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ABSTRACT
Software designmodels play a key role inmany activities of informa-
tion systems engineering, such as documenting software artefacts,
communicating project decisions, and code generation. In this sce-
nario, the techniques for comparison of software design models are
used for several purposes, such as, for detecting clones, and model
evolution. In the last decades, academia proposed different tech-
niques for comparing software models. Even using these different
techniques for model comparison, this process is still an activity of a
subjective nature, because during this process, different developers
can interpret the similarity differently. Thus, the problem is that
it is still unknown if developers has the same intuition in order to
resolve comparison of software design models. For this, the main
objective of this work is to explore the effects of their experience
level, i.e., experienced and inexperienced developers, relative to
their effort and correctness for resolving activities of comparing
software design models. Therefore, a controlled experiment was
conducted to evaluate the developer’s experience level regarding
on similarities of UML Models. The results show that the devel-
oper’s experience does not affect the understanding of similarities
activities.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering; • Human-centered computing→ Empirical studies
in HCI ;
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1 INTRODUCTION
Software design models play a key role in various on informa-
tion systems [6, 9, 15, 21], such as documenting software artifacts,
communicating project decisions, generating code, estimating de-
velopment effort, and especially in the representation of project
decisions to enhance communication among software development
teams. In the context of model-driven software development, for
example, developers use software models (such as UML class dia-
grams) as primary artefacts throughout the development process.
These artefacts undergo a sequence of transformations to generate
the application code. For this, these distributed development teams
usually evolve and change these different parts of software design
models. In this context, developers often need to identify the simi-
larities of the changed models in parallel, as well as reconcile the
parts of the models with conflicting information.

In this scenario, the similarities of software design models are
used for several purposes, such as: clone detection [18], indicating
if the models are clones for ensuring the true development author-
ship [5], identify which architectural patterns were used in the
project [16]; identifying the overlaps between project models, and
model composition [6] because similar elements must be identified
to enable the integration of them. In particular, the term model
comparison can be briefly defined as the activities that determine
the correspondences between the elements of MA and MB input
models. The correspondence between these elements is a relation
S between the elements ofMA andMB that is defined as similar or
equivalent.

In the last decades, state-of-the-art literature has proposed dif-
ferent techniques for comparing software design models. Van den
Brand et al. [20] based the comparison of software design models on
the correspondences between the input modelsMA andMB . This
approach assigns a unique identifier to each element of the mod-
els after receiving two input models, MA and MB . Therefore, the
approach identifies the differences between the elements through
these identifiers. Thus, equal elements have the same identifier in
both inputmodels, and new identifiers are detected by the technique
when new elements are inserted into the model, and removed ele-
ments are identified by those identifiers that are no longer present
in the model. Kolovos [11] defined that the process of model com-
parison is a matching of semantically equivalent elements between
the MA and MB input models. For this, the user defines a set of
semantic rules. Then the mechanism infers what are the equivalent
elements between the input models based on these rules. Kpodjedo
[13] defined that the comparison of software design models com-
prises on calculating the degree of overall similarity between the
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elements of the input models MA and MB , considering syntactic
and semantic aspects of the models. The general similarity degree
is a value used to indicate how close theMA andMB models are.

Despite the existence of systematized methods to calculate the
similarities of software design models [12], this is an activity of sub-
jective nature. During this activity, developers with different levels
of experience can interpret the similarity of software models in a
different manner. Moreover, previous works already pointed the
developers could comprehend software artefacts, such as a source
code in a different manner [1, 2, 4, 22]. This difference could be
motivated by the implicit use of intuition to establish the compre-
hension.

However, none of the previous studies investigated if developers
interpret software artefacts with higher level of abstraction in the
same manner. Therefore, it is necessary to investigate if developers
level of expertise affects their interpretation. Thus, the main ques-
tion this works aims to answer is “Does the developers’ experience
affects on the interpretation when they compare models?”

The main objective of this work is to explore the effects of devel-
opers experience level relative to their effort and correctness, i.e.,
number of similar models correctly identified during the compari-
son of software design models. By identifying the unknown effects
of the developers’ experience level in the comparison of software
design models. Thus, we seek to analyze the effects of their level of
experience in relation to effort, and correctness, and verify if their
experience level affect on their intuition during this activity.

For this, a controlled experiment was conducted to evaluate the
developer’s interpretation on similarity software design model’s ac-
tivities. Specifically, developers conducted some model comparison
tasks in the context of model evolution with UML class diagrams.
In addition, it is analyzed if the experience of the developer impacts
on the understanding of these activities. In total, 37 developers
participated in this experiment. The participants were composed
by academic students, and software developers professionals. Then,
their experience level were varied, and this allowed us to analyze
the influence on the experience of the developers in the proposed
activities. This results of this experiment points that the developer’s
experience does not affect the understanding of similarity of UML
software models.

To investigate this problem this work is presented in six sections.
Section 2 presents basic concepts about this research. Section 3
describes the related works. Section 4 describes the study methodol-
ogy. Section 5 presents and discusses the results obtained regarding
the research questions. Section 6 describes threats to validity. Fi-
nally, Section 7 presents the conclusion and future works.

2 MODEL COMPARISON OF SOFTWARE
DESIGN MODELS

The comparison of software design models consists on evaluating
the similarity between the inputmodelsMA andMB . Figure 1 shows
the base modelMA, and two subsequent evolved delta modelsMB .
In order to compare these models, literature has provided many
manners to identify these differences and common points. They are
usually based on match-by-name approach, or similarity values. In
a match-by-name approach, attributes and class names are matched
based on their names [20]. Then MB delta model would be fully

similar to their source model MA. This is due all class names of
the bothMB models match exactly to the corresponding names in
MA. This result would change with a similarity technique, that also
computes the differences in a unique similarity value, accouting
the differences of some aspects such as the relationships between
elements, and their neighbors [10, 13].

Figure 1: Examples of graphs connectivity.

Based on the relationship differences developers may interpret
that theMB model of Figure 1.2 would be more similar in relation
to theMA than the modelMB on Figure 1.3. This because they may
apply different subjective rules to judge the similarity of models
[12, 14]. For example, they may apply subjective rules that penal-
izes negatively the similarity value in the case of modifications
that implies on disconnected components. Applying this intuitive
property on the Figure 1.2 turnsMB less similar in relation toMA
because it generates a component that is not connected (Class1).
However, in practice developers may disagree with this rule. They
may argue that Figure 1.2 will maintain architecture specifications
even with a disconnected component, and fewer relationships re-
gardingMB on Figure 1.3. Therefore, others may argue thatMB on
Figure 1.2 would penalize more the similarity value in relation to
MB on Figure 1.3 because it it now has a component that its not
used by the application.

3 RELATEDWORKS
To the best of our knowledge, this study is the first to explore how
developers comprehend the similarity between UML model’s using
intuitive properties [12]. For this, this work specifically collected
experimental data from 37 professionals from industry. They solved
a total of 370 tasks of model similarity. This experiment is a start-
ing point to bridge a gap concerning empirical studies about the
similarity of software design models.

Empirical evidence is lacking to demonstrate if the expectations
of developers meet the results of similarity techniques. Despite the
importance of measuring the similarity between software design
models, little have been done to produce to investigate of similarity
on software design models. Ricca et al. [17] evaluated the compre-
hension of developers in relation to the usage of stereotypes on
the UML diagrams. The diagram’s similarities were not considered
during the evaluation, neither the evaluation of intuitive properties.
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In contrast, this work is the first to produce a controlled experiment
about similarity of software design models over the developer’s
perspective. This is because earlier works focused on generally
to produce empirical evidence on model composition, and the ef-
fects of improvements on the UML representation. Furthermore,
the other point neglected by previous studies is that developer in-
fluence over the results was not properly discussed, i.e., studies
concerned producing techniques instead on developer’s factors
that can generate issues on comparison of software design models
process.

The literature provided measures to analyze the comprehension
of developers on software engineering tasks [17][19]. However,
these works diverged what measures to apply. Ricca et al. [17] not
evaluated the time effort. This because the experiment had a time
limit of two hours in which almost participants used. They also
applied the precision and recall for evaluating answer’s correctness.
Uesbeck et al. [19] collected the effort that developers apply to
solve questions. However, they defined a time limit for respondents
solving tasks. This was defined because authors were afraid that
inexperienced developers may solve the tasks of the experiment.
The authors also evaluated the correct answers, and for this, they
analysed the output from the compiler. In contrast, this work anal-
ysed the time developers spent to solve tasks. As in the previous
works, the time also is an important factor for analysing their ap-
plied effort to interpret questions. However, we did not set any time
limit because the tasks developers performed were small. In addi-
tion, we also evaluated the answer’s correctness. The correctness is
an important variable to corroborate their comprehension on the
similarity tasks together with their effort.

To sum up, the experiments produced so far evidence a lack
of empirical evidence about the model comparison research field.
Moreover, this problem contributes to a lack of understanding about
the effects of the developer’s interpretation has on model similarity.
In particular, regarding the intuitive properties implemented in
the similarity tools. Therefore, this work conducted a controlled
experiment to verify whether developers comprehend the similarity
of models. This experiment was a starting point to understand
(1) if intuitive properties help developers understand the model
similarity, and confirm if those properties are proper to implement
in a comparison tool, and (2) verify if the developer’s expectations
are adherent to the results of similarity.

4 STUDY METHODOLOGY
This section describes the study methodology. Section 4.1 presents
the objective and research questions that are explored in our study.
Section 4.2 formulates the study hypothesis. Section 4.3 discusses
details about the study variables and their quantification method.
Finally, Section 4.4 shows the adopted experimental design to run
the controlled experiment.

4.1 Objective and Research Questions
This study investigates how software developers comprehend in-
tuitive properties in the context of model comparison activities.
We analyze if software developers expect the similarity adherent
to the definitions of intuitive properties. For this, their respective
levels of experience in relation to the model comparison activities.

The effort, and correctness of comparison activities were measured
to evidence these differences. Thus, the objective of this study is
organized in the GQM (Goal Question Method) model [3]:

Analyze developers experience level
for the purpose of investigating the effects

with respect to correctness and effort
from the perspective of developers
in the context of model comparison.

In this way, we aim to investigate whether the developers’ ex-
perience level, i.e., inexperienced and experienced, has the same
intuition on resolving model comparison activity. For this, their in-
tuition is analyzed through the effort, and correctness in the context
of model comparison. In addition, the level of experience is another
factor that can affect the understanding of comparison activities.
Therefore, the level of experience is a factor analyzed in evidence.
In this way, the research questions (RQ) are defined as follows:

• RQ1: What is the impact of the level of experience in the
effort to identify the similarity of the models?

• RQ2: What is the impact of the level of experience on the
correctness of model comparison?

4.2 Hypothesis Formulation
This section tries to formulate the hypotheses that aim to guide
the controlled experiment. In this paper two hypotheses were for-
mulated. Hypothesis 1 deals specifically with analyzing the effort,
while hypothesis 2 analyzing the correctness.

Hypothesis 1: this hypothesis assumes that experienced devel-
opers compare design model in a more systematic way, since its
assumed that their understanding about the process of similarity
of software models are better than inexperienced ones, and im-
plies in less effort during the activity of model comparison. That
is, experienced developers do not invest more effort to identify
correspondences between design models. In contrast, it is assumed
that inexperienced developers tend to apply more effort when com-
paring software models. However, this hypothesis may not be main-
tained due to inexperienced developers could comprehend design
models more quickly due the simplicity on dealing with design mod-
els. In addition, the size of the software design models could also
improve the understanding of inexperienced developers. Based on
this assertion, the hypotheses (null and alternative) are presented
as follows:

Null Hypothesis 1H1−0H1−0H1−0: Experienced developers (Exp) apply the
same or more effort to compare software design models than inexperi-
enced developers (Inex).

H1−0: E f f ort(MA,MB )Exp ≥ E f f ort(MA,MB )Inex

Alternative Hypothesis 1H1−1H1−1H1−1: Experienced developers (Exp)
apply less effort to compare software design models than inexperienced
developers (Inex).

H1−1: E f f ort(MA,MB )Exp < E f f ort(MA,MB )Inex

Thus, we seek to understand if the level of experience is criti-
cal in relation to the effort in order to identify the equivalences
between elements, generating empirical evidence about the effects
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of the level of experience in model comparison activities. After
performing this analysis, a first perception about the comprehen-
sibility of the developers in the model comparison activity will be
created. The next hypothesis investigates the impact of the develop-
ers experience level on the correctness of similarity between design
models.

Hypothesis 2: developers may do not identify the correct equiv-
alences between software design models. This is import because
subsequent activities can be negatively affected, such as the model
composition. If a wrong description of commonalities and differ-
ences of software design model elements be identified before the
composition process, an inconsistent model would be generated.
This hypothesis assumes that experienced developers identifies
with more accuracy the commonalities and differences between
software design models than inexperienced developers. Therefore,
the second hypothesis evaluates whether experienced developers
can actually identify similar models correctly in relation to inexpe-
rienced developers in the same activity. In addition, this hypothesis
assumes that high experienced developers outperform the number
of identification of similar models in relation to not experienced
developers. Based on this, the null and alternative hypotheses are
defined as follows:

Null Hypothesis 2H2−0H2−0H2−0: Inexperienced developers (Inex) iden-
tify more or equal correct answers (Cor) in relation to experienced
developers (Exp) during similarity of software design models activ-
ities.

H2−0 : Cor (MA,MB )Inex ≥ Cor (MA,MB )Exp

AlternativeHypothesis 2H2−1H2−1H2−1: Inexperienced developers (Inex)
identify less correct answers (Cor) in relation to experienced devel-
opers (Exp) during similarity of software design models activities.

H2−1 : Cor (MA,MB )Inex < Cor (MA,MB )Exp

To run the analysis of the above hypothesis some variables were
defined. These variables are detailed in the next section.

4.3 Study Variables
The independent variable of the hypotheses 1 and 2 is the experi-
ence level of the developers, respectively. As earlier mentioned, the
experience level of developers was controlled in this experiment to
understand its impact on the dependent variables. The dependent
variable of the first hypothesis is the effort applied by the develop-
ers to solve the similarity between two input modelsMA andMB .
This variable was measured in seconds. The dependent variable of
the second hypothesis is the number of correct answers.

4.4 Experiment Workflow
Figure 2 shows the adopted experimental process. This process was
adopted because it was already used on previous studies [8][7].
This experimental process is composed of three phases which are
described below:

• First phase: Selection and Training of Participants. In
the first step, we executed the activity invite and select the

Figure 2: The Experimental Process.

participants. In this activity, we concerned on inviting par-
ticipants to execute the experiment. Candidates who had
experience and involvement with modeling and develop-
ment of information systems were selected to participate in
the experiment. Next, in the training activity, all participants
that accepted to execute the experiment were trained. This
training consists on presenting to them the contextualiza-
tion about how to execute the experiment, and the kind of
activities they would perform. This preparation ensured that
they acquired the necessary familiarity with the upcoming
tasks.

• Second phase: Experiment Execution. The participants
executed the experiment. A unique activity composes this
step, i.e., Identify Similar Models. In this activity selected
participants executed ten tasks of model similarity. In this
questionnaire, each similarity scenery is equivalent to a ques-
tion. Practitioners answered a total of ten questions. Each
question required to users choose one of the four delta mod-
els MB . Specifically, practitioners must choose one of the
MB that they judge be more similar in relation to the base
model MA. The models used in this study were UML class
diagrams that contained about 8 classes and 7 relationships.
The size of the models is due to the time limitation to per-
form this experiment, making it impossible for participants
to solve very large models. The output of this activity is the
(1) set of correct answers (Cor); (2) the time spent to perform
the similarity task (f ); and (3) the rate of correct answers
(RCor). The questionnaire with activities they performed
are available as additional material 1.

1https://drive.google.com/open?id=1laOVril1WJe5CGY14DiVYUK8yQook35P
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• Third phase: Respondents Background. Finally, in the
last step we executed the activity respond background ques-
tionnaire. In this activity, we distributed a list of questions
asking information about the background of the participants.
This questionnaire ask their current positions, years of expe-
riencewith softwaremodelling and development. In addition,
they opined about the experiment. To sum up, they fulfilled
a questionnaire about their knowledge backgrounds, and
skills. The output of this activity is the transcriptions of their
reports about the experiment, and qualitative data about
their experience profile, and knowledge background.

5 RESULTS
This section details the results of the experiment. Section 5.1 presents
an overview of the participants profile. Section 5.2 shows the results
of the first hypothesis, that investigates the developer’s effort. Sec-
tion 5.3 shows the results of the second hypothesis that investigates
the developer’s correctness.

5.1 Participants Background
A total of 37 participants were recruited to perform this experiment.
All participants has knowledge background related to software de-
velopment, and modelling of information systems. In other words,
almost all of them at least attended or actually attend in an un-
dergraduate course related to systems analysis and development.
In particular they attended on graduate courses such as computer
science, development and system analysis, information systems,
and computer engineering. One of the participant has a bachelor’s
degree in mathematics, and another participant was enrolled on a
psychology course. But both of them were involved on academic
projects that required them to perform activities related to software
modelling and development.

A total of 67.5% of the participants (25/37) work in the software
industry, on companies such as TOTVS, SAP, INMETRO, ADP,
CWI software, Correios, and PROCERGS. Their position varies
from software analysts (24.3%, 9/37), software developers (35.1%,
13/37), project managers (5.04%, 2/37), and software architects (2.7%,
1/37). 32.4% (12/37) of participants are undergraduate (16/2%, 6/37),
and graduate students (16/2%, 6/37) enrolled on computer science
related courses, and that attended in software industry previously.
51.1% (19/37) has at least four years of experience on software
development, and 48.6% (18/37) of the participants has more than
five years of experience on software development. Moreover, 78.3%
(29/37) of participants has until four years of experience on software
modelling, and a minority (21.6%, 8/37) of participants has more
than five years of experience on software modelling. However, as
participants highlighted that the activity of software modelling was
secondary to their daily tasks, i.e., they perform with less frequency
than dealing with programming tasks, their experience level was
classified according their software development experience. It was
assumed that classifying their experience level according to their
amount of years on software development activities is somewhat
equivalent to the experience on modelling software, as they deal
with software design models to plan the implementation of the
software system.

5.2 RQ1:developers Effort
Descriptive statistics. A total of 370 responses were collected
from 37 participants. These participants answered 10 questions.
Table 1 presents the statistical description of the data related to
developer’s effort. Inexperienced developers performed 190 samples
of similarity activities, and while experienced developers produced
180 samples. These values are presents in column N of Table 1
specifically. The results appear show that there isn’t a group that
applied less effort on comparison activity of software design models.
Except the mean value (average) time, the maximum value (Max),
and the standard deviation (SD) indicates that the group of experi-
enced developers applied more effort. In particular, the maximum
effort value shows that experienced developers applied a 50% more
effort than inexperienced developers. Whereas, the median value
points to the same direction, i.e., experienced developers dedicating
more time on some similarity tasks.

Table 1: Descriptive statistics of hypothesis 1.

Effort
Experienced Inexperienced

N 180 190
Min 45 45
25th 45 45
Median 60 60
75th 60 60
Max 360 240
Mean 67,25 65,13
Standart deviation (SD) 43,06 30,02

Hypothesis Testing. Table 2 shows the results of hypothesis
tests using theMann-Whitney test. Specifically, Table 2 presents, for
each question, the rank in seconds of each group, theMann-Whitney
value, and the significance value (p-value). The Mann-Whitney test
showed that there was no significant difference in effort applied be-
tween experienced and non-experienced developers, as the overall
result pointed that Mann-Whitney U = 16569.5 and p-value = 0.563,
with an average effort rank of 188.29 for the group of inexperienced
developers and 182.55 for experienced developers. Therefore, this
test failed to reject the null hypothesis H1−0.

In general, the p-values of all questions were above 0.05, demon-
strating that the mean of the two groups does not have a significant
difference. In question 10, the p-value of 0.061 is closer to the con-
fidence interval of 0.05, as the average effort of the inexperienced
developers was slightly lower than the average effort applied by
the experienced developers.

We also applied the Kruskall-Wallis statistical test to reinforce the
results presented on the the Mann Whiteney U test. The Kruskall-
Wallis test is a nonparametric test for independent variables, and as
in the Mann Whitney U test, it is also based on the mean ranking
to determine if there is a significant difference between the devel-
opers’ experience groups. The Kruskall-Wallis test is an extension
of the Mann Whitney U test, as well as being designed for the same
purpose, this test also evaluates two or more independent variables.
Therefore, this test was used to support the results presented in
Table 2.

Table 3 presents the results obtained for each question through
the Kruskall-Wallis test. The Kruskal-Wallis test confirms that there
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Table 2: Results of Mann-Whitney U Test

Questions Statistics Inexperienced Experienced

General
Rank 188,29 182,55
Mann-Whitney U 16569,5
p-value 0,563

1
Rank 18,21 19,83
Mann-Whitney U 156
p-value 0,605

2
Rank 20,42 17,5
U de Mann-whitney 144
p-value 0,339

3
Rank 19,89 18,06
U de Mann-whitney 154
p-value 0,532

4
Rank 20,18 17,75
U de Mann-whitney 148,5
p-value 0,458

5
Rank 19,16 18,83
U de Mann-whitney 168
p-value 0,918

6
Rank 21,05 16,83
U de Mann-whitney 132
p-value 0,193

7
Rank 19,26 18,72
U de Mann-whitney 166
p-value 0,86

8
Rank 18,84 19,17
U de Mann-whitney 168
p-value 0,912

9
Rank 19,39 18,58
U de Mann-whitney 163,5
p-value 0,799

10
Rank 16,16 22
U de Mann-whitney 117
p-value 0,061

is no significant difference about the effort between experienced
and inexperienced developers, since χ2 = 0.334 and p-value = 0.563,
with an average effort rank of 188.29 in the group of inexperienced
developers, and 182.55 for experienced developers in the general
row of Table 3. Therefore, through this test also fails to reject the
null hypothesis H1−0. In the previous test, the p-value of question
10 resulted in 0.061, which was the value closest to the significance
value. In this case, the Kruskal-Wallis test also pointed that there is
no significant difference in effort applied between experienced and
inexperienced developers, since χ2 = 3.505, and p = 0.061, with an
average effort rank of 16.16 in the developer group and 22 for the
group of experienced developers in the field of question 10 of Table
3. Finally, we also highlighted that the general results of p-values in
Table 3 presented values practically equal to the p-values in Table
2, confirming the results in the Mann Whitney U test.

5.3 RQ2:developers Correctness
Descriptive statistics.Correctness specifically refers to the amount
of correct answers participants produced. Thus, this descriptive
analysis is based on the quantity of correct answers produced in
each question. A total of 37 participants answered 10 questions
about model similarity. Specifically, 18 participants were experi-
enced developers, and 19 inexperienced developers. Table 4 presents
the descriptive analysis of these data. Overall, data from the de-
scriptive analysis point out that there is no significant difference
between experienced developers and inexperienced developers in

Table 3: Results of Kruskall Whallis Test on hypothesis 1.

Questions Statistics Inexperienced Experienced

General
Rank 188,29 182,55
χ2 0,334
p-value 0,563

1
Rank 18,21 19,83
χ2 0,268
p-value 0,605

2
Rank 20,42 17,5
χ2 0,914
p-value 0,339

3
Rank 19,89 18,06
χ2 0,391
p-value 0,532

4
Rank 20,18 17,75
χ2 0,551
p-value 0,458

5
Rank 19,16 18,83
χ2 0,011
p-value 0,918

6
Rank 21,05 16,83
χ2 1,693
p-value 0,193

7
Rank 19,26 18,72
χ2 0,031
p-value 0,86

8
Rank 18,84 19,17
χ2 0,012
p-value 0,912

9
Rank 19,39 18,58
χ2 0,065
p-value 0,799

10
Rank 16,16 22
χ2 3,505
p-value 0,061

relation to the results correctness. In addition, Table 4 also indicates
inexperienced developers have more correct answers compared to
the experienced developers. However, this difference is not large.
The mean value, shows an advantage for the inexperienced group
with 1.3 higher correct answers compared to the group of experi-
enced developers.

Table 4: Descriptive statistics of the quantity of correct an-
swers.

Correctness
Experienced Inexperienced

N 18 19
Min 10 12
25th 12 13,25
Median 13 14
75th 14 15
Max 16 18
Mean 13.1 14,4
Standart Deviation (SD) 1.73 1.96

Figure 3 shows the number of correct answers per question
according to the developers’ experience. Experienced developers
achieved more correct answers on questions 6 and 10 in relation to
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inexperienced developers. Inexperienced developers achieved more
correct answers in general, but without a significant difference.
Thus, the inexperienced developers had a superior performance in
8 questions. This points that experienced developer neglects the
simplest activities.

Figure 3: Quantity correct answers by question.

Hypothesis Testing. The chi-square test was chosen to test
Hypothesis 2. This test fulfilled the two main requirements for
analyzing this hypothesis: (1) the data are categorical and nomi-
nal, that is, the response is defined as correct or incorrect; (2) the
two variables consist of two independent groups (Experienced and
Inexperienced Developers). Specifically, this test verifies if the devel-
oper experience level (experienced / inexperienced) is significantly
associated with the type of response (correct or incorrect). Thus,
there are two nominal variables being evaluated: developer cate-
gory (experienced / not experienced) and the answer type (correct
or incorrect). Data are significantly associated when p-value < 0.05.
It is possible to note that the general result of the Chi-square test
in Table 5 shows that χ2 = 2.2178, and p-value = 0.1364. This data
points that there is no statistically significant association between
the developer experience category and the response type, that is,
developers experience has no influence on the amount of correct
answers. Specifically, the p-value = 0.1334 is above the significance
value of 0.05, and therefore the null hypothesis H2−0 is not rejected.
It is also possible to associate that, where p-values are equal to 1 in
Table 5, the questions correspond with the proximity of correctness
between experienced and inexperienced developers in Figure 3.

We also applied Fisher’s test in this hypothesis. Basically, this
test is also suitable for this type of test, i.e., for categorical and
independent variables. But the main reason for this test being used
is to reinforce the values presented in the previous test. In the
Fisher test, the data were also significantly associated when p-
value < 0.05. Table 6 shows the p-values obtained in this test. The
general evaluation of the questions points out a p-value = 0.1362,
i.e., this test also points out that there is no association between the
developer experience category and the response type. Therefore,
the null hypothesisH2−0 is not rejected because the p-value is above
0.05.

6 TREATS TO VALIDITY
This study presents a series of threats to validity. For this, some
measures were taken in order to guarantee the validity, and the
reproducibility of this work. Therefore, the internal threats, external

Table 5: Chi-Square test.

Question Experienced vs Inexperienced

General χ2 22.178
P-value 0.1364

1 χ2 0,59259
P-value 0,4414

2 χ2 0
P-value 1

3 χ2 0.13846
P-value 0.7098

4 χ2 14.545
P-value 0.2278

5 χ2 0
P-value 1

6 χ2 0
P-value 1

7 χ2 0
P-value 1

8 χ2 1.125
P-value 0,2888

9 χ2 0.16071
P-value 0.6885

10 χ2 0
P-value 1

Table 6: Fisher test.

Question P-value
General 0.1362

1 0.443
2 1
3 0.7112
4 0.2286
5 1
6 1
7 1
8 0.289
9 0.6906
10 1

threats, statistical conclusion threats, and threats to experiment
were treated specifically.

Internal validity. In this kind of study is usual to validate the
inferences between the independent variable and the dependent
variables are valid internally. This study presents a valid inference
because the study meets all three requirements for internal validity.
These requirements are: (1) the temporal precedence criteria was
met, i.e., the participants experience influences the similarity effort,
and correctness; (2) the covariation observed, i.e., the correct an-
swers rate of the comparison between the models varied according
to the participants experience; and (3) there is no extra cause for
the detected covariation.

External validity. External validity refers to the validity of the
results obtained in other wider contexts. For replicating this study
is necessary that: (1) the participants must be able to make compar-
isons betweenmodels to carry out the activities of the questionnaire,
as well as (2) know the concepts and UML notation, such as UML
class diagrams, (3) comparison must be implemented to identify the
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evolution of software models based on the addition, and deletion
of class relationships, and (4) models must be small.

Conclusion validity. To validate the statistical conclusion it
was checked whether the dependent and independent variables
have been subjected to appropriate statistical methods. These meth-
ods are useful to analyze whether the experiment variables covari-
ates or not. For this, it was verified that the sample data has nor-
mal distribution, through the Kolmogorov-Smirnov and Anderson-
Darling tests.

Experiment validity. The validity of the experiment aims to
verify whether we are really measuring what we think are mea-
suring. The dependent variable was quantified based on seconds
number to perform each question, and the concept of correct an-
swers rate, and comprehension rate is well-known in the literature;
the quantification was done accurately by the authors, i.e., the
variables were properly evaluated since it was found that the data
collected were in agreement with the hypothesis according the
study objectives; and different types of similarity tools can produce
different results, but in this experiment participants did not used
any different version of similarity tool. Therefore the treatment
was the same for all participants.

7 CONCLUSION
This research sought to investigate if the developers experience
level influence on the comprehension on the similarity of software
design models. Therefore, a controlled experiment was conducted
to evaluate the understanding of the developers in the activities
of comparison of software design models. Activities all of which
were elaborated respecting the intuitive properties. Then the un-
derstanding was investigated through the analysis of the effort
and correctness applied in the activities of comparison of software
design models, and in addition, if there is influence of their ex-
perience level in the understanding of these activities. Therefore,
two hypotheses were elaborated to analyse the effort and correct-
ness respectively. Moreover, this work mitigate factors that can
affect the comprehension of developers during the development
and modelling of information systems. Information systems are
usually complex to understand, then integrating their features re-
quires the appropriated identification of different and overlapping
parts by developers.

The main conclusions regarding the two hypotheses formulated
were: (1) The developers experience does not influence the effort
in the comparison of software design models, (2) nor does it influ-
ence the quantity of correct answers. Thus, although the difference
in experience level, developers have a common understanding on
UML software design models, even in a similarity calculation ac-
tivity, that is a complex task. Finally, this controlled experiment
contributed specifically to how the factor of the developer’s experi-
ence affects understanding; and also in relation to the importance
of empirical studies in the area of software development to inves-
tigate the developers capability of interpretation, as well as, the
importance of higher abstraction languages on the comprehension
of software developers. Further research will focus on replicate this
study with more participants aiming to increase and improve the
significance of obtained results.
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