
Model Comparison: A Strategy-Based Approach
Kleinner Oliveira, Toacy Oliveira

Informatics Faculty
Pontifical Catholic University of Rio Grande do Sul

Ipiranga Avenue 6681 - Building 32 - ZIP 90619-900
Porto Alegre - Brazil

{ksoliveira,toacy}@inf.pucrs.br

Abstract— With the emergence of Model Driven Archi-
tecture (MDA), the role of model composition has become
very important. One challenge of model composition is
specifically to merge models expressed in the Unified Model
Language (UML) and its profiles. However, for merging it
is necessary to perform an essential task: model comparison.
In this paper, we present a model comparison technique
that relies on match strategies so that input models can
be merged if they are considered equivalent according to a
specific match strategy. To put this in practice we defined
a match operator that makes use of match rules, synonym
dictionary and typographic similarity. Moreover, a guidance
for model comparison was elaborated to specify the activities
that go along with model comparison.

I. INTRODUCTION

A significant factor behind the difficulty of developing
complex software is the wide conceptual gap between
the problem and the domains of discourse [3], [4]. The
model-driven approaches move development focus from
third generation programming language code (e.g. Java
code) to models, specifically models expressed in the
Unified Model Language (UML) and its profiles [14],
[16]. The goal is to manage the software at the level of its
concepts in order to reduce the gap, quickly attain code
and become the software development less difficult and
costly. One reference to these approaches is the Model
Driven Architecture (MDA) [10], an approach to Model
Driven Development (MDD) from Object Management
Group (OMG).

A typical MDA process involves a number of UML
models to graphically represent a system’s structure and
behavior often defined in different platforms (such as
J2EE or .NET) or domains (such as real-time or business
process modeling) from a specific viewpoint and at a
certain abstraction level that can be ultimately converted
into the actual code by a model transformation engine. It
can use models not only horizontally to describe different
system aspects but also vertically, in order to be refined
from higher to lower abstraction levels. Thus, the model-
driven approaches make use of model transformation and
model composition techniques to manipulate and manage
UML models at the same and different abstraction levels.
Models can represent concepts related to the system
domain such as Telecom and Insurance, and also exposes
the underlying execution infra-structure such as .NET or
Java, which means a typical system can be represented
by several models that must be somehow assembled
(composed) into a cohesive unit.

The model composition can be viewed as an operation
where a set of activities should be performed to merge
two input models, MA (receiving) and MB (merged), in
order to produce an output model, MAB . In short, we can
represent it by the equation: MA+MB→MAB . However,
an important step to achieve model composition lays in
the ability to compare input model elements, thus before
merging MA and MB , it is necessary to compare to verify
semantic and syntactic overlap in such models. The need
to avoid such overlaps stands for the fact that the ultimate
system’s model should represent each concept uniquely to
avoid conflicts, misinterpretation and mistransformation.
For example, according to UML metamodel specification
should not exist two (or more) models (e.g., two UML
classes) with equal names in a same namespace, then
a model composition mechanism should take in account
such conditions to produce the output model, otherwise
it can have conflicting names and elements with same
semantic value.

In this paper we demonstrate the role and the im-
portance of model comparison in model composition,
describe the challenges that should be tackled to compare
models and propose a match operator that is responsible
for putting in practice a strategy-based model comparison
approach. Moreover, a brief guidance for model compar-
ison is exposed in order to specify the activities that go
along with model comparison.

A. Motivating Example
We motivate our work with a composition example of

two UML profiles, Tree and Topology [2] (see Figure 1)
each representing a Domain-Specific Modeling Language
(DSML). We have chosen UML profiles because they play
a central role in the OMG’s MDA approach. The Tree
profile represents a common hierarchical data structure
used for many computer science applications, while the
Topology profile represents the connections between the
elements of an Information System with a star network
topology.

In the Topology profile, we have nodes (represented
by stereotype Node) connected by links that can be local
(LocalEdge) if they connect nodes from the same star with
its central node, or remote (Edge) if they connect central
nodes (MainNode) between each other [2]. Each node
is identified by its position (location) and each central
node has a state kind (state) that defines their availability
(its values are defined by enumeration StateKind). An

912



end node (EndNode) is also identified by its position
(position). The Tree profile has nodes (represented by
stereotype Node) connected by links (Edge) to node, end
node (Leaf) or root node (root) that has a state kind (state)
which defines their availability (its values are defined by
enumeration StateKind). Each node is determined by its
name (name) and value (value). Moreover, it is possible
to perform search operation (Search).

Before merging Tree and Topology, we should neces-
sarily compare the input profiles in order to merge such
profiles efficiently. To do this, we need to be able to
identify correspondences among UML profile elements
in a coherent manner. For example, despite the Tree.Leaf
and Topology.EndNode stereotypes have different names,
could they be considered domain concepts of equal se-
mantic values?

B. Contributions of this Paper

To put model comparison in practice involves an-
swering several model comparison questions. As stated
in [9], what criteria should we use for identifying corre-
spondences between different models? And how can we
quantify these criteria? Considering two input models,
should the model comparison techniques produce only
one possible result that representing the correspondence
among their elements? What properties of the input mod-
els should be considered in their match? What should be
used so that we can compare models?

The answers for such questions are the contributions of
this paper that consist in the definition of a flexible model
comparison technique based on match strategies. The
strategies are implemented by a match operator that uses
of a range of heuristics including typographic similarities,
equivalence among the semantic values of the input
model elements and model signature. We propose a brief
guidance to specify as conduct the model comparison
process. Our approach is constituent of a UML profiles
composition mechanism [12] that was shown to be an
effective and flexible way for specifying correspondences
among UML profiles. Moreover, we specify the approach
using the formal specification language Alloy [5] and its
tool (the Alloy Analyzer) in order to realize an automatic
analysis of the approach.

The remainder of the paper is organized as follows.
Section 2 briefly describes the background and the ma-
jor challenges that researchers face when attempting to
realize model comparison. Section 3 presents the our
approach based on match strategies and the definition of
the match operator. Section 4 presents a brief guidance
for model comparison. Section 5 describes the related
work. Finally, Section 6 shows some early conclusions
and future works.

II. BACKGROUND AND CHALLENGES

Model comparison arises as an essential activity to put
the composition in practice and it can be viewed as a
generic operation that varies from application to applica-
tion, in which elements from MA and MB are compared
in different forms depending of the kind of application.

For example, the matching of statechart specifications [9]
and of different versions of UML diagrams [11] presents
particularity because the artifacts, that are being com-
pared, have different properties, so the model comparison
technique is tailored in agreement to them.

The UML specification [14] defines and presents the
modelers with the Profile mechanism has been specifically
specified for providing a lightweight extension mecha-
nism to the UML standard. For instance, we can add
semantics that is left unspecified in the metamodel, give
a terminology that is adapted to a particular platform
or domain and add information that can be used when
transforming a model to another model or code.

However, the UML built-in composition mechanism,
package merge, is not able to merge profiles or compare
the input models correctly. So some research questions
arise: how can we compare two profile elements? What
activities should we perform to match two input models?
Once we have added semantics that does not exist to a
UML metamodel element, how can we compare it in a
flexible manner?

To the best of our knowledge, the need for comparing
models in a flexible manner neither have been pointed
out nor even proposed by current model comparison
techniques in the model composition mechanisms. This
fact shows the pioneer side of this work.

Based on previous works [13], [12] and relevant ap-
proach studied (described in Section V), we observed
and concluded that the major challenges that researches
face when attempting to put into practice the model
comparison in the context of MDD can be grouped into
the following categories:

• The domain-specific model comparison challenge:
Such challenge arises from concerns associated with
providing DSMLs for creating and using domain-
specific models in the MDD vision. For example,
the UML supports two forms of extensions: (1) using
profiles to define UML variants and (2) associating
particular semantics to specified semantic variation
points [14], [4]. Hence, a challenge would be how
to develop support for tailoring the model compari-
son techniques to the semantics plugged into UML
semantic variation points and the specializations of
the UML metamodel specified by the profiles

• The abstraction level challenge: Once the MDD
vision manipulates models in different abstraction
levels, how should the model comparison techniques
provide support for matching models expressed in
different abstraction-level? This challenge poses its
problems with respect to understanding and evolving
the model comparison techniques across different
modeling languages, where each one has its partic-
ularity.

• The semantic and properties challenge: As the mod-
els have a semantic value associated with it, a pair of
them with the same name under matching packages
could be assumed to form a match. However, what
should be done if they have different semantic values
or different properties? For example, two input UML

913



Fig. 1. Example of UML profiles comparison

classes with same name, however one is abstract and
the other is concrete. While the pair of classes may
still be considered a match, there is a conformance
mismatch between them.

III. STRATEGY-BASED MODEL COMPARISON

Having explained a motivation example and defined
the challenges of model comparison we present, in this
section, a flexible model comparison approach based
on match strategies. We specified three strategies (i) de-
fault, (ii) partial and (iii) complete match strategy; how-
ever, new strategies may be created and inserted in our
approach as well. We also define a match operator that is
responsible for putting the strategies in practice together.
From input models and the match strategy specification,
the match operator verifies the equivalence degree among
the input model elements and according to a threshold
specifies the match models.

A. The Match Operator

The match operator is a heuristic and its goal is to find
correspondences among model elements founded in static
matching and to implement the match strategies. The
static matching uses synonym dictionary, model signature
and typographic similarity among input model elements
in order to define the equivalence degree (S).

With a synonym dictionary it is possible to make a
mapping among the domain concepts that have the same
semantic values. The synonym dictionary paves the way
to the domain specialists to apply their domain expertise
in the matching process, once they have defined what
concepts are synonyms. Hence, this fact improves the
result of the comparison. We denote by D(r,m) →[0,1]
the degree of similarity between receiving (r) and merged
(m) model elements, it returns 0 whether r and m are
synonym, otherwise it returns 1. D is calculated for
every possible pair of (r,m). Initially, every pair (r,m)
of input model elements are assumed to be not a syn-
onym, then D(r,m) = 0 for every pair of (r,m). For in-
stance, according to synonym dictionary (see Table I) the
stereotypes Tree.Leaf and Topology.EndNode, depicted
in Figure 1(a), represent the same concepts, therefore
D(Leaf,EndNode) = 1.

The goal of typographic similarity is to determi-
nate T (r,m)→ [0..1] to every possible pairs of receiving

(r) and merged (m) model elements. The N-gram algo-
rithm [8] is applied to assign a similarity value in [0..1]
to every possible pairs of (r,m). These pairs are defined
by cartesian product of (R×M), where R and M are the
set of receiving and merged model elements, respectively.
The result of this is the matrix shown in Figure 2. This
algorithm yields a similarity degree to a pair of strings
based on counting the number of their identical substrings
of length N (we use N = 2).

The signature is defined in terms of model element
syntactic properties, where a syntactic property of a model
element defines its structure. The signature is a collection
of values for a subset of syntactic properties in a model
element’s metamodel class. For example, isAbstract is
a syntactic property defined in the metamodel class
called Class. If an instance of a Class is an abstract class
then isAbstract = true for the class, otherwise the instance
is a concrete class, isAbstract = false. The set of syntactic
properties used to determine a profile element’s signature
is called signature type, as defined in [15]. A signature
that consists of all syntactic properties associated with a
model element is called complete signature type, based on
a range of syntactic properties is called partial signature
type and the signature only based on name is called de-
fault signature type.

The signature is structured in comparison levels orga-
nized hierarchically. For instance, in Figure 1, a possible
definition of levels for the stereotype Tree.Node would
be: Tree.Node (name) (level 2), with Tree.Node.name
and Tree.Node.value (tagged values) (level 1). Every
profile element type has one signature which is defined
for it.

TABLE I
EXAMPLE OF SYNONYM DICTIONARY

Name Synonym
Leaf EndNode, FinalNode
Edge Border, Limit, Margin
Search Research, Searching, Query

The similarity degree based on signature M between
receiving (r) and merged (m) model element M(r,m) is
defined by computing the weighted average between the
arithmetic average of the levels (see Equation 1):

914



M =

n∑

i=1

pi ·

⎡

⎣
k∑

j=1

ϕi,j

k

⎤

⎦

n∑

i=1

pi

→ [0..1] (1)

• n is the number of levels employed to compare the
elements, where n ≥ 1 and n ∈ N∗

+.
• pi represents the weight, being pi = i, where i ≥ 1

and i ∈ N∗
+; k expresses the number of elements in

each level, where k ≥ 1 and k ∈ N∗
+ (i.e. Tree.Node

has two properties, as these properties represent a
level, so k = 2);

• ϕi,j (i and j represent the level and item of model
elements that are being compared, respectively) is
used to denote if an item of receiving model element
(i.g., name:Strig in Tree.Node) is equivalent to an-
other item of merged model element. It is a boolean
variable and we use the match rules (described as
follows) in order to assign value to it. The match
rules compare items of model elements, so it returns
1 if the rule is satisfied, otherwise it returns 0. For
instance, when we compare the Tree.Root and Topol-
ogy.MainNode stereotypes, ϕ2,1 = 0, applying the
match rule MR1, and ϕ1,1 = 1, applying the match
rule MR3.

We denote by S the degree of similarity between
receiving (r) and merged (m) model elements. To define
the similarity degree it is necessary to combine the partial
similarity degrees. To do this, it is calculated the average
of D, T , and M, as showed in Equation 2. If D = 1, then
T also assumes value 1 and contrariwise.

S =
(D + T + M)

D + 2
→ [0..1] (2)

Based on the Equation 2, we compute the similarity
degree of every Tree elements in related to Topology ele-
ments. The Figure 2 shows the match results. To produce
a correspondence relation between the two models, we set
a threshold (t = 0.7). So, pairs of model elements with
similarity degree above threshold are considered equiva-
lent. In short, if S(r,m)> t, then r and m are equivalent.
In Figure 2, we point out the similarity degree above
threshold and define the profile elements are equiva-
lent, as follows: (Tree.Node, Topology.Node), (Tree.Edge,
Topology.Edge), (Tree.Leaf, Topology.EndNode) and
(Tree.StateKind, Topology.StateKind)

Fig. 2. Similarity degree between profile elements

B. Match rules

In order to check if two input model element are
equivalent, we defined match rules. The match operator
is responsible to execute these match rules and, according
to the resulting of this execution, it defines consequently
the value of ϕi,j , which was specified earlier. For every
model element and item of model element are necessary a
match rule to check if they are equivalent. This checking
is based on their signature. If a match rule fails, then the
models are not equivalent (ϕi,j = 0). Otherwise, models
are equivalent (ϕi,j = 1). The match rules verify whether
the input model element properties have the same values,
and for each match strategy is defined a set of match rule
according to respective signature type of the strategy.

There are three kinds of match rules: (i) default match
rules are a set of rules that compare models based on only
their name, using the default signature type; (ii) partial
match rules are also a set of rules that compare models
based on a number of syntactic properties of the models,
using the partial signature type; (iii) complete match rules
are also a set of rules that compare models based on
their syntactic properties, using the complete signature
type. Thus, the match operator makes use of these rules
to implement the default, partial and complete match
strategies. For example, the match operator makes use
of the default match strategy (hence using default match
rules) to produce the similarity table depicted in Figure 2.

Now, we present a short description of the default
match rules used in the motivation example, as follows:
MR1. Stereotype match rule:
MatchStereotype(Stereotype rcv, Stereotype mrgd) →
rcv.name = mrgd.name AND
MatchAttribute(rcv, mrgd) AND
MatchOperation(rcv, mrgd)
MR2. Association match rule:
MatchAssociation(Association rcv, Association mrgd) →
(rcv.name = mrgd.name) AND (rcv.memberEnds =
mrgd.memberEnds)
MR3. Attribute match rule:
MatchAttribute(Stereotype rcv, Stereotype mrgd) →
(rcv.ownedAttribute.name = mrgd.ownedAttribute.name)
AND (rcv.ownedAttribute.TypedElement = mrgd.
ownedAttribute.TypedElement)
MR4. Operation match rule:
MatchOperation(Stereotype rcv, Stereotype mrgd) →
(rcv.
ownedOperation.name = mrgd.ownedOperation.name)
AND (rcv.ownedOperation.ownedParameter.length =
mrgd.ownedOperation.ownedParameter.length) AND
(∀x(rcv.ownedOperation.ownedParameter[x] =
mrgd.ownedOperation.ownedParameter[x])
MR5. Enumeration match rule:
MatchEnumeration(Enumeration rcv,
Enumeration mrgd) → rcv.name = mrgd.name AND
MatchEnumerationLiteral(Enumeration rcv,
Enumeration mrgd)

915



MR6. Enumeration Literal match rule:
MatchEnumerationLiteral(Enumeration rcv,
Enumeration mrgd) → ∀x(rcv.ownedLiteral.name[x] =
mrgd.ownedOperation.name[x])

IV. A GUIDANCE FOR MODEL COMPARISON

There is little agreement on requirements, activities and
steps that should be followed in order to accomplish the
model comparison, and even less on good practices to
avoid errors during matching. Several works (e.g., see [7],
[11]) have been proposed to tackle the problems found
in model comparison, but none of them, as yet, was
defined as standard. In [14], the UML built-in model
comparison technique does not present a task flow to help
the comparison specification of UML models, does not
present a good documentation, and does not define how
model comparison should be performed.

We previously identified and delegated activities to the
match operator. We aim to successfully order and provide
a flow of how such activities are accomplished. Such
flow can be used as a guidance to compare models,
and it aims to represent good practices and become as
comprehensive as possible the match operator role in the
model comparison process.

The guidance is organized in two phases: (1) initial
and (2) comparison phase. The initial phase is started up
when the matching operator receives the input models.
The match operator analyzes the models in order to
know each type (i.e. Stereotype, Class, Association, etc).
Such models are separated and grouped according to
their types. For example, Stereotypes (Tree.Node and
Topology.Node) and Association (Tree.Edge and Topol-
ogy.Edge) are identified and grouped according to their
types.

The goal of the comparison phase is to define what
input model elements are equivalent. It is initially realized
as an analysis of the input models and a signature is
defined for every model element type. The next step is
to specify the match strategy that determines how the
comparison will be accomplished. The match operator
defines the similarity degree (S) for every receiving and
merged model element, and based on a threshold (t)
finally it determines model elements are equivalent. The
phase is finished as soon as the matching models, no-
matching models and matching description are specified.
The next step is to merge the models, however this activity
is not the focus of this paper.

V. RELATED WORK

The model comparison is applied in different domains
and contexts, and plays a central role in numerous appli-
cations, such as model composition, schema integration,
schema evolution and migration, merging of source code,
application evolution, database integration, differences be-
tween XML documents, and differences between versions
of UML diagrams. Thus, previous research works have
proposed many techniques to tackle the inherent problems
related to matching, and achieved an automation degree of
the match operation for specific application domains. We

Fig. 3. A guidance for model comparison

give an overview on other relevant approaches related to
our goals of putting flexibility into the model comparison
process and analyze others that make use of model
comparison to merge models. To do this, the main focus of
each approach is summarized briefly, followed by pointing
out similarities and differences to our own approach (see
Figure 4).

Model Composition Semantics. S. Clarke [1] intro-
duces composition semantics for UML class diagrams.
The approach defines a new design construct, called com-
position relationship that supports the specification of how
design models should be composed. With this composition
relationship it is possible to: (i) identify and specify
overlapping and non-overlapping concepts; (ii) specify
how models should be integrated, and how conflicts in
equivalent elements are reconciled. The identification of
the overlapping parts is based on the name of the input
models; it is a weakness of the approach.

Model Composition Directives. Reddy et al. [15]
present a model composition technique relies on signature
matching, in which model elements are merged if their
signatures are correspondent. However, the match opera-
tor, in our work, makes use of a static matching approach
based on synonym dictionary, typographic similarity and
model signature in order to define the degree of similarity
between two models elements.

Package Merge. It is the composition mechanism of
the UML [14] and is defined by match rules, constraints
and transformation (the merge rules). The major appli-
cation is in the implementation of the UML compliance
levels. In principle, their match rules are similar to match
used by our match operator. However, its match rules

916



are expressed in natural language and the match process
consider only the name of the models. Moreover, the
definition of Package Merge is incomplete, ambiguous
and inconsistent.

Epsilon Merging Language. EML [6] is a metamodel
agnostic language for expressing model composition. It
includes a model comparison and model transformation
language as subsets. The model comparison is only based
on syntactic criterion. However, the match, in our ap-
proach, is founded in synonym dictionary, typographic
similarity, syntactic properties and match strategy.

Difference between Models. It presents an approach
of the how to detect and visualize differences between
versions of UML documents such as class or object
diagrams. It produces a unified document which contains
the common and specific parts of two base documents,
where the specific parts are highlighted [11]. While our
approach tackles a range of very difficult problems related
to dealing with comparison of semantics values in a flexi-
ble manner, it is primarily concerned with the comparison
and manipulation of models from the same domain and
with equal semantic values; without any flexibility during
the comparison.

Fig. 4. Comparison of related approaches

VI. CONCLUSIONS AND FUTURE WORK

In this paper we discussed the importance of model
comparison for the task of model composition, its prob-
lems and challenges involved in its implementation. Our
approach provides a flexible form of realizing the model
comparison founded on match strategies by defining the
match operator and by specifying its responsibility. More-
over, we consider that the range of different forms for
matching models improves and assures a better perfor-
mance to the comparison process and the use of guidance
in order to provide a clear and easy manner to perform
the comparison helps its improvement and evolution.

The problems and challenges outlined throughout the
paper should encourage researchers to cope with the
ever-present problem of matching models so that new
generation of the application can enjoy the use of better
techniques. Our approach has some limitations that should
be investigated further. When models are defined, it is

possible to associate them semantics constraints. These
constraints should be considered and respected when it is
necessary to perform the composition so that the specified
semantic is not disrespected. Thus, our approach is not
able, as yet, to compare these constraints. We claim
to enhance the functionality of the match operator by
creating new match strategies and improving the match
rules. Another extension of our approach would be the
use of ontology to improve the handle of the models’
semantic values.

Even through our approach has been implemented and
integrated to a profile composition mechanism demon-
strating feasibility [12], empirical studies are necessary
to validate the approach in real world design settings
of model comparison and verify its performance and
applicability in different application domains. Finally, we
observed improvement in model comparison is absolutely
necessary to the model engineering evolution and to allow
model engineering to become an industrial reality.

REFERENCES

[1] S. Clarke, “Composition of Object-Oriented Software Design
Models,” Ph.D. dissertation, School of Computer Applications,
Dublin City University, Dublin, Irland, January 2001.

[2] L. Fernndez and A. Moreno, “An Introduction to UML Profiles,”
in The European Journal for the Informatics Professional, vol. 5,
no. 2, April 2004, pp. 6–13.

[3] R. France, S. Ghosh, and T. Dinh Trong, “Model Driven Devel-
opment Using UML 2.0: Promises and Pitfalls,” IEEE Computer
Society, vol. 39, no. 2, pp. 59–66, February 2006.

[4] R. France and B. Rumpe, “Model-Driven Development of Com-
plex Software: A Research Roadmap,” in Future of Software En-
gineering (FOSE’07) co-located with ICSE’07, Minnesota, EUA,
May 2007, pp. 37–54.

[5] D. Jackson, “Alloy: a Lightweight Object Modelling Notation,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 11, no. 2, pp. 256–290, 2002.

[6] D. Kolovos, “Epsilon Merging Language Project Page,”
http://www.eclipse.org/gmt/epsilon/.

[7] D. Kolovos, R. Paige, and F. Polack, “Model Comparison: a
Foundation for Model Composition and Model Transformation
Testing,” in International Workshop on Global Integrated Model
Management. New York, NY, USA: ACM Press, 2006, pp. 13–20.

[8] C. Manning and H. Shütze, Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

[9] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave,
“Matching and Merging of Statecharts Specifications,” in ICSE’07,
Minnesota, EUA, May 2007, pp. 54–64.

[10] Object Management Group, MDA Guide Version 1.0.1, 2003,
http://www.omg.org/docs/omg/ 03-06-01.pdf.

[11] D. Ohst, M. Welle, and U. Kelter, “Differences between Versions
of UML Diagrams,” in 9th European Software Engineering Con-
ference. ACM Press, 2003, pp. 227–236.

[12] K. Oliveira, “Composition of UML Profiles,” Master’s thesis,
Informatics Faculty, Pontifical Catholic University of Rio Grande
do Sul, Porto Alegre, Brazil, February 2008.

[13] K. Oliveira and T. Oliveira, “A Guidance for Model Composition,”
in International Conference on Software Engineering Advances
(ICSEA’07), 2007, pp. 27–32, IEEE Computer Society.

[14] OMG, Unified Modeling Language: Infrastructure version 2.1,
Object Management Group, February 2007.

[15] Y. Reddy, R. France, G. Straw, N. M. J. Bieman, E. Song, and
G. Georg, “Directives for Composing Aspect-Oriented Design
Class Models,” Transactions of Aspect-Oriented Software Devel-
opment, vol. 1, no. 1, pp. 75–105, 2006.

[16] S. Sendall and W. Kozaczynski, “Model Transformation: The
Heart and Soul of Model-Driven Software Development,” IEEE
Software, vol. 20, no. 5, pp. 42–45, 2003.

917


