
Towards a Semiautomatic Tool to Support the Integration of
Feature Models

Vinicius Bischoff
Graduate Program in Applied Computing (PPGCA),
University of Vale do Rio dos Sinos (UNISINOS)

viniciusbischof@edu.unisinos.br

Kleinner Farias
Graduate Program on Applied Computing (PPGCA),
University of Vale do Rio dos Sinos (UNISINOS)

kleinnerfarias@unisinos.br

Lucian José Gonçales
Graduate Program on Applied Computing (PPGCA),
University of Vale do Rio dos Sinos (UNISINOS)

lucianj@edu.unisinos.br

Jorge L. V. Barbosa
Graduate Program on Applied Computing (PPGCA),
University of Vale do Rio dos Sinos (UNISINOS)

jbarbosa@unisinos.br

ABSTRACT
The integration of feature models plays a key role in many soft-
ware engineering tasks, e.g., adding new features to software prod-
uct lines (SPL) of information systems. Previous empirical studies
have revealed that integrating design models is still considered a
time-consuming and error-prone task. Unfortunately, integration
approaches with tool support are still severely lacking. Even worse,
little is known about the effort invested by developers to integrate
models manually, and how correct the integrated models are. This
paper proposes FMIT, which is a semiautomatic tool to support the
integration of feature models. It comes up with a strategy-based
approach to reduce the effort that developers invest to combine fea-
ture models and increase the amount of correctly integrated models.
A controlled experiment was run with 10 volunteers through six
realistic integration scenarios. Our results, supported by statisti-
cal tests, show that our semiautomatic approach not only reduced
the integration effort by 73.01%, but also increased the number of
correctly integrated feature models by 43.01%, compared with the
manual approach. Our main contributions are a semiautomatic,
strategy-based approach with tool support, and empirical evidence
on its benefits. Our encouraging results open the way for the devel-
opment of new heuristics and tools to support developers during
the evolution of feature models.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering; • Integration→ Empirical studies.

KEYWORDS
Feature Model, Software Engineering , Controlled Experiment
ACM Reference Format:
Vinicius Bischoff, Kleinner Farias, Lucian José Gonçales, and Jorge L. V.
Barbosa. 2019. Towards a Semiautomatic Tool to Support the Integration

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBSI’19, May 20–24, 2019, Aracaju, Brazil
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7237-4/19/05. . . $15.00
https://doi.org/10.1145/3330204.3330249

of Feature Models. In XV Brazilian Symposium on Information Systems
(SBSI’19), May 20–24, 2019, Aracaju, Brazil.ACM,NewYork, NY, USA, 8 pages.
https://doi.org/10.1145/3330204.3330249

1 INTRODUCTION
Software Product Lines (SPL) are widely used approach for the port-
folio development of software products [14]. SPL help organizations
develop their products from reusable core assets rather than from
scratch [12]. Feature models (FM) are considered a prerequisite for
software analysis in SPL [5, 13]. A feature can be briefly defined
as a functionality (or behavioral) that a software product should
provide [9]. FMs can be then seen as a “big picture” of the func-
tionalities of a software system [4]. The adoption of FMs emerges
as a result of the internationalization of production processes, be-
coming common in software-development projects in the industry.
Researchers and practitioners have widely used FMs for different
purposes, such as: (1) specifying features and their dependencies
for automatically deriving products from SPL [7]; (2) describing
variability in SPL for aiding the derivation of different products
of the line [18]; (3) documenting the features and their valid com-
binations to enable the strategic reuse of their artifacts [5]; or (4)
even assisting developers in integration of features of a family of
software systems [2, 7, 8].

Considering that FMs can be created in collaboration by differ-
ent software-development teams [1, 11], at some point, the FMs
created in parallel must be integrated to form an overview of the
SPL variabilities. In this sense, the integration of feature models
plays a key role in software-development tasks. However, most
modeling users find it difficult to apply it. This difficulty comes
from the imprecise understanding of functional models and the
lack of practical guidelines for modeling features [7, 10].

The integration of feature models can be briefly defined as a set
of activities that must be performed on two input models, FMA
and FMB , to produce a desired output feature model, the FMAB .
However, developers may end up not producing the FMAB . Instead,
developers typically produce a composed output model, FMCM ,
with problems (i.e., FMCM , FMAB) [11]. This is because developers
generally cannot properly detect and resolve integration issues,
such as conflicts and inconsistencies, because of the problem in
question. Therefore, to produce the FMAB , they must invest some
effort to resolve such conflicts and inconsistencies in the FMCM .
However, if this problem is not resolved properly, inconsistencies

https://doi.org/10.1145/3330204.3330249
https://doi.org/10.1145/3330204.3330249

SBSI’19, May 20–24, 2019, Aracaju, Brazil Vinicius Bischoff et al.

will be inserted into the composite feature model. Figure 1 provides
an overview of how FM integration can be mediated. We determine
three steps: (1) the effort produced by the developers in generating
the input models eff (FMA, FMB); (2) the effort applied to integrate
the models and solve the conflicts, iff (FMCM); and finally, (3) the
effort applied to produce the desired model diff (FMAB).

Figure 1: Feature model integration effort producted by the
developers.

Previous works [11] have already investigated the effects of com-
positional tasks on the developers effort and their experiences. They
have also revealed that integrating design models is still considered
a time-consuming and error-prone task. Farias et al. [11] evaluated
the effort invested to compose UML models using techniques based
on specification and heuristics. Unfortunately, the integration of
feature models has not been enough explored yet. In fact, integra-
tion approaches with tool support are still severely lacking [2]. Even
worse, little is known about the effort invested by developers to
integrate models manually, and how correct the integrated models
are.

To account for this, this paper proposes Feature Model Integra-
tion Tool - FMIT, which is a semiautomatic tool to support the
integration of feature models. It comes up with a strategy-based
approach to reduce the effort that developers invest to combine fea-
ture models and increase the amount of correctly integrated models.
A controlled experiment was carried on with 10 volunteers through
six realistic integration scenarios. The volunteers integrated feature
models manually, and then they integrate feature models using the
FMIT. Our empirical study provides some practical findings about
the benefits of the FMIT in relation to the manual integration of
feature models.

Our results, supported by statistical tests, show that FMIT semi-
automatic approach not only reduced the integration effort by
73.01%, but also increased the number of correctly integrated fea-
ture models by 43.01%, compared to the manual approach. The main
contributions of this article are a semiautomatic, strategy-based
approach with tool support, and empirical evidence on its benefits.
The results are encouraging and open the way for the develop-
ment of new heuristics and tools to support developers during the
evolution of feature models.

The remainder of this article is organized as follows. Section 2 de-
scribes the related works. Section 3 presents the proposed approach.
Section 4 presents the study methodology. Section 5 presents and

discusses the obtained results regarding the formulated research
questions. Section 6 discusses some threats to validity of our results.
Finally, Section 7 presents some conclusions and future works.

2 RELATEDWORKS
This section provides an overview of the related works. For this,
we have surveyed the current literature for finding studies related
to the problematic explored by this paper. Section 2.1 analyzes
some related works. Section 2.2 introduces, in turn, a comparative
analysis of the analyzed related works.

2.1 Analysis of the related works
We use Google Scholar1 to select similar works. In total, 4 articles
were selected, which are described and analyzed below.

Acher et al. [2]. It introduced a set of operators for the com-
position between two FMs producing a new model. The proposed
operators support inclusion, change, integration and extension be-
tween the composition of two models. Each composition is defined
by a set of rules that describe the structure resulting from the in-
tegration between the models. However, the proposed approach
was not evaluated by potential users, disregarding the provision of
data related to perceived ease and use, attitudes towards use and
the degree of acceptance as a whole.

Benavides et al. [5]. This paper reported an analysis of automa-
tion in feature models. They investigate the operations, techniques
and tools resulting from the literature outlining the major advances.
The studies show a catalog identifying more than 30 operations in
the literature and classifying the existing proposals. They evaluated
and compared different approaches to automating existing feature
models. This work does not focus on the expression of the inte-
gration relationship and does not conduct empirical studies with
potential users on this topic.

Farias et al. [11]. It conducted an evaluation over the evolution
of UML diagrams to add new features or reconciliation models
developed in parallel by different software-development teams. The
main results suggest that heuristics techniques require less effort
to produce the desired model. This article, therefore, reports a con-
trolled experiment that investigates the effort to apply techniques
of composition of models and to detect and to solve inconsistencies
in the compound models. The work does not focus on the modeling
of feature diagrams.

Accioly et al. [1]. This study conducted an empirical study in
collaborative environments. The main problem pointed out by the
authors refers to the conflicts that arise during the integration of
source codes. They point out that different awareness tools have
been proposed to alert developers. However, there is not much
empirical evidence to support the strategies used by these tools. The
article analyzes the effectiveness of two types of code changes as
predictors of conflicts. Unlike our study, the study seeks to identify
conflicts in source code, as well as was not evaluated by potential
users.

Researchers and professionals of industry are looking for solu-
tions that aim to reduce production time and increase the correct-
ness of their models. Tools and strategies use different approaches
to both decrease integration effort and improve correctness during
1https://scholar.google.com

Towards a Semiautomatic Tool to Support the Integration of Feature Models SBSI’19, May 20–24, 2019, Aracaju, Brazil

integration tasks. Hence, developers and researchers end up not
knowing which and how the integrate between two input feature
models should be performed in practice. Throughout this work,
we search analyzes the benefits to facilitate the day to day of the
developers, with a view to filling the gaps identified. The following
section highlights some gaps by presenting a comparative analysis
of the previously discussed studies.

2.2 Comparative analysis of the works
This section contrasts the proposed approach with the previously
analyzed studies. This comparison, based on comparison criteria (C),
serves to identify some similarities and differences. The comparison
criteria are presented below:Main contribution (C1): Studies that
have as main contribution ion the use of feature models to express
integration relationships or to address research topics related to
composition relationships, including conflict representation, con-
flict detection, and more. Proposed approach (C2): Studies that
introduce a new approach that deal with research topics concerning
integration, comparison, merge, and/or transformation of models
or source codes. Experimental study (C3): Studies that evaluated
the proposed approach through empirical studies, including case
study, controlled experiment, quasi-experiment or survey.Context
(C4): Studies that have been performed with industry professionals
or used real-world artifacts in academia. Participant profile (C5):
Studies that collected data of the participants to screen and char-
acterize their profile. Study variables (C6): Studies that analyzed
the effort to merge models, the correctness of merge relationships
and the acceptance of the proposed approach.

Table 1 presents the comparison considering these criteria. It
is observed that, only the proposed work fully meets the defined
criteria, highlighting the contribution and the differential of this
work.

Table 1: Comparative analysis of related works.

Related Work
Comparison Criteria

C1 C2 C3 C4 C5 C6

FMIT
Accioly et al. [1] # # # #
Acher et al. [2] # # # #
Benavides et al. [5] G# # G# # G#
Farias et al. [11] #

Legend
 Meets Fully # Does not meet
G#Meets partially

We present the FMIT in Section 3 and evaluate it in Section 4 by
comparing it with a manual approach using the FeatureIDE2.

3 THE PROPOSED APPROACH
This section presents FMIT, which is a semiautomatic tool to sup-
port the integration of feature models. It provides a strategy-based
approach to aid developers during the integration of feature mod-
els. The FMIT consists of an approach that partially automates the

2https://featureide.github.io/

integration of FMs as some types of conflicts like semantic conflict
that cannot be automatically resolved [15].

Functionality. Figure 2 shows the featuremodel of the proposed
tool. We note that the first level comprises five features, all of which
are mandatory:

Analyze: It is responsible for validating the input and output
models. Compare: If the feature models to be integrated are valid,
then the next step is to compare them. This functionality defines the
semantic and syntactic equivalence between the models. Integrate:
It aims at combining the models based on the equivalence descrip-
tion produced by the compare feature. Evaluate: This functionality
allows developers to check well-formedness rules of the feature
models, but it is not completely implemented. Persist: It aims at
persisting the models being manipulated in text format (e.g., XML).

Figure 2: The functionality of the FMIT represented as a fea-
ture model.

Interface. Figure 3 illustrates the FMIT’tool interface. This in-
terface is composed by three main sections: (A) Package Explorer,
(B) Input Feature Model’s, and (C) Console. These sections are
described below.

(A) Package explorer : It provides the navigation and structure of
input features models. The developer browses through these files
for information about the project being worked on. (B) Input feature
model: It presents two input features, FMA and FMB . These models
are changed and evolved by developers. (C) Console: It exhibits the
progress of the input feature models. During this progress, devel-
opers resolve emerging conflicts by answering questions generated
by FMIT at points where the technique cannot decide.

Main characteristics. FMIT presents the following particulari-
ties: (1) extensive integration with the Eclipse platform; (2) feature
model editor inherited from FeatureIDE tool; (3) settings and con-
straints editor; (4) statistical data; and, finally, (5) allows integration
with software-developed in Java and XML support, as tools that
support the modeling of features (for example, AHEAD, Feature-
HOUSE, among others).

4 STUDY METHODOLOGY
This section describes the study methodology used to evaluate the
FMIT. Section 4.1 presents the objective and research questions that
are explored in our evaluation. Section 4.2 formulates the study
hypotheses. Section 4.3 discusses details about the study variables
and their quantification method. Finally, Section 4.4 shows the
adopted experimental design to run the controlled experiment.

SBSI’19, May 20–24, 2019, Aracaju, Brazil Vinicius Bischoff et al.

Figure 3: An illustrative example of FMIT interface.

4.1 Objective and Research Questions
This study aims to evaluate the impact of the FMIT on the effort
invested by participants and the correctness of the integrations. Our
participants used the FMIT and the FeatureIDE tool to integrate
feature models through realistic scenarios. The objective of this
study is organized following the Goal Question Method (GQM)
template [19].

Analyze the integration techniques
for the purpose of investigating effects
with respect to correctness and effort
from the perspective of developers

in the context of evolution of feature models.

The more developers manipulate the models to detect and solve
problems, the greater the effort invested [6, 16]. We are concerned
with whether FMIT can improve model integration in some way
by reducing effort and increasing the number of desired models
produced. The explored variables are, in turn, the effort invested by
our study participants and the correctness of the integrated models.
In this way, the research questions (RQ) are defined as follows:

• RQ1: What is the effort invested by developers to integrate
feature models?

• RQ2: What is the implication of traditional techniques in
relation to the production of the correct model?

4.2 Hypothesis Formulation
This section formulates the hypotheses that aim to guide the con-
trolled experiment. In this paper, two hypotheses were formulated.
Hypothesis 1 deals specifically with analyzing the effort, while
Hypothesis 2 explores the correctness.

Hypothesis 1. The integration technique of the FMs tends at
first to be user-friendly due to its simplicity. However, as the pos-
sible features and combinations expand, they can become costly
as they involve procedures for analyzing the FMA and FMB input
models to identify possible equivalence between elements of all
models. Development teams can invest a lot of effort to integrate
models, and these efforts are often not converted into the desired
model, i.e., it presents an inconsistent model [11, 15]. Therefore, the
first hypothesis evaluates whether the semiautomatic integration
technique, based on the proposed prototype, reduces the integration
effort, helping the analysts and developers to produce the desired
models consuming less time. Based on this conjecture, the null and
alternative hypotheses on the Integration Effort (IE) are presented
below:

Null Hypothesis 1 (H1−0): The proposed semiautomatic
technique does not reduce the integration effort by producing the
desired model, FMAB , from FMA and FMB .
H1−0:H1−0:H1−0: Effort(FMA, FMB)Semiautomatic ≥ Effort(FMA,
FMB)Manual

Towards a Semiautomatic Tool to Support the Integration of Feature Models SBSI’19, May 20–24, 2019, Aracaju, Brazil

Alternative Hypothesis 1 (H1−1): The proposed semiautomatic
technique reduces the integration effort by producing the desired
model, FMAB , from FMA and FMB .
H1−1:H1−1:H1−1: Effort(FMA, FMB)Semiautomatic < Effort(FMA,
FMB)Manual

In analyzing the first hypothesis, we intend to evaluate whether
the proposed technique reduces the integration effort to produce
the desired model, FMAB , thus generating empirical evidence on
how the proposed techniques accommodate changes into the FMa
from the FMB to produce the FMAB .

Hypothesis 2. The inconsistencies affect the composition of
models due to conflicting changes, affecting the syntactic and se-
mantic properties of the model, and their integration does not
coincide with the desired model [1, 11]. The resolution of problems
found in models is influenced by the presence or not of inconsisten-
cies in the integrated output model, so it is necessary to evaluate
the correctness of the changes made. This hypothesis seeks to
assess whether the integration of input models performed so semi-
automatically assists developers in models reduction produced with
inconsistency. That is, models that do not have errors in comparison
to the desired model. Based on this statement, we define the null
and alternative hypothesis comparing the Correct Integration (CI)
presented below:
Null Hypothesis 2 (H2−0): The proposed technique does not
significantly favor the production of the desired model, FMAB ,
from FMA and FMB .
H2−0 :H2−0 :H2−0 : Correctness(FMA, FMB)Semiautomatic ≤ Correctness(FMA,
FMB)Manual

Alternative Hypothesis 2 (H2−1): The proposed technique
significantly favors the production of the desired model, FMAB ,
from FMA and FMB .
H2−1 :H2−1 :H2−1 : Correctness(FMA, FMB)Semiautomatic
> Correctness(FMA, FMB)Manual

When analyzing the second hypothesis, we want to verify the
correctness rate of the integrations performed by the participants
in this experiment. With this, we intend to identify the inherent
conflicts of failures produced during this activity. To run the anal-
ysis of the above hypothesis some variables were defined. These
variables are detailed in the next section.

4.3 Study Variables
The independent variable is the use of integration technique: semi-
automatic and manual. We control the use of the FMIT (automatic)
and FeatureIDE (manual) for understanding their impact on the
dependent variables: effort and correctness. The effort is quantified
based on the minutes invested to combine two feature models. The
correctness refers to the number of correctly integrated by amount
the integration realized. Table 2 shows the summary of the explored
variables in this study.

4.4 Experiment Process
Figure 4 shows the adopted experimental process. This process
follows empirical guidelines reported in [19], and has been validated
in previous empirical studies [11]. This experimental process is
composed of three phases which are described below:

Table 2: Description of the dependent and independent vari-
ables.

Type Variable Scale

Independent variables Main Nominal: Integration techniques

Dependent Variables Correctness Ordinal: 0 or 1
Effort Interval [0..60]

Figure 4: The experimental process used to evaluate the
FMIT.

First phase: Selection and training of participants. The first
activity, invite and select the participants, concerned on recruiting
the volunteers to execute the experiment. For this, we elaborated a
list of possible candidates and then generated an e-mail list. These
candidates in this list were invited. Next, in the training activity, all
participants that accepted to execute the experiment were trained.
Thus, we explained the context of the experiment, and the steps
of the experiment based on a list of instructions. This prepara-
tion ensured that they acquired the necessary familiarity with the
activity.

Secondphase: Experiment execution.The focus of this phase
was to realize the integration itself. So, the selected participants
used two tools, FMIT (semiautomatic), with integration support
and FeatureIDE (manual), without integration support through six
integration scenarios. Each integration scenario is equivalent to one
question (experimental task). Each participant performed a total of
six experimental tasks. The models used in this experiment were
small diagrams of features, with about 10 features, 7 relationships,
3 depth levels, and 3 average conflicts per model presented. The

SBSI’19, May 20–24, 2019, Aracaju, Brazil Vinicius Bischoff et al.

model size needs to be small due to time constraint, and the large
models might also influence the participants during the execution of
the tasks. The data related to the correctness (Cor) and integration
effort (f) were collected and then manipulated.

Third phase: Participant background. Finally, in the last ac-
tivity, Respond Background Questionnaire, we distributed to the
participants, a list of questions asking information about their back-
ground, such as their respective teach institutions, years of experi-
ence with software modeling and development. This information
is important to check the homogeneity of the sample. In addition,
they gave opinions about the experiment. To sum up, they fulfilled
a questionnaire about their knowledge backgrounds, and skills. The
output of this activity is the transcriptions of this interview, and
qualitative data about their background.

5 RESULTS
This section details the results of the performed experiment. Section
5.1 presents the analysis procedures used to explore the collected
data. Section 5.2 introduces the results of the first hypothesis, that
investigates the integration effort. Section 5.3 shows the results
of the second hypothesis that investigates the correctness of the
feature models.

5.1 Analysis of collected data
To analyze the normality of the samples, we chose to perform two
tests: Kolmogorov-Smirnov, used for large samples (n ≥ 30) and
Shapiro-Wilk reduced (n < 30) [17]. Table 3 presents the result
of the descriptive level, the Kolmogorov-Smirnov statistic, with a
significance level of Lilliefors for normality test, and Shapiro-Wilk,
the results returned from significance, also known as p-value < 0.05
for both tests in the analyzed samples. Thus, it can be affirmed that
a level of significance of 5% does not come from a normal sample.

Table 3: The results of the normality tests.

Kolmogorov-Smirnov a Shapiro-Wilk
Effort Statistic DF Sig. Statistic df Sig.

Semiautomatic 0.206 30 0.002 0.881 30 0.003
Manual 1.219 30 0.001 0.814 30 0.000

Correct Statistic DF Sig. Statistic df Sig.

Semiautomatic 0.354 30 0.000 0.637 30 0.000
Manual 0.537 30 0.000 0.275 30 0.000

Legend: a* - Correlation of Significance of Lillieforrs

Kolmogorov-Smirnov and Shapiro-Wilk [11, 17] tests of normality
indicated that the our data were not normally distributed, so non-
parametric tests should be applied. Therefore, the Wilcoxon test
was applied to analyze the effort, and the McNemar test was used
to the correctness. These methods were used to test the formulated
hypotheses (Section 4.2). We test the formulated hypotheses in the
following sections.

5.2 RQ1: Effort and Integration
Descriptive statistics. Table 4 presents the computed descriptive
statistics. The results indicates that the use of FMIT helped to

reduce the integration effort. On average, the effort reduced 70.13%
using the FMIT, compared with the manual integration using the
FeatureIDE. In addition, we noticed that the standard deviation
among the techniques investigated did not present data dispersion.

The Wilcoxon test is a non-parametric static hypothesis test
applied to compare the mean of two related samples (i.e., a paired
difference test). It can be used as an alternative to t-test. The t-
test is considered a hypothesis test that uses statistical concepts to
reject or not a hypothesis, and is applied to samples with normal
distribution. [3].

Hypothesis Testing. Table 4 shows the collected data related
to the formulated hypotheses. Considering effort variable, the ob-
tained p-value is lower that 0.05. Thismeans that the null hypothesis
H1−0 can be rejected. The p-value is 0.001, with a confidence inter-
val of 95 % in a sample of 30 pairs. The non-parametric wilcoxon
test which can be seen in Table 4.

Figure 5 shows the comparative in minutes of each scenario. In
this way, we obtain the total integration effort. The time in minutes
is given by the sum of the questions answered by the participants.
Scenario 6 in both questions were the one that presented greater
effort to solve the existing conflicts. Integration scenarios 1 and 5 did
not present conflicts. We can say that the participants invested less
effort to perform integration using the semiautomatic technique in
relation to the manual technique.

Figure 5: Effort applied in relation to manual technique and
FMIT (semiautomatic).

5.3 RQ2: Correctness and Integration
Descriptive statistics. The data of the descriptive statistics indi-
cate that the average of using the FMIT (semiautomatic) tool was
0.93 and FetureIDE (manual) of 0.53 hits. We can confirm the best
performance of the semiautomatic technique. Likewise, a 43.01%
increase in model integrations is confirmed. The use of tools that
support integration better lead to the level of assertiveness of de-
velopers in their tasks.

McNemar test is used to analyze the efficiency of a given tech-
nique, that is, it aims to evaluate the efficiency of situations, "before
and after", where each sample is used, and the measurement is done
at the level of a scale nominal or ordinal. This test is applied to

Towards a Semiautomatic Tool to Support the Integration of Feature Models SBSI’19, May 20–24, 2019, Aracaju, Brazil

Table 4: Descriptive statistics related to the effort and correctness.

Variables Treatment Min 25th MD 75th Max Avg. SD %Diff W N
p-value p-value

Effort Semiautomatic 0 0 2 3 5 1.90 1.66
70.13 0.001 -Manual 4 5 6 7 12 6.26 2.00

Correct Semiautomatic 0 1 1 1 1 0.93 0.25
43.01 - 0.002Manual 0 0 1 1 1 0.53 0.50

Legend: Standard Deviation (SD), Minimum (Min), First Quartile (25th), Median (MD), Third Quartile (75th),
Maximum (Max), Average (Avg.), Percentage Difference (% Diff), McNemar test (N), Wilcoxon test (W)

dichotomous variables, that is, to samples that only take two values,
for example, 0 and 1 [3, 11].

Hypothesis Testing. Analyzing H2−0, one has to investigate
the null hypothesis, the non-parametric McNemar test which can
be observed in Table 4. It is possible to verify that the collected
statistic of the significance is 0.002, with a confidence interval of
95% in a sample of 30 pairs. This value indicates that the second
null hypothesis (H2−0) can be rejected. Since the p-value is less than
0.05, one can conclude that there is evidence that the semiautomatic
technique is more effective than the manual technique.

Figure 6: Number of correct responses according to manual
and FMIT (semiautomatic) technique

Figure 6 shows the comparison between models produced by
semiautomatic and manual techniques. This graphic refers to the
correctness of the models, that is, the desired model FMAB . The
number of FMs incorrectly integrated by the tool without composi-
tion support corresponds to 47% (14/30), and correctly integrated
represents 53% (16/30). On the other hand, the use of a tool that
supports the composition of models obtained an assertiveness of
93% (28/30), and got 7% (2/30) incorrectly integrated. We observed
in this experiment that the consent of the developers is greater
when there is a tool indicating the conflicts. We believe that this
fact was a facilitator in managing the information produced by the
tool during the integration task.

6 TREATS TO VALIDITY
This study presents threats to validity. This section discusses the
strategies applied to manage these threats that range from conclu-
sion, construct, and external ones.

Conclusion validity. It considers the ability to obtain the cor-
rect conclusion based on the results from the experiment, through
the choice of statistical methods, assuming the sample size and the
reliability of the measurements [19]. In this criterion the experi-
ment produced a sample of 60 models of features, whose descriptive
statistical analysis identified that the obtained data did not adhere
to a normal distribution. Thus, we applied non-parametric tests,
i.e., the Wilcoxon test to measure the effort used in the detection of
conflicts, and the McNemar test to measure the correctness of the
models produced with a confidence interval of 95%.

Experiment validity. It takes into account the relationship be-
tween theory and observation, i.e., the results obtained through
questionnaires or experiments and are related to the expectations
of the studied theory [11, 19]. The experiments carried out in this
research were planned to measure the integration effort, as well as
to quantify the correctness of the models produced by the partici-
pants, being this strategy already adopted in previous studies [11].
In order to meet the execution and correction procedures of the
experiment, they were carefully planned, following good practices
found in [19].

External validity. It considers the conditions that allow to gen-
eralize the collected results to the industrial practice or to the most
realistic possible [11, 19]. In this context, we selected the partici-
pants who had adequate training to practice the activity related
to the experiment, that is, all the participants had a Master’s de-
gree in Applied Computing, besides of having experience in the
area of software development or modeling. In addition, the tools
and equipment used in the experiment are equivalent to the one
practiced in industry, and the application of the whole experiment
occurred at the University of Vale do Rio dos Sinos.

Given that these criteria may happen in practice, we could con-
jecture our results may be generalized, at some point, to other
contexts having similar settings found in our experiment.

7 CONCLUSION AND FUTUREWORK
This research investigated the influence of the use of tool support
by developers to integrate models, mainly to support the resolution

SBSI’19, May 20–24, 2019, Aracaju, Brazil Vinicius Bischoff et al.

of conflicts between parts of the FMs to be integrated. A controlled
experiment was carried out to evaluate the understanding of the
developers during the integration activities of feature models. The
FMs used in the experimental tasks had syntactic and/or semantic
conflicts. The developers’ understanding was investigated through
the analysis of the effort applied to resolve the conflicts, as well
as the correctness of the activities performed. Two hypotheses
were formulated and tested to analyze the effort and correctness,
respectively.

The main findings were that the use of the tool influenced the
effort to resolve conflicts, as well as the correctness of conflict res-
olution. The obtained results indicated that the effort to resolve
conflicts reduced by 73%, while the correctness rate increased by
43%. Moreover, this study allowed us to: (1) evaluate the use of
semiautomatic integration techniques to assist the developers in
carrying out the integration tasks; (2) analyze how conflicting mod-
els affect the production of the desired models; and (3) show the
importance of empirical studies to generate knowledge related to
the practice of integrating feature models. As future work, we will
replicate the study using different sizes of feature models and a
larger sample of participants to check whether (or not) our findings
are confirmed or not.

ACKNOWLEDGMENTS
This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior -Brasil (CAPES) - Finance Code
001, the Fundação de Amparo à Pesquisa do Estado do Rio Grande
do Sul (FAPERGS), and the Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq).

REFERENCES
[1] Paola Accioly, Paulo Borba, Léuson Silva, and Guilherme Cavalcanti. 2018. An-

alyzing conflict predictors in open-source Java projects. In 15th International
Conference on Mining Software Repositories. 576–586.

[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. 2010. Compar-
ing approaches to implement feature model composition. In European Conference
on Modelling Foundations and Applications. 3–19.

[3] James Aldrich. 2018. Using IBM® SPSS® Statistics: An interactive hands-on ap-
proach.

[4] Shahin Ashkiani and Cecilio Molinero. 2017. Visualization of cross-efficiency ma-
trices using multidimensional unfolding. Recent Applications of Data Envelopment
Analysis 978, 1 (2017), 226.

[5] David Benavides, Sergio Segura, and Antonio Cortés. 2010. Automated analysis
of feature models 20 years later: A literature review. Information Systems 35, 6
(2010), 615–636.

[6] Vinicius Bischoff, Kleinner Farias, and Lucian Gonçales. 2018. Evaluating the
Effort of Integrating Feature Models: A Controlled Experiment. (2018), 202–204.

[7] Vinicius Bischoff, Kleinner Farias, Lucian Gonçales, and Jorge Barbosa. 2018.
Integration of feature models: A systematic mapping study. Information and
Software Technology (2018).

[8] Hugo Bruneliere, Florent Kerchove, Gwendal Daniel, and Jordi Cabot. 2018. To-
wards scalable model views on heterogeneous model resources. In 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems.
334–344.

[9] Andreas Classen, Patrick Heymans, and Pierre Schobbens. 2008. What’s in a
feature: A requirements engineering perspective. In International Conference on
Fundamental Approaches to Software Engineering. 16–30.

[10] Khanh Dam, Alexander Egyed, Michael Winikoff, Alexander Reder, and Roberto
Herrejon. 2016. Consistent merging of model versions. Journal of Systems and
Software 112 (2016), 137–155.

[11] Kleinner Farias, Alessandro Garcia, Jon Whittle, Christina Chavez, and Carlos
Lucena. 2015. Evaluating the effort of composing design models: A controlled
experiment. Software & Systems Modeling 14, 4 (2015), 1349–1365.

[12] Daniela Lettner, Klaus Eder, Paul Grunbacher, and Herbert Prahofer. 2015. Feature
modeling of two large-scale industrial software systems: Experiences and lessons

learned. In 18th International Conference on Model Driven Engineering Languages
and Systems (MODELS). 386–395.

[13] Xiaoli Lian, Li Zhang, Jing Jiang, and William Goss. 2018. An approach for
optimized feature selection in large-scale software product lines. Journal of
Systems and Software 137 (2018), 636–651.

[14] Ethan McGee and John McGregor. 2017. A realization effort estimation model
for dynamic software product lines. In 21st International Systems and Software
Product Line Conference-Volume B. 111–116.

[15] Gleiph Menezes, Leonardo Murta, Marcio Barros, and Andre Hoek. 2018. On the
nature of merge conflicts: A Study of 2,731 Open Source Java Projects Hosted by
GitHub. IEEE Transactions on Software Engineering (2018).

[16] Anderson Oliveira, Vinicius Bischoff, Lucian Gonçales, Kleinner Farias, and
Matheus Segalotto. 2018. BRCode: An interpretive model-driven engineering
approach for enterprise applications. Computers in Industry 96 (2018), 86–97.

[17] Nornadiah Razali, Yap Wah, et al. 2011. Power comparisons of shapiro-wilk,
kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical
modeling and analytics 2, 1 (2011), 21–33.

[18] Sergio Segura, David Benavides, Antonio Cortés, and Pablo Trinidad. 2008. Au-
tomated merging of feature models using graph transformations. In Generative
and Transformational Techniques in Software Engineering II. 489–505.

[19] Claes Wohlin, Per Runeson, Martin Höst, Magnus Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Analysis of the related works
	2.2 Comparative analysis of the works

	3 The Proposed Approach
	4 Study Methodology
	4.1 Objective and Research Questions
	4.2 Hypothesis Formulation
	4.3 Study Variables
	4.4 Experiment Process

	5 Results
	5.1 Analysis of collected data
	5.2 RQ1: Effort and Integration
	5.3 RQ2: Correctness and Integration

	6 Treats to Validity
	7 Conclusion and Future Work
	Acknowledgments
	References

