable, then there is a high prob-
ability of having inconsistencies in these models.

Stable models have a favorable impact on the inconsis-
tency rate. More importantly, its absence has harmful con-
sequences for the number of inconsistencies. These negative
effects are evidenced by the significant difference between
the number of inconsistencies in stable and unstable models.
In fact, stable models tend to have just 8.1 % of the inconsis-
tencies that are found in unstable models, compared with the
medians 0.31 (stable) and 3.86 (unstable). One of the main
reasons is because inconsistency propagations are found in
unstable models more frequently. This means that developers
must check all model elements so that they can identify and
manipulate the composed model so that the intended model
can be obtained.

Another interesting finding is that the inconsistencies tend
to be quite close to the central tendency in stable models,

123

1484 K. Farias et al.

Table 4 Descriptive statistics of
the inconsistency rate

N number of composed models,
SD standard deviation

Variables Groups N Min 25th Median 75th Max SD

Inconsistency rate Stable 78 0 0.11 0.31 0.78 3.86 0.84

Unstable 102 0.17 1.64 3.86 6.88 9.21 2.63

Table 5 Mann–Whitney test
and Spearman’s correlation
analysis

* With 178 degree of freedom

Variable Groups N Mean rank Rank sum SC t value* p

Inconsistency rate Stable 78 49.04 3,825 −0.71 −13.56 < 0.001

Unstable 102 122.21 12,465

Fig. 4 Box-plot of inconsistency rate

with a standard deviation equal to 0.84. On the other hand, in
unstable models, these inconsistencies tend to spread out over
a large range of values. This is represented by a high value
of the standard deviation that is equal to 2.63. It is impor-
tant to point out that to draw out valid conclusions from the
collected data it is necessary to analyze and possibly remove
outliers from the data. Outliers are extreme values assumed
by the inconsistency measures that may influence the study’s
conclusions. To analyze the threat of these outliers to the col-
lected data, we made use of box-plots (Fig. 4). According to
[45], it is necessary to verify whether the outliers are caused
by an extraordinary exception (unlikely to happen again),
or whether the cause of the outlier can be expected to hap-
pen again. Considering the first case, the outliers must be
removed, and in the last case, they must not be removed. In
our study, some outliers were identified; however, they were
not extraordinary exceptions since they could happen again.
Consequently, they were left in the collected data set, as they
do not affect the results.

4.1.2 Hypothesis testing

We performed a statistical test to evaluate whether in fact
the difference between the inconsistency rates of stable and

unstable models are statistically significant. As we hypothe-
size that stable models tend to exert a lower inconsistency rate
than unstable models, the test of the mean difference between
stable and unstable groups will be performed as one-tailed
test. In the analyses, we considered significance level at 0.05
level (p ≤ 0.05) to indicate a true significance.

a. Mann–Whitney test
As the collected data violated the assumption of normality,

the non-parametric Mann–Whitney test was used as the main
statistical test. The results produced are U ′ = 7.21, U =
744, z = 9.33 and p < 0.001. The p value is lower than
z and 0.05. Therefore, the null hypothesis of no difference
between the rates of inconsistency in stable and unstable
models (H1−0) can be rejected. That is, there is sufficient
evidence to say that the difference between the inconsistency
rates of stable and unstable models are statistically signifi-
cant.

Table 5 depicts that the mean rank of inconsistency rate for
unstable models are higher than that of stable models. As the
Mann–Whitney test [45] relies on ranking scores from lowest
to highest, the group with the lowest mean rank is the one
that contains the largest amount of lower inconsistency rate.
Likewise, the group with the highest mean rank is the group
that contains the largest amount of higher inconsistency rate.
Hence, the collected data confirm that unstable models tend
to have a higher inconsistency rate than the stable design
models.

b. Correlation
To examine the strength of the relationship (the correla-

tion coefficient) between stability and inconsistency rate, the
Spearman’s correlation (SC) test was applied (see Table 5).
Pearson’s correlation is not used because the data sets are
not normally distributed. Note that this statistic test assumes
that both variables are independent. The correlation coeffi-
cient takes on values between −1 and 1. Values close to 1 or
−1 indicate a strong relationship between the stability and
inconsistency rate. A value close to zero indicates a weak or
non-existent relationship.

As can be seen in Table 5, the t test of significance of the
relationship has a low p value, indicating that the correlation

123

Effects of stability on model composition effort 1485

is significantly different from zero. Spearman’s correlation
analysis resulted in a negative and significant correlation (SC
= −0.71). The negative value indicates an inverse relation-
ship. That is, as one variable increases, the other decreases.
Hence, composition inconsistencies tend to manifest more
often in unstable models than stable models. The above cor-
relation suggests that whereas the model stability of the out-
put composed model decreases the inconsistency rate in their
models increases.

Therefore, the results suggest that, on average, stable mod-
els tend to have a significantly lower inconsistency rate than
unstable design models. Therefore, we believe that the results
confirm the indication of correlation between stability and
inconsistency rate. Consequently, the null hypothesis (H1−0)

can be rejected and the alternative hypothesis (H1−1) con-
firmed.

4.1.3 Discussion

a. The effect of severe evolution categories
After discussing how the dataset is grouped, grasping the

main trends, and studying the relevance of the outliers, the
main conclusion is that stable models tend to present a lower
inconsistency rate than unstable models. This finding can
be seen as the first step to overcome the lack of practical
knowledge about the effects of the model stability on the
inconsistency rate in realistic scenarios of model evolution
supported by composition heuristics. Some previous studies
(e.g., [21,38]) also check similar insights on the code level.
These studies report a positive association between low vari-
ation of coupling and size with stability.

We have noticed that although the input design models
(MA and MB) are well structured, they are the target of widely
scoped inconsistencies in certain model composition scenar-
ios. These widely scoped inconsistencies are motivated by
unexpected modifications in specific design characteristics of
the design models such as coupling and cohesion. These sce-
narios mainly occurred when composition heuristics accom-
modate unanticipated, severe changes from MA to MB. The
most challenging changes observed are those related to the
refinement of the MVC (Model-View-Controller) architec-
ture design of the SPLs used in this study.

Another observation is that the composition heuristics
(override, merge, and union) are not effective to accommo-
date these changes from MA to MB. The main reason is that
the heuristics are unable to “restructure” the design models
in such way that these changes do not harm static or behav-
ioral aspects of the design models. These harmful changes
usually emerge with a set of ever-present evolving change
categories, such as a modification of the model properties
and derivation of new model elements (e.g., components or
classes) from other existing ones.

In the first category, modification, model elements have
some properties affected. This is typically the case when
a new operation conflicts with an operation defined previ-
ously. In Fig. 2, for example, the operation get I mage() in the
interface R2.HandleException had its return type, String[],
conflicting with the return type, I mageData[] of the inter-
face Delta(R2, R3).HandleException. Another example
is the component ManageAlbum that had its name modified to
ManageLabel to express semantic alterations in the concepts
used to realize the error-handling feature. Only one of the
names and return types can be accepted, but the two modifica-
tions cannot be combined. Both cases are scenarios in which
the heuristics are unable to correctly pick out what element
must be renamed and what return type must be considered.
The problem is that detection and decision of these incon-
sistencies demand a thorough understanding of: (i) what the
design model elements actually mean as well as the domain
terms “Album” and “Label”; and (ii) the expected semantics
of the modified method. In addition, semantic information is
typically not included in any formal way so that the heuris-
tics can infer the most appropriated choice. Consequently,
the new model elements responsible for implementing the
added features are presented with overlapping semantic val-
ues and unexpected behaviors. Interestingly, this has been the
case where existing optional as well as alternative features
are involved in the change.

In the second category, derivation, the changes are more
severe. Architectural elements are refined and/or moved in
the model to accommodate the new changes. Differently
from the previous category, the affected architectural ele-
ments are usually mandatory features because this kind of
evolution in software product lines is mainly required to
facilitate the additions of new variabilities or variants later
in the project. Unfortunately, in this context of more widely
scoped changes, the heuristic-based composition heuristics
have demonstrated to be ineffective.

A concrete example of this inability is the refinement
of the MVC architecture style of the MobileMedia SPL
in the third evolution scenario. In practical terms, the cen-
tral architectural component, BaseController, is broken into
other controllers such as PhotoListController, AudioCon-
troller, VideoController and LabelController to support a bet-
ter manipulation of the upcoming media like photo, audio,
video and the label attached to them. This is partially due to
the name-based model comparison policy in the heuristics,
which are unable to recognize more intricate equivalence
relationships between the model elements. Indeed, this com-
parison strategy is very restrictive whenever there is a cor-
respondence relationship 1:N between elements in the two
input models. That is, it is unable to match the upcoming four
controllers with the previous one, BaseController.

A practical example of this category of relationship
(1:N) involves the required interface ControlPhoto (release

123

1486 K. Farias et al.

three) of the AlbumListScreen component. This interface was
decomposed into two new required interfaces ControlAlbum
and ControlPhotoList (release four), thereby characterizing
a relationship 1:2. In this particular case, the name-based
model comparison should be able to “recognize” that Con-
trolAlbum and ControlPhotoList are equivalent to Con-
trolPhoto. However, in the output model (release four), the
AlbumListScreen component provides duplicate services to
the environment giving rise to a severe inconsistency.

b. Inconsistency propagation
After addressing the hypotheses and knowing that insta-

bilities have a detrimental effect on the density of inconsis-
tencies, we analyze whether the location where they arise
(i.e., architectural elements realizing mandatory, or optional
features) can cause some unknown side effects. Some inter-
esting findings were found, which is properly discussed as
follows: To begin with, instability problems are more harm-
ful when they take place in design model elements realizing
mandatory features. This can be explained by some reasons.

First, the inconsistency propagation is often higher in
model elements implementing mandatory features than in
alternatives (or optional features). When inconsistencies
arise in elements realizing optional and alternative features
they also tend to naturally cascade to elements realizing
mandatory features. Consequently, the mandatory features
end up being the target of inconsistency propagation.

Based on the knowledge that mandatory features tend
to be more vulnerable to ripple effects of inconsistencies,
developers must structure product-line architectures in such a
way that inconsistencies can keep precisely “confined” in the
model elements where they appear. Otherwise, the quality of
the products extracted from the SPL can be compromised as
the core elements of the SPL can suffer from problems caused
by incorrect feature compositions. The higher the number of
inconsistencies, the higher the chance of them to continue in
the same output model, even after an inspection process per-
formed by a designer. Consequently, the extraction of certain
products can become error-prone or even prohibitive.

The second interesting insight is that the higher the insta-
bility in optional features, the higher the inconsistency propa-
gation toward mandatory features. However, the propagation
in the inverse order (i.e., from alternative and optional to
mandatory features) seems to be less common. In Fig. 2
(override), a practical example can be seen. The instabil-
ity in mandatory features, “album and photo management,”
compromises the optional feature, “edit photo’s label.” The
NewLabelScreen component (optional feature) has its two
services i.e., get Label Name() and get FormT ype() (spec-
ified in the interface ManageLabel() compromised. The
reason is that the required service edit Label() cannot be
provided by the BaseController (mandatory feature). Thus,
the “edit photo’ label” feature can no longer be provided due

to problems in the mandatory feature “album and photo man-
agement.” For example, in the fourth evolution scenario of
the Checkers Game, the optional feature, Customize Pieces,
is correctly glued to the R4 using the override heuristic
so that the new release, R5, can be generated. The prob-
lem is that the inconsistencies that emerge in the architec-
tural component, Command, are propagated to the architec-
tural elements CustomizePieces and GameManager. Thus,
the mandatory feature “piece management” implemented by
the Command is affecting the optional feature “customize
pieces” implemented by the components CustomizePieces
and GameManager.

Although the optional feature, Customize Pieces, has been
correctly attached to the base architecture, the composed
models will not have the expected functionality related to
the customization of pieces.

4.2 H2: Stability and resolution effort

4.2.1 Descriptive statistics

This section discusses interesting aspects of the collected
data concerning the impact of stability on the developers’
effort. The knowledge derived from them helps to understand
the effects of model stability on the inconsistency resolution
effort. In a similar way to the previous section, we calculate
the main trend and the data dispersion.

Table 6 provides the descriptive statistics of sampled
inconsistency resolution effort in stable and unstable model
groups. Figure 5 graphically depicts the collected data by
using box-plot. To begin with our discussion, we first com-
pare the median values of the inconsistency resolution effort
of the both stable and unstable groups. We can observe that
the median of the stable models (equals to six) is much lower
than that one of unstable models (equals to 111).

This superiority of the unstable models is also observed in
the mean and standard deviation, which represent the main
trend and dispersion measures, respectively. The gathered
results, therefore, indicate that stable models claim less res-
olution effort than unstable models. This means that devel-
opers tend to perform a lower amount of tasks (creations,
removals, and modifications) to transform the composed
model into the intended model. Although we have observed
some outliers, e.g., the maximum value (368) registered in

Table 6 Descriptive statistics of the resolution effort (min)

Variables Groups N Min 25th Median 75th Max SD

Resolution
effort

Stable 78 0 3,50 6 13 46 10.29

Unstable 102 4 27 111 229.25 368 106.7

N number of composed models, SD standard deviation

123

Effects of stability on model composition effort 1487

Fig. 5 Box-plot of resolution effort in relation to the intended model

unstable models, they are not an extraordinary exception as
they could happen again. Consequently, they were left in the
collected data set, as they do not tamper the results.

4.2.2 Hypothesis testing

Given the difference between the mean and median described
in the descriptive analysis, statistical tests are applied to
assess whether in fact the difference in effort to fix unsta-
ble model and stable model is statistically significant. We
conjecture that stable models tend to require a lower incon-
sistency resolution effort than unstable models. Hence, a one-
tailed test is performed to test the significance of the mean
difference between stable and unstable groups. Again, in the
analyses we considered significance level at 0.05 level (p ≤
0.05) to indicate a true significance.

a. Mann–Whitney test
As the dataset does not respect the assumption of nor-

mality, we use the non-parametric Mann–Whitney test as the
main statistical test. The results of the Mann–Whitney test
produced are U ′ = 7.372, U = 584, z = 9.79 and p <

0.001. The p value is lower than z and 0.05; therefore, the
null hypothesis can be rejected. In other words, there exists
a difference between the efforts required to resolve inconsis-
tencies in stable and unstable model groups. In fact, there is
substantial evidence pointing out the difference between the
median measures of the two groups.

Table 7 shows that the difference between the mean ranks
is significant. The mean of rank in stable models consists
of about 38 of the mean rank in unstable models. As the

Mann–Whitney test relies on ranking scores from lowest to
highest, the group with the lowest mean rank is the one that
requires the highest incidence of lowest effort. Likewise, the
group with the highest mean rank is the group that contains
the largest occurrence of higher effort needed. Hence, the
collected data show that unstable models that are not stable
tend to have higher effort than the stable models.

b. Correlation Analysis
As the gathered data do not follow a normal distribution,

we apply the Spearman’s correlation test. Table 7 provides the
results of the Spearman’s correlation test. The low p value <

0.001 indicates that the correlation significantly departs from
zero. Recall that Spearman’s correlation value close to 1 or
−1 indicates a strong relationship between the stability and
effort. On the other hand, a value close to 0 indicates a weak
or non-existent relationship. The results (SC = −0.698)
suggest that there is a negative and significant correlation
between the two variables. This implies that whereas the sta-
bility increases the effort to resolve inconsistency decreases.
Consequently, stable models required much lesser effort to
be transformed into the intended model than unstable mod-
els. Based on such results, we can reject the null hypothesis
(H2−0), and accept the alternative hypothesis (H2−1): stable
models tend to require lower effort to resolve composition
inconsistency than unstable models.

4.2.3 Discussion

a. The effect of instability on resolution effort
In Sect. 4.1, we discuss that the inconsistencies in the

model elements realizing optional features tend to propa-
gate to ones realizing mandatory features. Inconsistencies
in elements realizing optional features tend to affect the
structure of model elements realizing mandatory features.
The reason is that some relationships are often introduced
between elements realizing mandatory and optional features
during the composition. Considering the resolution effort,
we have observed that the higher instability in optional fea-
tures, the higher the resolution effort. Developers need to
resolve a cascading chain of inconsistencies, and usually this
process should be recursively applied until all inconsistencies
have been resolved. This resolution is more effort consuming
because widely scoped changes are required to tame such rip-
ple effects. The required effort is to restructure the composed
model.

Table 7 Mann–Whitney test
and Spearman’s correlation
analysis

* With 178 degree of freedom

Variable Groups N Mean rank Rank sum SC t value* p

Resolution effort Stable 78 46,99 3,665 −0.698 −13 <0.001

Unstable 102 123,77 12,625

123

1488 K. Farias et al.

We have identified that this superior effort to resolve
inconsistencies is due to the syntactic-based composition
heuristics are unable to deal with occurring semantic con-
flicts between the model elements of mandatory and optional
features. As a result, inconsistencies are formed. In Fig. 3,
for example, the component BaseController requires ser-
vices from a component NewALbumScreen that provides just
one mandatory feature “create album” rather than from a
component that provides two features: “create album” and
“edit photo’s label.” This is because releases R2 and R3
use different component names (R2.NewAlbumScreen and
R3.NewLabelScreen) for the same purpose. That is, they
implement the mandatory feature Create Album in compo-
nents with contracting names.

A syntax-based composition is unable to foresee these
kinds of semantic inconsistencies, or even indicate any prob-
lem in BaseController as the component remains syntac-
tically correct. From R2 to R3, the domain term Album
was replaced by Label. However, the purely syntactical,
match-by-name mechanism is unable to catch and incorpo-
rate this simple semantic change into the composition heuris-
tic. To overcome this, a semantic-based approach would
be required to allow, for example, a semantic alignment
between these two domain terms. Consequently, the heuris-
tics would be able to properly match R2.NewAlbumScreen
and R3.NewLabelScreen.

Still in Fig. 2, the architectural model R3, which was pro-
duced following merge heuristic, contains a second facet of
semantic problem: behavioral inconsistency. The component
ExceptionHandling provides two services with the same pur-
pose, get I mage():String[] and get I mage():I mageData[]
. However, they have different semantic values. This con-
trasting characteristic is emphasized by the different return
types, String[] and I mageData[]. However, in this case, the
inconsistency got confined in the optional feature rather than
propagating to model elements implementing mandatory
features. To resolve the problem, the method get I mage():
String[] should be removed. In total, only one opera-
tion is performed. Thus, these inconsistencies can be only
pinpointed by resorting to sophisticated semantics-based
composition, which relies on the action semantics of the
model elements. According to [28], the current detection
of behavioral inconsistency is based on the complex math-
ematical, program slicing, and program dependence graphs.
Unfortunately, none of them is able to systematically com-
pare behavioral aspects of components neither realizing two
features nor even composing them properly. Even worse, the
composition techniques would be unable to match, for exam-
ple, ManageAlbum and ManageLabel interface.

b. The effect of multiple concerns on resolution effort

Another finding is that the higher the number of features
implemented by a model element, the higher the resolution

effort. We have observed that model elements realizing mul-
tiple features tend to require more inconsistency resolution
effort than those realizing just one feature. The reason is that
the model elements realizing multiple features tend to receive
a higher number of upcoming changes to-be accommodated
by the composition heuristics than ones realizing a single fea-
ture. These model elements become more vulnerable to the
unpredictable effects of the severe evolution categories. This
means that developers tend to invest more effort to resolve
all possible inconsistencies.

In fact, a higher number of inconsistencies have been
observed in ‘multiple-featured’ components rather than in
‘single-featured’ components. As developers cannot foresee
or even precisely identify all ripple effects of these incon-
sistencies through other model elements, the absence of
stability can be used as a good indicator of inconsistency.
Let us consider the BaseController, the central controller
in MobileMedia architecture that implements two features
(see Fig. 2). The collected data show that the BaseController
was modified in almost all evolution scenarios because it is
a pivotal architectural component in the model-view-control
architectural style of the SPL MobileMedia. Unfortunately,
the changes cannot be properly realized in all cases. In addi-
tion, we observe that BaseController’s inconsistencies affect
other four components, namely NewLabelScreen, AlbumList-
Screen, PhotoListScreen, PhotoViewScreen, and AddPhoto-
ToAlbumScreen. All these affected components require the
provided services by the BaseController.

Moreover, we notice that the BaseController had a higher
likelihood to receive inconsistencies from other model ele-
ments than any other components. The reason is that it
also depends on many other components to provide the ser-
vices of the multiple features. For example, BaseController
can be harmed by inconsistencies arising from the compo-
nentsManageAlbum, ManagePhotoInfo, and ControlPhoto.
This means that, at some point, BaseController can no longer
provide its services because it was probably affected by
inconsistencies located in these components.

It is interesting to note that NewAlbumScreen is also
affected by an inconsistency that emerged from Album-
Data, as it requires the service (viewPhoto) provided by
the BaseController in the interface, ControlPhoto that can-
not be accessed. The main reason is that the service,
resetImageData(), specified in the interface ManagePho-
toInfo can no longer be provided by the component Album-
Data, compromising the serviced offered in the interface
ControlPhoto. Since BaseController is not able to correctly
provide all services defined in the provided interface Con-
trolPhoto, it is also re-affected by an inconsistency that previ-
ously arose from it. This happens because NewAlbumScreen
does not provide the services described in the interface Man-
ageAlbum. This phenomenon represents the cyclic inconsis-
tency propagation. Understanding this type of phenomenon,

123

Effects of stability on model composition effort 1489

the software designer can examine upfront and more pre-
cisely the design models in order to localize undetected cyclic
dependence between the model elements.

Another observation is that optional features are also
harmed by this propagation on the mandatory features. For
example, the PhotoSorting component (realizing optional
feature “sorting photos”) is unable to provide the ser-
vice, sortCommand(), specified in the interface Soft-
Photo. This is due to the absence of the required service,
reset I mageData() from the ManagePhotoInfo interface,
which the mandatory feature “album management.” In prac-
tical terms, it indicates that undesired effects in features can
be due to some unexpected instabilities in the mandatory fea-
tures. In collaborative software development, for example,
this is a typical problem because the model elements imple-
menting different features are developed in parallel, but they
rarely prepared upfront to-be composed. Hence, developers
should invest some considerable effort to properly promote
the composition.

5 Related work

To the best of our knowledge, our results are the first to inves-
tigate empirically the relation between quality attributes and
model composition effort in a broader context. In [13], we
initially investigated the research questions addressed in this
paper, but they were evaluated in a smaller scope. This paper,
therefore, represents an extension of the results obtained pre-
viously. The main extensions can be described as follows:
(1) two more case studies were performed, i.e., the evolution
studies with the Shogi and Checkers SPLs. This implies that
the number of compositions jumped from 60 to 180; (2) new
lessons learned were obtained from a broader study; and (3)
the size of the sample data was higher than the previously
found; hence, the hypotheses might be better tested.

We have observed not only a wide variety of model com-
position techniques [9,25] have been created, but also some
previous works [13,33] have demonstrated that stability is
a good predictor of defects [33] and the presence of good
designs [21]. However, none of them has directly investi-
gated the impact of stability on model composition effort.

The lack of empirical evidence hinders the understanding
of the side effects peculiar to stability on developers’ effort.
Consequently, developers in industrial projects have to rely
solely on feedback from experts to determine “the goodness”
of the input models and their compositions. In fact, accord-
ing to several recent observations [9,18,28], the state of the
practice in model quality assessment indicates that modeling
is still in the craftsmanship era and this problem is even more
accentuated in the context of model composition.

The current model composition literature does not provide
any support to perform empirical studies considering model

composition effort [18,28], or even to evaluate the effects of
model stability on composition effort. In [18], the authors
highlight the need empirical studies in model composition to
provides insights about how deal with ever-present problems
such as conflicts and inconsistencies in real world settings.
In [28], Mens also reveals the need for more “experimen-
tal researches on the validation and scalability of syntactic
and semantic merge approaches, not only regarding conflict
detection, but also regarding the amount of time and effort
required to resolve the conflicts.” Without empirical studies,
researchers and developers are left without any insight about
how to evaluate model composition in practice. For example,
there is no metric, indicator, or criterion available to assess
the UML models that are merged through, for instance, the
UML built-in composition mechanism (i.e., package merge)
[11,37].

There are some specific metrics available in the literature
for supporting the evaluation of model composition spec-
ifications. For instance, Chitchyan et al. [8] have defined
some metrics, such as scaffolding and mobility, to quan-
tify quality attributes of compositions between two or more
requirements artifacts. However, their metrics are targeted
at evaluating the reusability and stability of explicit descrip-
tions of model composition specifications. In other words,
their work is not targeted at evaluating model composition
heuristics. Boucké et al. [4] also propose a number of met-
rics for evaluating the complexity and reuse of explicitly
defined compositions of architectural models. Their work is
not focused on heuristic-based model composition as well.
Instead, we have focused on analyzing the impact of stabil-
ity on the effort to resolve emerging inconsistencies in output
models. Therefore, existing metrics (such as those described
in [36]) cannot be directly applied to our context.

Although we have proposed a metric suite for quantify-
ing inconsistencies in UML class diagrams and then applied
these metrics to evaluate the composition of aspect-oriented
models and UML class diagrams [14], nothing has been done
to understand the effects of model stability on the developers’
effort. Some previous works investigated the effect of using
UML diagrams and its profiles with different purposes. In [6],
Briand et al. looked into the formality of UML models and its
relation with model quality and comprehensibility. In particu-
lar, Briand et al. investigated the impact of using OCL (Object
Constraint Language [37]) on defect detection, comprehen-
sion, and impact analysis of changes in UML models. In [40],
Filippo et al. carried out a series of four experiments to assess
how developer’s experience and ability influence Web appli-
cation comprehension tasks supported by UML stereotypes.
Although they have found that the use of UML models pro-
vide real benefits for typical software engineering activities,
none has investigated the peculiarities of UML models in the
context of model composition. Finally, we therefore see this
paper as a first step in a more ambitious agenda to support

123

1490 K. Farias et al.

empirically the assessment of model composition techniques
in general.

6 Threats to validity

Our exploratory study has obviously a number of threats to
validity that range from internal, construct, statistical conclu-
sion validity threats to external threats. This section discusses
how these threats were minimized and offers suggestions for
improvements in future study.

6.1 Internal validity

Inferences between our independent variable (stability) and
the dependent variables (inconsistency rate and composition
effort) are internally valid if a causal relation involving these
two variables is demonstrated [5,41]. Our study met the inter-
nal validity because: (1) the temporal precedence criterion
was met, i.e., the instability of design models preceded the
inconsistencies and composition effort; (2) the covariation
was observed, i.e., instability of design models varied accord-
ingly to both inconsistencies and composition effort; and (3)
there is no clear extra cause for the detected covariation.
Our study satisfied all these three requirements for internal
validity.

The internal validity can be also supported by other means.
First, the detailed analysis of concrete examples demonstrat-
ing how the instabilities were constantly the main drivers of
inconsistencies presented in this paper. Second, our concerns
throughout the study to make sure that the observed values
in the inconsistency rates and composition effort were confi-
dently caused by the stability of the design models. However,
some threats were also identified, which are explicitly dis-
cussed below.

First, due to the exploratory nature of our study, we cannot
state that the internal validity of our findings is comparable
to the more explicit manipulation of independent variables
in controlled experiments. This exceeding control employed
to deal with some factors (i.e., with random selection, exper-
imental groups, and safeguards against confounding factors)
was not used because it would significantly jeopardize the
external validity of the findings.

Second, another threat to the internal validity is related to
the imperfections governing the measurements of inconsis-
tency rate and resolution effort. As the measures were par-
tially calculated in a manual fashion, there was the risk that
collected data would not be always reliable. Hence, this could
lead to inconsistent results. However, we have mitigated this
risk by establishing measurement guidelines, two-round data
reviews with the actual developers of the SPL design mod-
els, and by engaging them in discussions in cases of doubts
related to, for instance, the semantic inconsistencies.

Next, usually the confounding variable is seen as the major
threat to the internal validity [41]. That is, rather than just the
independent variable, an unknown third variable unexpect-
edly affects the dependent variable. To avoid confounding
variables in our study, a pilot study was carried out to make
sure that the inconsistency rate and composition effort were
not affected by any existing variable other than stability. Dur-
ing this pilot study, we tried to identify which other variables
could affect the inconsistency rate and resolution effort such
as the size of the models.

Another concern was to deal with the experimenter bias.
That is, the experimenters inadvertently affect the results by
unconsciously realizing experimental tasks differently that
would be expected. To minimize the possibility of experi-
menter bias, the evaluation tasks were performed by devel-
opers, which that know neither the purpose of the study nor
the variables involved. For example, developers created the
input design models of the SPLs without being aware of the
experimental purpose of the study. In addition, the composi-
tion heuristics can be automatically applied. Consequently,
the study results can be more confidently applied to realis-
tic development settings without suffering influences from
experimenters.

Finally, the randomization of the subjects was not per-
formed because it would require simple task simple software
engineering task. Hence, this would undermine the objective
of this study (Sect. 3.1).

6.2 Statistical conclusion validity

We evaluated the statistical conclusion validity checking if
the independent and dependent variables (Sect. 3.4) were
submitted to suitable statistical methods. These methods are
useful to analyze whether (or not) the research variables
covary [10]. The evaluation is concerned on two related sta-
tistical inferences: (1) whether the presumed cause and effect
covary, and (2) how strongly they covary [10].

Considering the first inferences, we may improperly con-
clude that there is a causal relation between the variables
when, in fact, they do not. We may also incorrectly state that
the causal relation does not exist when, in fact, it exists. With
respect to the second inference, we may incorrectly define
the magnitude of covariation and the degree of confidence
that the estimate warrants [7,45].

Covariance of cause and effect We eliminated the threats to
the causal relation between the research variables studying
the normal distribution of the collected sample. Thus, it was
possible to verify if parametric or non-parametric statistical
methods could be used (or not). For this purpose, we used
the Kolmogorov–Smirnov test to determine how likely the
collected sample was normally distributed. As the dataset did
not assume a normal distribution, non-parametric statistics

123

Effects of stability on model composition effort 1491

were used (Sects. 4.1 and 4.2). Hence, we are confident that
the test statistics were applied correctly, as the assumptions
of the statistical test were not violated.

Statistical significance Based on the significance level at 0.05
level (p ≤ 0.05), Mann–Whitney test was used to evalu-
ate our formulated hypotheses. The results collected from
this test indicated p < 0.001. This shows sufficient evi-
dence to say that the difference between the inconsistency
rates (and composition effort) of stable and unstable models
are statically significant. The correlation between the inde-
pendent and dependent variables is also evaluated. For this,
Spearman’s correlation test was used. The low collected p
value (<0.001) indicated that there is a significant correla-
tion between the inconsistency rate and stability as well as
composition effort and stability.

In addition, we followed some general guidelines to
improve conclusion validity [39,45]. First, a high number
of compositions were performed to increase the sample size,
hence improving the statistical power. Second, experienced
developers used more realistic design models of SPLs, state-
of-practice composition heuristics, and robust software mod-
eling tool. These improvements reduced “errors” that could
obscure the causal relationship between the variable under
study. Consequently, it brought a better reliability for our
results.

6.3 Construct validity

Construct validity concerns the degree to which inferences
are warranted from the observed cause and effect operations
included in our study to the constructs that these instances
might represent. That is, it answers the question: “Are we
actually measuring what we think we are measuring?” With
this in mind, we evaluated (1) whether the quantification
method is correct, (2) whether the quantification was accu-
rately done, and (3) whether the manual composition threats
the validity.

Quantification method All variables of this study were quan-
tified using a suite of metrics, which was previously defined
and independently validated [14,21]. Moreover, the concept
of stability used in our study is well known in the liter-
ature [21] and its quantification method was reused from
previous work. The inconsistencies were quantified auto-
matically using the IBM RSA’s model validation mecha-
nisms and manually by the developers through several cycles
of measurements and reviews. In practice, the developers’
effort is computed by “time spent.” However, the “time
spent” is a reliable metric when used in controlled exper-
iments. Unfortunately, controlled experiments require that
the software engineering tasks are simple; hence, it harms
the objective of our investigation (Sect. 3.1) and hypothe-
ses (Sect. 3.2). Moreover, we have observed in the examples

of recovering models that, in fact, the “time spent” is actu-
ally greater for unstable models than stable models, inde-
pendently of the type of inconsistencies. In addition, the
number of syntactic and semantic inconsistencies was always
higher in unstable models than stable models.

Correctness of the quantification Developers worked together
to assure that the study does not suffer from construct valid-
ity problems with respect to the correctness of the composi-
tions and application of the suite of metrics. We checked
if the collected data were in line with the objective and
hypotheses of our study. It is important to emphasize that
just one facet of composition effort was studied: the effort
to evolve well-structured design models using composi-
tion heuristics. The quantification procedures were carefully
planned and followed well-known quantification guidelines
[3,23,24,45].

Execution of the compositions Another threat that we have
controlled is if the use of manual composition might uninten-
tionally avoid conflicts. We have observed that the manual
composition helps to minimize problems that are directly
related to model composition tools. There are some tools
to compose design models, such as IBM Rational Software
Architect. However, the use of these tools to compose the
models was not included in our study for several reasons.
First, the nature of the compositions would require that devel-
opers understood the resources/details of the tools. Second,
even though the use of these tools might intentionally reduce
(or exacerbate) the generation of specific categories of incon-
sistencies in the output composed models, it was not our goal
to evaluate particular tools. Therefore, we believe that by
using a model composition tool would impose more severe
threats to the validity of our experimental results. Finally, and
more importantly, we do not think the manual composition
would be a noticeable problem in the study for two reasons.
First, even if the conflicts were unconsciously avoided, we
deeply believe that the heuristics should be used as “rules of
thumb” (guidelines) even if tool support is somehow avail-
able. Second, we have reviewed the produced models, at least,
three times in order to ensure that conflicts were injected
accordingly; in the case they still made their way to the mod-
els used in our analysis, they should be minimal.

6.4 External validity

External validity refers to the validity of the obtained results
in other broader contexts [31]. That is, to what extent the
results of this study can be generalized to other realities, for
instance, with different UML design models, with different
developers and using different composition heuristics. Thus,
we analyzed whether the causal relationships investigated in
this study could be held over variations in people, treatments,
and other settings.

123

1492 K. Farias et al.

As this study was not replicated in a large variety of places,
with different people, and at different times, we made use
of the theory of proximal similarity (proposed by Campbell
[7]) to identify the degree of generalization of the results.
The goal is to define criteria that can be used to identify sim-
ilar contexts where the results of this study can be applied.
Two criteria are shown as follows: First, developers should
be able to make use of composition heuristics (Sect. 2.3) to
evolve UML design models such as UML class and com-
ponent diagrams. Second, developers should also be able to
apply the inconsistency metrics described in Table 2 and use
some robust software modeling tool (e.g., IBM RSA [19]).

Given that these criteria can be seen as ever-present char-
acteristics in mainstream software development, we conclude
that the results of our study can be generalized to other people,
places, or times that are more similar to these requirements.
Some characteristics of this study contributed strongly to its
external validity as follows: First, the reported exploratory
study is realistic and, in particular, when compared to pre-
viously reported case studies and controlled experiments
on composing design models [6,14]. Second, experienced
developers used: (1) state-of-practice composition heuristics
to evolve three realistic design models of software product
lines; (2) industrial software modeling tool (i.e., IBM RSA)
to create and validate the design models; and (3) metrics
that were validated in previous works [14]. Next, the design
models used were planned with the design-for-change prin-
ciples upfront. Finally, this work investigates only one facet
of model composition: the use of model composition heuris-
tics in adding new features to a set of design models for three
realistic software product lines.

7 Conclusions and future work

Model composition plays a pivotal role in many software
engineering activities, e.g., evolving SPL design models
to add new features. Hence, software designers are nat-
urally concerned with the quality of the composed mod-
els.This paper, therefore, represents a first exploratory study
to empirically evaluate the impact of stability on model com-
position effort. More specifically, the focus was on investi-
gating whether the presence of stable models reduces (or
not) the inconsistency rate and composition effort. In our
study, model composition was exclusively used to express
the evolution of design models along eighteen releases of
three SPL design models. Three state-of-practice composi-
tion heuristics have been applied, and all were discussed in
detail throughout this paper.

The main finding was that the model stability is a
good indicator of composition inconsistencies and resolution
effort. More specifically, we found that stable models tend
to minimize the inconsistency rate and alleviate the model

composition effort. This observation was derived from sta-
tistic analysis of the collected empirical data that have
shown a significant correlation between the independent
variable (stability) and the dependent variables (inconsis-
tency rate and effort). Moreover, our results also revealed
that instability in design models would be caused by a
set of factors as follows: First, SPL design models are
not able to support all upcoming changes, mainly unan-
ticipated incremental changes. Next, the state-of-practice
composition heuristics are unable to semantically match
simple changes in the input model elements, mainly when
changes take place in crosscutting requirements. Finally,
design models implementing crosscutting requirements tend
to cause a higher number of inconsistencies than the ones
modularizing their requirements more effectively. The main
consequence is that the evolution of the design mod-
els using composition heuristics can even become pro-
hibitive given the effort required to produce the intended
model.

As future work, we will replicate the study in other con-
texts (e.g., evolution of statecharts) to check whether (or not)
our findings can be extended to different evolution scenar-
ios of design models supported by composition heuristics.
We also consider exploring different variants of the stability
metrics. We also wish to better understand if design models
with superior stability have some gain (or not): (i) when pro-
duced from another composition heuristics, and (ii) on the
effort localizing the inconsistencies. It would be useful if,
for example, intelligent recommendation systems could help
the developers to indicate the best heuristic to-be applied to
a given evolution scenario or even recommending how the
input model should be restructured to prevent inconsisten-
cies. Finally, we hope that the issues outlined throughout the
paper encourage other researchers to replicate our study in
the future under different circumstances and that this work
represents a first step in a more ambitious agenda on better
supporting model composition tasks.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model superimposition
in software product lines. In: International Conference on Model
Transformation (ICMT), vol. 5563 (LNCS), pp. 4–19, Springer,
Berlin (2009)

2. Asklund, U.: Identifying inconsistencies during structural merge.
In: Proceedings of the Nordic Workshop Programming Environ-
ment Research, pp. 86–96 (1994)

3. Basili, V., Caldiera, G., Rombach, H.: The goal question met-
ric paradigm. In: Encyclopedia of Software Engineering, vol. 2,
pp. 528–532. Wiley, Hoboken (1994)

123

Effects of stability on model composition effort 1493

4. Boucké, N., Weyns, D., Holvoet, T.: Experiences with Theme/UML
for architectural design in multiagent systems. In: MASSAA’06,
pp. 87–110 (2006)

5. Brewer, M.: Research design and issues of validity. In: Handbook
of Research Methods in Social and Personality Psychology, Cam-
bridge University Press, Cambridge (2000)

6. Briand, L., Labiche, Y., Di Penta, M., BondocL, H.: An experimen-
tal investigation of formality in UML-based development. IEEE
Trans. Softw. Eng. 31(10), 833–849 (2005)

7. Campbell, D., Russo, M.: Social Experimentation. SAGE Classics,
Beverly Hills (1998)

8. Chitchyan, R., Greenwood, P., Sampaio, A., Rashid, A., Gar-
cia, A., Silva, L.: Semantic vs. syntactic compositions in
aspect-oriented requirements engineering: an empirical study.
In: International Conference on Aspect-Oriented Software, Devel-
opment (AOSD’09), pp. 36–48 (2009)

9. Clarke, S., Walker, R.: Composition patterns: an approach
to designing reusable aspects. In: 23rd International Confer-
ence on Software Engineering (ICSE’01), pp. 5–14, Toronto
(2001)

10. Cook, T., Campbell, D., Day, A.: Quasi-Experimentation: Design
& Analysis Issues for Field Settings. Houghton Mifflin, Boston
(1979)

11. Dingel, J., Diskin, Z., Zito, A.: Understanding and improving UML
package merge. J. SoSym 7(4), 443–467 (2008)

12. Effects of stability on model composition effort: an exploratory
study. http://www.les.inf.puc-rio.br/opus/sosym2012 (2012)

13. Farias, K., Garcia, A., Lucena, C.: Evaluating the effects of stability
on model composition effort: an exploratory study. In : VIII Exper-
imental Software Engineering Latin American Workshop collo-
cated at XIV Iberoamerican Conference on Software Engineering,
Rio de Janeiro (2011)

14. Farias, K., Garcia, A., Whittle, J.: Assessing the impact of aspects
on model composition effort. In: AOSD’10, pp. 73–84, Saint Malo
(2010)

15. Farias, K., Garcia, A., Lucena, C.: Evaluating the impact of
aspects on inconsistency detection effort: a controlled experiment.
In: 15th International Conference on Model-Driven Engineering
Languages and Systems (MODELS’12), pp. 219–234, Innsbruck
(2012)

16. Farias, K., Garcia, A., Whittle, J., Chavez, C., Lucena, C.: Evaluat-
ing the effort of composing design models: a controlled experiment.
In: 15th International Conference on Model-Driven Engineering
Languages and Systems (MODELS’12), pp. 676–691, Innsbruck
(2012)

17. Figueiredo, et al.: Evolving software product lines with aspects:
an empirical study on design stability. In: International Confer-
ence on Software Engineering (ICSE’08), pp. 261–270, Leipzig
(2008)

18. France, R., Rumpe, B.: Model-driven development of complex soft-
ware: a research roadmap. In: Future of Software Engineering at
ICSE’07, pp. 37–54, Minneapolis (2007)

19. IBM Rational Software Architecture (IBM RSA). http://www.ibm.
com/developerworks/rational/products/rsa/ (2011)

20. Jayaraman, P., Whittle, J., Elkhodary, A., Gomaa, H.: Model com-
position in product lines and feature interaction detection using
critical pair analysis. In: International Conference on Model Driven
Engineering Languages and Systems (MODELS), pp. 151–165,
Nashville (2007)

21. Kelly, D.: A study of design characteristics in evolving software
using stability as a criterion. IEEE Trans. Softw. Eng. 32(5), 315–
329 (2006)

22. Kemerer, C., Slaughter, S.: An empirical approach to studying soft-
ware evolution. IEEE Trans. Softw. Eng. 25(4), 493–509 (1999)

23. Kitchenham, B., Al-Kilidar, H., Babar, M., Berry, M., Cox, K.,
Keung, J., Kurniawati, F., Staples, M., Zhang, H., Zhu, L.: Evaluat-

ing guidelines for reporting empirical software engineering studies.
Emp. Softw. Eng. 13(1), 97–112 (2008)

24. Kitchenham, B.: Empirical Paradigm—the role of experiments, pp.
25–32. Empirical Software Engineering, Issues (2006)

25. Kompose: a generic model composition tool. http://www.kermeta.
org/kompose (2010)

26. Larman, C.: Applying UML and patterns: an introduction to object-
oriented analysis and design and iterative development, 3rd edn.
Prentice Hall (2004). ISBN 0131489062

27. Martin, R.: Agile software development, principles, patterns, and
practices, 1st edn. Prentice Hall (2002). ISBN 0135974445

28. Mens, T.: A state-of-the-art survey on software merging. IEEE
Trans. Softw. Eng. 28(5), 449–562 (2002)

29. Menzies, T., Chen, Z., Hihn, J., Lum, K.: Selecting best practices
for effort estimation. IEEE Trans. Softw. Eng. (TSE) 32(11), 883–
895 (2006)

30. Meyer, B.: Object-oriented software construction, 1st edn.
Prentice-Meyer Hall, Englewood Cliffs (1988)

31. Mitchell, M., Jolley, J.: Research design explained, 4th edn. Har-
court, New York (2001)

32. Molesini, A., Garcia, G., Chavez, C., Batista, T.: Stability assess-
ment of aspect-oriented software architectures: a quantitative study.
J. Syst. Softw. 38(5), 711–722 (2009)

33. Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., Murphy, B.:
Change bursts as defect predictors. In: 21st International Sympo-
sium on Software Reliability Engineering, pp. 309–318, San Jose
(2010)

34. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave,
P.: Matching and merging of statecharts specifications. In: Interna-
tional Conference on Software Engineering (ICSE’07), pp. 54–64,
Minneapolis, EUA (2007)

35. Norris, N., Letkeman, K.: Governing and managing enterprise
models: Part 1. Introduction and concepts. IBM Developer
Works. http://www.ibm.com/developerworks/rational/library/09/
0113_letkeman-norris (2011)

36. Nugroho, A., Flaton, B., Chaudron, M.: Empirical analysis of the
relation between level of detail in UML models and defect den-
sity. In: International Conference on Model Driven Engineering
Languages and Systems (MoDELS’08), pp. 600–614, Toulouse
(2008)

37. OMG.: Unified modeling language: infrastructure version 2.2.
Object Management Group (2008)

38. Perry, D., Siya, P., Votta, L.: Parallel changes in large scale soft-
ware development: an observational case study. In: International
Conference on, Software Engineering (ICSE’98), pp. 251–260
(1998)

39. Research method knowledge base: improving conclusion validity.
http://www.socialresearchmethods.net/kb/concimp.php(2011)

40. Ricca, F., Penta, M., Torchiano, M., Tonella, P., Ceccato, M.: How
developers’ experience and ability influence web application com-
prehension tasks supported by UML stereotypes: a series of four
experiments. IEEE Trans. Softw. Eng. 96(1), 96–118 (2010)

41. Shadish, W., Cook, T., Campbell, D.: Experimental and quasi-
experimental designs for generalized causal inference. Houghton
Mifflin, Boston (2002)

42. Sjøberg, D., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Kara-
hasanovic, A., Koren, E., Vokác, M.: Conducting realistic exper-
iments in software engineering. In: 1st International Symposium
on, Empirical Software Engineering, pp. 17–26 (2002)

43. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe composition
of product lines. In: 6th International Conference on Generative
Programming and Component Engineering (GPCE’07), pp. 95–
104, Salzburg (2007)

44. Whittle, J., Jayaraman, P.: Synthesizing hierarchical state machines
from expressive scenario descriptions. ACM Trans. Softw. Eng.
Methodol. (TOSEM’10) 19(3), 1–45 (2010)

123

http://www.les.inf.puc-rio.br/opus/sosym2012
http://www.ibm.com/developerworks/rational/products/rsa/
http://www.ibm.com/developerworks/rational/products/rsa/
http://www.kermeta.org/kompose
http://www.kermeta.org/kompose
http://www.ibm.com/developerworks/rational/library/09/0113_letkeman-norris
http://www.ibm.com/developerworks/rational/library/09/0113_letkeman-norris
http://www.socialresearchmethods.net/kb/concimp.php

1494 K. Farias et al.

45. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wess-
lén, A.: Experimentation in software engineering: an introduction.
Kluwer Academic Publishers, Norwell (2000)

46. Wust, J.: The software design metrics tool for the UML. http://
www.sdmetrics.com

Author Biographies

Kleinner Farias is an associate
member of the OPUS Researcher
Group at the Pontifical Catholic
University of Rio de Janeiro
(PUC-Rio), Brazil. He received
his PhD in Computer Science
from PUC-Rio in 2012. He
received his Masters degree in
Computer Science from the Pon-
tifical Catholic University of Rio
Grande do Sul in 2008. He com-
pleted his undergraduate studies
in Computer Science at the Fed-
eral University of Alagoas and
in Information Technology at the

Federal Institute of Alagoas in 2006. His current research interests
include software modeling, empirical evaluation of model composi-
tion techniques, model-driven software development, software metrics
and software product lines.

Alessandro Garcia is an Assis-
tant Professor in the Informat-
ics Department at the Pontifical
Catholic University of Rio de
Janeiro (PUC-Rio), where he
leads the Opus research group.
He received his PhD in Computer
Science from PUC-Rio in 2004.
His current research interests
include empirical evaluation of
advanced modularity techniques,
software metrics, software archi-
tecture, exception handling, and
software product lines. He has
been serving as a Program Com-

mittee member of premier international conferences on software engi-
neering, such as ICSE, AOSD, FSE, MODELS and SPLC. He received
many awards and distinctions, including Best Dissertation Award (Com-
puter Brazilian Society, 2000), Best Researcher Award (Lancaster Uni-
versity, 2006), Distinguished Young Scholar (PUC-Rio, 2009), and
Young Scientist Fellowship (FAPERJ, 2010).

Carlos Lucena is a Full Pro-
fessor of Computer Science at
the Pontifical Catholic Univer-
sity of Rio de Janeiro (PUC-
Rio) since 1982 and an Adjunct
Professor of Computer Science
and a Senior Research Associate
of the Computer Systems Group
at the University of Waterloo,
which he has visited on a reg-
ular basis since 1975. He com-
pleted his undergraduate studies
in Economics and Mathematics
between 1962 and 1965 at PUC-
Rio and received his Masters

degree from the University of Waterloo (1969), Canada, and his PhD
from the University of California in Los Angeles (1974). His current
research focuses on agent-oriented software engineering, multi-agent
applications, autonomic computing and software reuse.

123

http://www.sdmetrics.com
http://www.sdmetrics.com

	Effects of stability on model composition effort: an exploratory study
	Abstract
	1 Introduction
	2 Background
	2.1 Model composition effort
	2.2 Model stability
	2.3 Composition heuristics
	2.4 Inconsistencies

	3 Study methodology
	3.1 Objective and research questions
	3.2 Hypothesis formulation
	3.2.1 First hypotheses: effect of stability on inconsistency rate
	3.2.2 Second hypothesis: effect of stability on developer effort

	3.3 Target cases: evolving product-line design models
	3.4 Measured variables and quantification method
	3.5 Evaluation procedures
	3.5.1 Target model versions and releases
	3.5.2 Execution and analysis phase

	4 Result analysis
	4.1 H1: Stability and inconsistency rate
	4.1.1 Descriptive statistics
	4.1.2 Hypothesis testing
	4.1.3 Discussion

	4.2 H2: Stability and resolution effort
	4.2.1 Descriptive statistics
	4.2.2 Hypothesis testing
	4.2.3 Discussion

	5 Related work
	6 Threats to validity
	6.1 Internal validity
	6.2 Statistical conclusion validity
	6.3 Construct validity
	6.4 External validity

	7 Conclusions and future work
	References

