
Towards a Hybrid Approach to Measure Similarity Between
UML Models

Lucian José Gonçales

PPGCA, Universidade do Vale do Rio

dos Sinos (UNISINOS)

São Leopoldo, RS

lucianj@edu.unisinos.br

Kleinner Farias

PPGCA, Universidade do Vale do Rio

dos Sinos (UNISINOS)

São Leopoldo, RS

kleinnerfarias@unisinos.br

Vinicius Bischoff

PPGCA, Universidade do Vale do Rio

dos Sinos (UNISINOS)

São Leopoldo, RS

viniciusbischof@edu.unisinos.br

ABSTRACT
Several approaches to measure similarity between UML models

have been proposed in recent years. However, they usually fall

short of what was expected in terms of precision and sensitiv-

ity. Consequently, software developers end up using imprecise,

similarity-measuring approaches to figure out how similar design

models of fast-changing information systems are. This article pro-

poses UMLSim, which is a hybrid approach to measure similarity

between UML models. It brings an innovative approach by using

multiple criteria to quantify how UML models are similar, including

semantic, syntactic, structural, and design criteria. A case study

was conducted to compare the UMLSim with five state-of-the-art

approaches through six evaluation scenarios, in which the simi-

larity between realistic UML models was computed. Our results,

supported by empirical evidence, show that, on average, the UML-

Sim presented high values for precision (0.93), recall (0.63) and

f-measure (0.67) metrics, excelling the state-of-the-art approaches.

The empirical knowledge and insights that are produced may serve

as a starting point for future works. The results are encouraging

and show the potential for using UMLSim in real-world settings.

CCS CONCEPTS
• Software and its engineering→ Design languages; Software
configuration management and version control systems;

KEYWORDS
Model Similarity , Case Study , Model Comparison Technique ,

Unified Modelling Language , Information Systems

ACM Reference Format:
Lucian José Gonçales, Kleinner Farias, and Vinicius Bischoff. 2019. Towards

a Hybrid Approach to Measure Similarity Between UML Models. In XV
Brazilian Symposium on Information Systems (SBSI’19), May 20–24, 2019,
Aracaju, Brazil. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

3330204.3330226

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SBSI’19, May 20–24, 2019, Aracaju, Brazil
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7237-4/19/05. . . $15.00

https://doi.org/10.1145/3330204.3330226

1 INTRODUCTION
Several approaches to measure similarity between UML models

have been proposed in recent years [3, 9, 13]. WebDiff [17] and

MADMatch [12] would be examples of these approaches. Software

developers make use of these approaches to understand how similar

UML models are, or even to identify their commonalities and differ-

ences. In distributed software development, for example, separate

teams may change UML models in parallel. This allows developers

to work on specific parts of UML models that are relevant to them.

Before consolidating the changes made, they need to measure the

similarities between the versions of the UML models created in

parallel. The term model similarity can be briefly defined as a mea-

sure of correspondences between two models, MA and MB . This

similarity is obtained after comparing the different aspects ofMA
and MB , including their semantic, syntactic, structural, and design

ones.

We have learned from empirical studies [13, 14] that comput-

ing similarity is still considered a highly error-prone and time-

consuming task. Even worse, the current similarity-measuring

approaches usually fall short of what was expected in terms of

precision and sensitivity [9, 13–15]. Consequently, software de-

velopers end up using imprecise approaches to figure out how

similar UML models of fast-changing information systemts are. In

practice, similarity tends to be computed subjectively by experts,

giving rise to conflicting notions of similarity [5, 7]. Moreover,

most approaches [10, 12, 17] do not take into account multiple

aspects of the UML models; rather, they have focused on compar-

ing models following a traditional but imprecise match-by-name

approach [10, 17].

This article proposes UMLSim, which is a hybrid approach to

measure similarity between UML models. It brings an innovative

approach by using multiple criteria to quantify how UML models

are similar, including semantic, syntactic, structural, and design

criteria. A case study was conducted to compare the UMLSim with

five state-of-the-art approaches through six evaluation scenarios, in

which the similarity between realistic UML models was computed.

Software developers benefit from using the UMLSim typically when

executing maintenance tasks of UML models like versioning of

UMLmodels, pinpointing structural correspondences between UML

models. Our results, supported by empirical evidence, show that,

on average, the UMLSim presented high values for precision (0.93),

recall (0.63) and f-measure (0.67) metrics, excelling the state-of-

the-art approaches. The empirical knowledge and insights that

are produced may serve as a starting point for future works. The

results were encouraging and show the potential for using UMLSim

in real-world settings.

https://doi.org/10.1145/3330204.3330226
https://doi.org/10.1145/3330204.3330226
https://doi.org/10.1145/3330204.3330226

SBSI’19, May 20–24, 2019, Aracaju, Brazil Lucian José Gonçales et al.

The remainder of this article is organized as follows. Section 2

presents the main concepts used in this research. Section 3 presents

the related work. Section 4 presents the proposed approach. Sec-

tion 5 presents the evaluation of the proposed approach. Finally,

Section 6 presents some concluding remarks and future works.

2 BACKGROUND
This chapter contains a brief description of the basic concepts in-

volved in this work.

2.1 Similarity of Software Design Models
The similarity of software design models consists of an activity

aimed at establishing a degree of similarity between elements of

input models,MA andMB . For this, similarity approaches seek to

find commonalities and differences between each element of the

input models MA and MB , so that a degree of similarity between

MA andMB can be computed. This degree of similarity varies from

0 to 1. A threshold like 0.7 is defined to help developers to make

decisions regarding whether the model elements are similar or not.

Similarity equal to or equal to 0.7 means that model elements are

similar. Therefore, MA and MB elements are equivalent if their

similarity is greater or equal to a previously defined threshold.

TheMA andMB elements can be compared considering differ-

ent aspects inherent to UML models, including syntactic, semantic,

structural, and design ones. Heuristics to compute similarity can

consider such aspects to produce more precise similarity measures.

The syntactic aspect assigns a degree of similarity to the difference

between element labels, and meta-model properties, while the se-

mantic aspect calculates how similar the meanings of the models

are. The structural aspect evaluates the hierarchical positions of the

elements, while the design aspect evaluates similarity from a quanti-

tative perspective of architectural issues, such as coupling, circular

references, the quantity of attributes, operations, and relationships

2.2 Unified Model Language
The Unified Model Language (UML) was created from the unifi-

cation of three visual notations of object-oriented projects: the

Booch method, Object Modeling Technique (OMT), and Object-

Oriented Software Engineering (OOSE) [18]. Since then, due to

its wide adoption of the industry in communication support and

understanding of design aspects of software systems [7], industry

considered UML the de facto lingua franca of software development.

UML has 14 models to represent the behavioral and static aspects

of the diagrams [18]. Among them the class diagram is the most

commonly used diagram to represent aspects of system design and

implementation [7].

The class diagram visually represents the structure of a system’s

functionality, such as the attributes and methods it contains, and

how these classes relate. Figure 1 presents a class diagram in the

standard established by the UML, and the numbering of the follow-

ing text corresponds to the identifiers contained in that figure. Next,

some of the main components of this diagram is briefly described:

(1) The entity class is composed of attributes and methods; and (2)

The inheritance relationship between the Chart and Circle classes.

It is a type of UML relationship that indicates a specific class (spe-

cialization) inherits the attributes and methods of a general class

(generalization).

Figure 1: Example of a UML Class Diagram.

3 RELATEDWORKS
This section details and makes a comparative analysis of the related

works.

3.1 Analysis of the related works
Before conducting this research, we produced a search string

1
,

and used it on search engines such as ACM Digital Library
2
and

Google Scholar
3
to find and retrieve related work. In total, 4 relevant

articles and a tool were selected, which are described and analyzed

as follows.

MadMatch [12]. The authors highlight that measuring the sim-

ilarity of software design models is a frequent task for evolving

and maintaining systems, but still lacks effective techniques. In

this sense, they proposed MadMatch, which is an approach to mea-

sure similarities between software design models. This approach,

measures the similarity based on syntactic, semantic, and struc-

tural aspects. Some contrasting point was identified in relation to

this work. First, they do not consider evaluating the design aspect.

Second, the tools were not evaluated on a realistic scenario. More-

over, the evaluation did not consider the comparison with another

state-of-the-art tool.

MoCoto [6]. This study reports that the rigidity and inflexibility

affect the quality of the techniques ecosystem for managing the

integration of models, including the similarity techniques. In this

sense, the authors propose MoCoto, a technique for integrating soft-

ware design models. Despite this technique is focus on integrating

design models, it executes a similarity calculation step, i.e., simi-

larly we proposed in our work. This MoCoto module calculates the

similarity based on semantic, and syntactic aspects. However, some

differences were found in relation to the proposed work. First, they

concern on improving the correctness of integration of software de-

sign models, instead the precision of similarity techniques. Second,

their similarity measuring step considers only the semantic, and

syntactic aspects. Besides these aspects, the proposed technique

also considers the structural and design operators. Third, unlike

our study they did not conduct any experimental study to evaluate

the effectiveness of related approaches.

WebDiff [17]. The authors are concerned on the lack of ap-

proaches that properly calculates the similarity of software design

models. For this, they proposed WebDiff, a tool for calculating

1
((UML OR Unified Modelling Language) AND (Comparison OR Similarity OR Match-

ing OR differencing) OR (Diagrams OR Model OR Design))

2
https://dl.acm.org/

3
https://scholar.google.com.br/

https://dl.acm.org/
https://scholar.google.com.br/

Towards a Hybrid Approach to Measure Similarity Between UML Models SBSI’19, May 20–24, 2019, Aracaju, Brazil

model differences based on a match-by-name approach. This work

presents some differences in relation to our proposed work. First,

WebDiff calculates the similarity based on the elements name, i.e.,

it is categorized as a syntactic similarity aspect. Instead, our work

executes the comparison also based on semantic, structural, and

design aspects. Second, this study did not conduct any experiment

or comparative analysis in relation to the proposed state-of-the art

tools. Third, WebDiff focused on producing differences of software

models and does not produce a general similarity value that can

serve as input to many software development activities.

Astah [1]. Astah was concerned on providing a market solution

to support the modeling of UML diagram’s ecosystem. Furthermore,

this tool provides a feature for comparing software design models.

This feature aims to differentiate the design models within the con-

text of software evolution. However, we identified some differences

in relation to our approach. First, the similarity of the diagram is id-

based instead of using heuristics similarity, and therefore, none of

the aspects of the diagram are considered to establish equivalence

relations. Second, we did not find any work reporting the precision

of Astah comparison features, neither conducting an analysis of

Astah in relation to other tools.

EMFCompare [2]. The authors were concerned over the need

to maintain a history of evolution of software models where collab-

orators could view the changes made during subsequent versions.

Therefore, the authors proposed the EMFCompare, an approach to

compare software design models and thereby identify changes dur-

ing software evolution. EMFCompare considers the syntactic and

semantic aspects of the models to measure the degree of similarity.

In contrast, the proposed technique also considers the structural

and design aspects.

3.2 Comparative analysis of the works
This section contrasts the proposed extension with the previously

analyzed studies. This comparison, based on comparison criteria (C),

serves to identify some similarities and differences. The comparison

criteria are presented below:

(1) Main contribution (C1): Studies that have as main contri-

bution a similarity approach for software design models.

(2) Proposed approach (C2): Studies that introduce a new ap-

proach that deal with research topics related to similarity

of software design models, such as, model matching, model

merging, or model evolution.

(3) Similarity aspects (C3): Studies that evaluates the similar-

ity between two input models based on semantic, syntactic,

structural, and design aspects.

(4) Experimental study (C4): Studies that evaluated the pro-

posed approach through empirical studies, such as survey,

controlled experiment, quasi-experiment or case study.

(5) Context (C5): Studies that have been performed evaluations

with rich-semantic artifacts in academia, i.e., those nearly

used and produced on industry context.

(6) Study Variables (C6): Studies that analysed the precision,

accuracy, and recall of the correctness of similarity approaches.

(7) Comparative Analysis (C7): Studies that compares their

proposed techniques to another state-of-arts approaches.

Table 1 presents the comparison considering these criteria. It

is observed that, only the proposed work fully meets the defined

criteria, highlighting the contribution and the differential of this

work.

Table 1: Comparative analysis of related works.

Comparison Criteria
Related Works C1 C2 C3 C4 C5 C6 C7
UMLSim
MADMatch [12] G# # #
MoCoto G# G# # # # #
WebDiff [17] G# G# G# # # # #
Astah [1] G# G# # # # # #
EMFCompare [2] G# G# G# # # # #
Legend
 Meets Fully # Does not meet

G#Meets partially ⊘ Not Applicable

Research opportunity. To sum up, none of the proposed tools

considered a hybrid approach to evaluate software design models.

Instead, they have operators that can not be used independently

turning the techniques rigid, and prone to errors due to inflexibility

to adapt to different contexts of domains. For this, this work pro-

posed an approach that implement four independent operators that

turn this technique hybrid and multicriteria. Furthermore, instead

of limiting the evaluation to only semantic or syntactic criteria, the

proposed tool is the first to evaluate structural, and design aspects.

4 THE PROPOSED APPROACH
This section introduces UMLSim, which is a hybrid approach for

measuring the similarity between UML models. The UMLSim differ-

ential comprises considering different but complementary aspects

of UML models like semantic, syntactic, structural, and design—

where the term hybrid comes from.

4.1 Overview of the UMLSim Process
Figure 2 presents an overview of the adopted process, along with

the proposed approach. This process brings together all operators

seamlessly. These operators calculate the similarity between the

input models, MA and MB , through a specific perspective. The

similarity is a value from 0 to 1. Currently, UMLSim only supports

UML class diagram since they are the most widely adopted in

practice. Figure 3a shows an illustrative example of UML class

diagram. Each step of the UMLSim process is described as follows:

Step 1: syntactic similarity. This step aims at computing the

similarity between two input models,MA andMB , consider-

ing their syntactic aspect [16]. For this, the syntactic operator
evaluates their elements following a match-by-name strat-

egy. The syntactic similarity between pairs ofMA andMB
elements are stored in am × n syntactic similarity matrix

(SS), as shown in Figure 3b, where m (row) and n (column)

are the number ofMA andMB model elements, respectively.

Step 2: semantic similarity. This second step seeks to mea-

sure the semantic similarity [12] between pairs ofMA and

MB elements. We evaluate how similar are the meanings

SBSI’19, May 20–24, 2019, Aracaju, Brazil Lucian José Gonçales et al.

of the terms used to name the MA and MB elements. In

this sense, the semantic operator computes and stores the

obtained results in am × n semantic similarity matrix (SE),

where m (row) and n (column) are the number of MA and

MB model elements, respectively.

Step 3: structural similarity. This step seeks to discover how
similar the structures ofMA andMB are [12]. The structural
operator analyses the influence of class neighbours. The struc-
tural operator stores the obtained results in am×n structural

similarity matrix (SN), where m (row) and n (column) are

the number ofMA andMB model elements, respectively.

Step 4: design similarity. This step aims at determining the

similarity betweenMA andMB based on design metrics [21].

The design operator receives asMA,MB and design metrics

as inputs. Examples of design metrics would be the number

of elements on which this class depends, and the depth of

the class in the inheritance hierarchy. The design operator
runs a set of metrics and then stores the obtained results in

am × n design similarity matrix (SM), where m (row) and n
(column) are the number of MA and MB model elements,

respectively.

Step 5: general similarity. This last step is responsible for

bringing together the syntactic, semantic, structural and de-

sign similarities so that a general similarity can be computed.

Each previous operator outputs a similarity matrix. It has in-

puts the matrices produced in the privious steps, and weight

(explained later). This step finishes producing am × n final
similarity matrix, a m (row) and n (column) are the number

ofMA andMB model elements, respectively. The elements

of this matrix are denoted by ai , j , which corresponds to a

similarity value between an i-element of MA and another

j-element ofMB . The similarity matrix is complete when the

last an,m element is calculated.

The following section describes such similarity operators inmore

detail.

4.2 Similarity Operators
This section describes the four UMLSim Similarity Operators.

4.2.1 Syntactic Operator. The UML metamodel specification [18]

puts some light about the definition of the syntax of UML models.

Basically, UMLmodels has a concrete and abstract syntax. The UML

metamodel specification of each diagram defines the respective ab-

stract syntax of them. The concrete syntax of UML models refer to

the way diagrams are constructed, interchanged, and represented.

This technique evaluates the concrete syntax of UML models be-

cause this technique does not focus on comparison of metamodels.

The constructions and representations on concrete syntax refers

to elements such as the attributes, methods, and classes. Therefore,

the syntax similarity is based on how these constructs differ from a

diagram to another.

This operator calculates the similarity of concrete syntax based

on a match-by-name strategy [16]. Then, this technique analyses

the similarity between the labels of model elements such as names

of class, attribute, and method. In addition, UMLSim also considers

other properties, such as whether elements are abstract, and their

visibility. This way, the syntactic evaluation of UMLSim can con-

sider different level of detail for similarity evaluation. The details

of the input diagrams are known as granularity, or conflict units.

In this technique, a granularity has three levels: coarse-grained,

partial and fine-grained. In coarse-grained granularity, a syntactic

analysis considers the names of classes, attributes, and methods.

In the partial granularity, a partial amount of the properties of dia-

grams will be considered on the similarity. Finally, in fine-grained

all properties of diagram elements are evaluated.

Equation 1 presents a formula of syntactic similarity. The cal-

culation uses Lenvenshtein [22] to calculate the distance between

two labels. Length is an operation that calculates the size of the

label. A similarity between labels is given by Equation 1:

labelSimilarity(label1, label2) =
levenshteinDistance(label1, label2)

hiдherValue(lenдth(label1, label2))
(1)

As an example, the comparison between two classes of inputmod-

elsMA andMB , Line and Edge would result on 0.25 by Equation 1,

indicating that Line has 25% similarity to Edge. This is because, the

levensteinDistance(Line, Edge) = 3, and length(Line) = 4, lenght(Edge)
= 4. Figure 4 shows this result on the syntactic similarity matrix.

4.2.2 Semantic Operator. UML superstructure [18] categorises the

semantics regarding the systems context in two groups: (1) struc-

tural semantics, i.e., the semantic of static elements, and (2) be-

havioural semantics, i.e., the semantic of dynamic elements. The

UMLSim considers the structural semantics of UML diagrams be-

cause it supports Class Diagrams. In practice, UMLSim evaluates

whether the input models are similar in relation their domain of

discourse. This means that structural terms must be evaluated ac-

cording their terms proximity. The terms may be different syntacti-

cally, but similar according the context of the modelled system. For

this, UMLSim provides a semantic operator which is responsible for

evaluating the meaning of terms between input models. This simi-

larity is based on a synonym dictionary. Developers and engineers

must use this dictionary to link related terms. Developers must link

terms that are equivalent inside the domain of a discourse.

Equation 2 presents how the semantic operator attributes simi-

larity values between terms. The equation evaluates if the terms

are synonyms. The terms are completely similar in the case they

are synonyms, and not similar otherwise. As an example, the com-

parison between two classes of input modelsMA andMB , Line and

Edge. The result of Equation 2 is 1, indicating these terms are 100%

similar. This is because these terms are related as synonyms on

the dictionary. Figure 4 shows this result on the semantic similar-

ity matrix. In addition, this similarity indicates that both classes

are equivalent in terms of meaning, i.e., they have the same pur-

pose. However, this operator does not evaluate if both classes are

equivalent regarding their neighbours. This could impact on the

contextual similarity of both classes. For this, the structural simi-

larity is important to be evaluated. In particular, the structure of

classes surrounds both elements. For this, next section presents an

operator to evaluate the similarity of the structures that surrounds

these classes.

Towards a Hybrid Approach to Measure Similarity Between UML Models SBSI’19, May 20–24, 2019, Aracaju, Brazil

Figure 2: Overview of the UMLSim approach.

Figure 3: Input models MA and MB and their similarity ma-
trix.

SynonimSym =

{
1 isSynonim(term1, term2) == true

0 isSynonim(term1, term2) == f alse
(2)

4.2.3 Structural Operator. The previous sections were limited to

point two types of similarities: (1) identify the difference between

names of the class structures, and (2) evaluates if names are different

but make part of the same context. However, they fail to account

in the similarity value when the elements have the same name but

differ regarding their context. Then, they also fail in evaluating the

structure of the diagrams in respect of objects surroundings. As

solution to this is to evaluate the structural similarity [8][19][11].

However, they not converged in how to evaluate diagrams structure.

In UMLSim, the structural similarity is to evaluate the direct impact

neighbor has on compared elements. Thus, in this work classes are

considered neighbor if there is at least an established relationship

between them. This operator analyses the similarity of the diagram

in relation to their neighbors. This operator assumes that an element

ofMA has a correspondent element inMB whether their neighbors

are sufficiently similar.

Equation 3 presents how the operator evaluates the structural

similarity. This equation means that given a Classi in MA and

a Classj in MB , each respective neighbor of Classi (Ni) will be

compared to each respective neighbor ofClassj (Nj). The neighbors

are nodes that have a relation in the Adjacency Matrix A. These

neighbors are evaluated considering the semantic and syntactic

criteria, as previously presented. The sum of the similarity values

is divided by the value M . The M value corresponds to the total

number of comparison operations between the neighbors of Classi
and Classj .

As an example, the structural comparison between “Line” and

“Edge” class are SimEstrutural(Line, Edge) = 0.1, because their re-

spective neighbors “Chart” and “Graph” have few syntactical simi-

larities, and no semantic relation. Therefore, these classes are not

equivalent based on the defined threshold of 0.7 similarity degree.

These result are the structural similarity matrix shown in Figure 4.

NSim(MA,MB) =

∑
1

i
∑
1

j (sim(Ni ,Nj))

M
(3)

4.2.4 Design Operator. Many design aspects can differentiate a

model from another, such as a class concentrating attributes and

methods, and the degradation of application layers. These design

aspects are identified by a set of metrics, such as the number of at-

tributes, methods, and interfaces. These simple metrics are usually

applied in software engineering to support developers to take a

quantitative view of the models. Thus, several failures are detected,

which were difficult to perceive without these metrics, e.g., a pres-

ence of a God Class, i.e., a class that concentrates to much methods.

Thus, the similarity of design metrics aims to compare how simi-

lar the input elements are in relation to these problems. Next, the

MetricSim (metric similarity) operation (Equation 4) calculates the

similarity between the elements the metric “n”, i.e., their similarity

in terms of God Methods, or their cohesion, and couple.

As an example, let “n” be the “number of methods” (NOM) as

the metric being evaluated. Then, suppose that the NOM of a given

class in MA is 3, and the NOM of a given class in MB is 8. Then,

3/8 = 37.5, i.e., they are 62.5% similar.

DesiдnSim(MA,MB) =

∑
1

n [MetricSimn (sim(elementA, elementB))]∑
1

n Pn
(4)

4.2.5 General Operator. The general operator establishes the final
degree similarity between the elements of software design. To gen-

erate the final similarity, the results of four comparison operators

converges to a general similarity between the correspondent ele-

ments as shown in Figure 4. The user can assign a specific weight

for each operator to prioritize which aspect has more relevance

in relation to the abstraction level of the models. The weight can

vary from 0 to 1 for each criterion. Thus, values close to zero indi-

cate little relevance of the criterion in the evaluation of similarity,

while values close to one indicate criteria that have much relevance

within the evaluation of similarity. By default the weight is set to

SBSI’19, May 20–24, 2019, Aracaju, Brazil Lucian José Gonçales et al.

1, i.e., all the aspects have the same relevance. Thus, the relevance

of the structural and design aspect would decrease in the scenario

where the compared models has a high abstraction level.

Figure 4: The general operator of the proposed approach.

Algorithm 1 presents the implementation of the general operator.

They retrieve each similarity value from the respective matrix from

Line 4 up to Line 7. Finally, it calculates a general similarity with

their respective weight (Line 8).

Algorithm 1 General Similarity Operator

1: procedure General-Operator(MA ,MB , and weights of respective operators)

2: for each element i inMA do
3: for each element j inMB do
4: SyntaticSimilar ity ← SynctaticMatr ix (i , j);
5: SemanticSimilar ity ← SemanticMatr ix (i , j);
6: StructuralSimilar ity ← StructuralMatr ix (i , j);
7: DesiдnSimilar ity ← DesiдnMatr ix (i , j);
8: GeneralSimilar ity ← (PS ∗ SyntaticSimilar ity + PSE ∗

SemanticSimilar ity + PE ∗ StructuralSimilar ity + PD ∗DesiдnSimilar ity)
/ (PS + PSE + PE + PD);

9: GenSimMatr ix [i][j] ← GeneralSimilar ity ;
10: end for
11: end for
12: ReturnGenSimMatr ix ;
13: end procedure

5 EVALUATION
This section presents the evaluation of the UMLSim.

5.1 Scenarios
The UMLSim and related comparison techniques were evaluated in

six different scenarios
4
. Each scenario corresponds to an evolution

of modelMB from the modelMA. A developer were invited in order

to changed and evolve the ModelMA, and then generatedMB . Thus,

after the changes, aiming to evolve the software model he needs to

reconcile the overlapping and different parts which are identified

by comparison techniques. These scenarios are described in Table 2,

and were derived from the source code of respective projects con-

tained on GitHub repository. The scenarios are e-commerce, ATM

locator, law firm, petrol station, pet system, and university system

domains. We chose different types of domains for demonstrating

the behaviour of proposed approach and state-of-the-art techniques

in the various context of comparison.

Figure 5 shows an example of a scenario we used. It is an UML

class diagram representing a system on the e-commerce domain.

This application implements a sales system that allows the customer

4
https://drive.google.com/open?id=1rJHBrrFQzRjPXksEhi9O6Kig9ajnhKU6

to login on the system, visualize the product, and make payment.

Table 2 shows a detailed description of all scenarios.

Figure 5: The bidirectional arrows represents matching ele-
ments betweenMA andMB

Table 2: Description of comparison scenarios.

Scenarios

MA MB # Equivalent

ClassesElements # Elements Elements # Elements

1

Class 7 Class 9

7Attributes 19 Attributes 8

Methods 15 Methods 12

2

Class 8 Class 6

6Attributes 8 Attributes 8

Methods 13 Methods 11

3

Class 6 Class 4

4Attributes 17 Attributes 12

Methods 10 Methods 8

4

Class 6 Class 6

5Attributes 15 Attributes 13

Methods 12 Methods 6

5

Class 6 Class 5

6Attributes 7 Attributes 6

Methods 14 Methods 12

6

Class 18 Class 6

5Attributes 29 Attributes 12

Methods 3 Methods 14

5.2 Variables
The tool’s precision was evaluated through the quantitative pre-

cision, recall, and f-measure variables [20]. The equation’s results

vary between 0 and 1. Values near 1 means that results are precise,

and values close to 0 points fewer accurate results. In the context

of this work, precision (Figure 6(a)) is defined as the number of

classes that were correctly assigned as similar, divided by the set of

all classes that should be equivalent.

Towards a Hybrid Approach to Measure Similarity Between UML Models SBSI’19, May 20–24, 2019, Aracaju, Brazil

Table 3: The obtained results related to the metrics of preci-
sion, recall and f-measure.

Scenarios Metrics EMF
Compare

MAD
Match Astah MoCoto Web

diff
UML
Sim

eCommerce

Precision 0.4 0.27 0.85 0.41 0.08 1

Recall 0.57 0.37 0.85 0.62 0.16 0.66

F-measure 0.47 0.31 0.85 0.5 0.11 0.8

ATM

Precision 0.11 0.16 1 0.36 0.06 1

Recall 0.25 0.28 1 0.57 0.14 1

F-measure 0.16 0.21 1 0.44 0.09 1

Advocacy

System

Precision 0.1 0.16 0.57 0.28 0.11 1

Recall 0.2 0.14 0.66 0.33 0.25 0.8

F-measure 0.13 0.15 0.61 0.3 0.15 0.88

Pet

System

Precision 0.2 0.16 0.5 0.66 0.18 1

Recall 0.33 0.33 0.66 0.66 0.33 0.33

F-measure 0.25 0.22 0.57 0.66 0.23 0.5

Petrol

System

Precision 0.22 0.1 0.37 0.57 0.18 1

Recall 0.33 0.16 0.6 0.66 0.33 0.33

F-measure 0.26 0.12 0.46 0.61 0.23 0.5

University

System

Precision 0.04 0.11 0.27 0.22 0.08 0.6

Recall 0.05 0.11 0.27 0.22 0.05 0.18

F-measure 0.05 0.11 0.27 0.22 0.06 0.28

General

Average

Precision 0.18 0.13 0.59 0.42 0.1 0.93

Recall 0.29 0.21 0.67 0.51 0.2 0.63

F-measure 0.22 0.16 0.63 0.45 0.13 0.67

In particular, the components of the precision (Figure 6(a)) are

the true positive results (tp), i.e., the correct results, and the false

positive results. The recall (Figure 6 (b)) indicates if the set of all

possible correct answers was achieved. For this, it considers the true

positive results (tp), i.e., the number of right matchings, and false

negatives (fn) that are the results correctly pointed as false. Finally,

we also evaluated the f-measure (Figure 6 (c)) of the comparison

tools. The f-measure is the harmonic average between precision and

recall. For this both values of precision and recall are considered in

this equation.

Figure 6: Precision, Recall, and F-measure equations.
Precision (a) Recall (b) F-Measure (c)

precision =
tp

tp+f p recall =
tp

tp+f n f −measure =
2.(precision∗r ecall)
(precision+r ecall)

5.3 Obtained Results
Figure 7 presents an overview of the results obtained from the

current comparison tools produced through Kiviat diagrams. Each

axis in the graph corresponds to the comparison between two

input models,MA andMB in one of the comparison scenarios. In

addition, three distinct colors represent the quantitative variables

respectively. The blue line represents the precision. The red line

represents the recall values. Finally, the green color represents the

f-measure variable.

Results of the approach proposed in the general context
of the scenarios. Overall, the results indicate that the precision
of the proposed approach reached at least 60% in all scenarios. The

precision value in the ATM scenario was also the largest, where the

precision, recall, and f-measure variables reached 100%. This shows

that the precision of the proposed approach reaches a considerable

result in different scenarios.

Combination of recall and f-measure. The Astah has the

highest score considering the combination of recall and f-measure

(recall = 0.85 and f-measure = 0.85). However, Astah calculates

the similarity based on the tracing of the objects identifier. This

traceability is lost when someone removes some element from the

diagram and inserts it again. This is a reason to justify why tools

that implement a more sophisticated technique have lower scores

than Astah on some scenarios, i.e., in the advocacy and university

scenarios, MadMatch (recall = 0.14, and f-measure = 0.15), and

WebDiff (recall = 0.05, and f-measure = 0.06) presented low scores.

General Average of Precision. The UMLSim tool obtained the

highest mean of precision (Table 3), presenting an average of 93%

in correctness in the equivalences between the components. The

proposed tool achieved 100% of precision in the ATM, eCommerce,

Advocacy System, Pet System, and Petrol System. As previously

mentioned, the proposed tool mapped the equivalences with a

precision of at least 60% in the University System scenario.

General Average of Recall and F-measure. Table 3 shows

that the proposed tool obtained a relevant recall average (63%), as

well as, the higher f-measure average (67%). Despite both f-measure

and recall are higher in ATM scenario (100%), the determinant factor

that had a negative impact on the general average is the result of

recall and f-measure in the University system, i.e., 18% and 28%

respectively. This means that the tool had precision in few results in

this scenario. This is because the university scenario was designed

with many-to-one equivalences, i.e., many class equivalent to a only

one class. This is a problem that will be addressed in future research.

Another interesting result is that the UMLSim had a recall lower

than Astah, and MoCoTo measuring the similarity of PetSystem,

PetrolSystem and University System scenarios. This is because the

Astah is a tool that maintains an id-based traceability between

elements. The recall were inferior than MoCoTo because the equal

distribution of weights between the evaluated criteria may not be

appropriated for these specific cases. Finally, the evalution was

focused on scenarios of small size. Thus, evaluating the scalability

between models that represents ecosystems of information systems

is a future work [4].

6 CONCLUSIONS AND FUTUREWORK
This work proposed a hybrid approach and multi-criteria for com-

parison software model called UMLSim. It is composed by syntactic,

semantic, structural, and design similarity operators. The results

showed that the technique performed well among the different

scenarios evaluated. Thus, the use of multicriteria is a way to im-

prove the precision and recall of similarity between the models.

The usage of these criteria improved the precision in the majority

of the scenarios. For software industry, an hybrid approach is essen-

tial because it enables developers calibrate the comparison aspects

according the abstraction level of the diagrams. This turns the sim-

ilarity more precise, and the comparison process more adjustable

to the type of models being used.

The main contributions of this work was: (1) a brief description

of state-of-the-art tools produced on academia and industry about

model comparison; (2) an approach for evaluating the similarities

based on the gaps and shortcomings identified related to contem-

porary tools; (3) the generation of empirical knowledge on the

effectiveness of contemporary model comparison techniques.

As future work, we intend to replicate this case study on the

evaluation of related tools aiming at a more detailed analysis, e.g.,

SBSI’19, May 20–24, 2019, Aracaju, Brazil Lucian José Gonçales et al.

Figure 7: Results related to precision.

testing using models with greater size. In addition, we seek to add

other similarity operators, which are able to apply concepts greedy

search in the context of model similarity. We also intend to conduct

an experiment on the invested effort to resolve conflicts generated

by heuristic comparison techniques in relation to specification

techniques.

ACKNOWLEDGMENTS
This study was financed in part by the Coordenação de Aperfeiçoa-

mento de Pessoal de Nível Superior -Brasil (CAPES) - Finance Code

001, and the Fundação de Amparo à Pesquisa do Estado do Rio

Grande do Sul (FAPERGS).

REFERENCES
[1] Astah. 2018. http://www.astah.net/.

[2] Cédric Brun and Alfonso Pierantonio. 2008. Model differences in the eclipse mod-

eling framework. UPGRADE, The European Journal for the Informatics Professional
9, 2 (2008), 29–34.

[3] Hugo Bruneliere, Florent Marchand de Kerchove, Gwendal Daniel, and Jordi

Cabot. 2018. Towards Scalable Model Views on Heterogeneous Model Resources.

In Proc. of the 21th ACM/IEEE Int. Conf. on Model Driven Engineering Languages
and Systems. ACM, 334–344.

[4] Kattiana Constantino, Eduardo Figueiredo, Glauco Carneiro, and Raquel Minardi.

2016. Multiple View Interactive Environment to Analyze Software Product Line

Tools. In Proc. of the XII Brazilian Symposium on Information Systems. 32.
[5] Hoa Khanh Dam, Alexander Egyed, Michael Winikoff, Alexander Reder, and

Roberto E Lopez-Herrejon. 2016. Consistent merging of model versions. Journal
of Systems and Software 112 (2016), 137–155.

[6] Kleinner Farias, Alessandro Garcia, Jon Whittle, Christina von Flach Garcia

Chavez, and Carlos Lucena. 2015. Evaluating the effort of composing design

models: a controlled experiment. Software & Systems Modeling 14, 4 (2015),

1349–1365.

[7] Rodi Jolak, Boban Vesin, and Michel RV Chaudron. 2017. OctoUML: an envi-

ronment for exploratory and collaborative software design. In 39th International
Conference on Software Engineering. ICSE, Vol. 17.

[8] Marouane Kessentini, Ali Ouni, Philip Langer, ManuelWimmer, and Slim Bechikh.

2014. Search-based metamodel matching with structural and syntactic measures.

Journal of Systems and Software 97 (2014), 1–14.
[9] Alexander Knapp and Till Mossakowski. 2018. Multi-view Consistency in UML:

A Survey. In Graph Transformation, Specifications, and Nets. Springer, 37–60.
[10] Dimitrios Kolovos, Louis Rose, Richard Paige, and Antonio Garcia-Dominguez.

2018. The Epsilon Book.
[11] Danai Koutra, Neil Shah, Joshua T Vogelstein, Brian Gallagher, and Christos

Faloutsos. 2016. DeltaCon: principled massive-graph similarity function with

attribution. ACM Trans. on Knowledge Discovery from Data (TKDD) 10, 3 (2016),
28.

[12] S. Kpodjedo, F. Ricca, P. Galinier, G. Antoniol, and Y. G. Guéhéneuc. 2013. MAD-

Match: Many-to-Many Approximate Diagram Matching for Design Comparison.

IEEE Trans. on Software Engineering 39, 8 (Aug 2013), 1090–1111.

[13] Kristóf Marussy, Oszkár Semeráth, and Dániel Varró. 2018. Incremental View

Model Synchronization Using Partial Models. In Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems.
ACM, 323–333.

[14] Gleiph Ghiotto Lima Menezes, Leonardo Gresta Paulino Murta, Marcio Oliveira

Barros, and Andre Van Der Hoek. 2018. On the Nature of Merge Conflicts: a

Study of 2,731 Open Source Java Projects Hosted by GitHub. IEEE Transactions
on Software Engineering (2018).

[15] Johnatan Oliveira, Eduardo Fernandes, Maurício Souza, and Eduardo Figueiredo.

2017. A method based on naming similarity to identify reuse opportunities.

iSys-Revista Brasileira de Sistemas de Informação 10, 1 (2017), 99–121.
[16] Kleinner SF Oliveira, Karin Koogan Breitman, and Toacy Cavalcante de Oliveira.

2009. A Flexible Strategy-Based Model Comparison Approach: Bridging the

Syntactic and Semantic Gap. J. UCS 15, 11 (2009), 2225–2253.
[17] N. Tsantalis, N. Negara, and E. Stroulia. 2011. Webdiff: A generic differencing ser-

vice for software artifacts. In 2011 27th IEEE International Conference on Software
Maintenance (ICSM). 586–589.

[18] OMG UML. 2011. 2.4.1 superstructure specification. Technical Report. document

formal/2011-08-06. Technical report, OMG.

[19] Konrad Voigt and Thomas Heinze. 2010. Metamodel matching based on planar

graph edit distance. In International Conference on Theory and Practice of Model
Transformations. Springer, 245–259.

[20] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and

Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[21] J Wust. 2019. SDMetrics: The software design metrics tool for UML. https:

//www.sdmetrics.com/.

[22] Li Yujian and Liu Bo. 2007. A normalized Levenshtein distance metric. IEEE
Transactions on Pattern Analysis and Machine Intelligence 29, 6 (2007), 1091–1095.

http://www.astah.net/
https://www.sdmetrics.com/
https://www.sdmetrics.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Similarity of Software Design Models
	2.2 Unified Model Language

	3 Related Works
	3.1 Analysis of the related works
	3.2 Comparative analysis of the works

	4 The Proposed Approach
	4.1 Overview of the UMLSim Process
	4.2 Similarity Operators

	5 Evaluation
	5.1 Scenarios
	5.2 Variables
	5.3 Obtained Results

	6 Conclusions and Future Work
	Acknowledgments
	References

