
Supporting the Composition of UML Component Diagrams
Guilherme Ermel

University of Vale do Rio dos Sinos
São Leopoldo, Brazil

gui_ermel@hotmail.com

Kleinner Farias
University of Vale do Rio dos Sinos

São Leopoldo, Brazil
kleinnerfarias@unisinos.br

Lucian José Gonçales
University of Vale do Rio dos Sinos

São Leopoldo, Brazil
lucianj@edu.unisinos.br

Vinicius Bischoff
University of Vale do Rio dos Sinos

São Leopoldo, Brazil
viniciusbischof@edu.unisinos.br

ABSTRACT
Fast-changing business environments have become enterprise in-
formation systems more heterogeneous and complex. This extreme
uncertainty leads to continuous development and integration of
architecturally relevant components developed in parallel. In this
context, the proper composition of such components is critical to
reduce the development effort. However, the current composition
tools are still considered imprecise and inflexible for this purpose.
This article, therefore, proposes MoCoTo, a model composition tool
to support the integration of UML component diagrams. It exploits
equivalence relationships between the UML component elements
to improve integration precision and accuracy. Developers and
system analysts can benefit from using MoCoTo when evolving or
maintaining architectural models of enterprise information systems.
MoCoTo was implemented as an Eclipse platform plug-in. The tool
was used to support the composition of architectural components in
three realistic evolution scenarios of a Software Product Line. Our
preliminary results indicated that MoCoTo was able to integrate
architectural models represented with UML component diagrams.
The metrics used to evaluate the effectiveness of the proposed tool
(i.e., precision, recall and F-measure) presented values higher than
0.6 in all evaluation scenarios.

CCS CONCEPTS
• Information systems → Information systems applications; En-
terprise applications;

KEYWORDS
Software Modeling, UML, Software Components, Model Composi-
tion, Empirical Studies
ACM Reference Format:
Guilherme Ermel, Kleinner Farias, Lucian José Gonçales, and Vinicius
Bischoff. 2018. Supporting the Composition of UML Component Diagrams.
In Proceedings of Simpósio Brasileiro de Sistemas de Informação (SBSI’2018),
Jennifer B. Sartor, Theo D’Hondt, and Wolfgang De Meuter (Eds.). ACM,
New York, NY, USA, Article 4, 8 pages. https://doi.org/10.475/123_4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SBSI’2018, June 2018, Caxias do Sul, Rio Grande do Sul Brazil
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

1 INTRODUCTION
Nowadays, fast-changing business environments, pressures of shorter
time-to-market, and rapidly advancing technologies are ever-present
characteristics found in the most development projects of enterprise
systems. These characteristics cause constant changes in architec-
tural components [2]. Software developers represent such archi-
tectural components using the UML (Unified Modeling Language)
component diagram [16], for example.

In the context of collaborative software modeling, developers
create and change architectural components (represented using
UML (Section 2.1)) in parallel to allow them to concentrate on spe-
cific parts of the components relevant to them. In [4], the authors
highlight that software modeling has increasingly become a collab-
orative task. But, at some point, software developers need to bring
together the parts of such architectural components created con-
currently so that a consolidated view of the software architecture
may be created.

In this sense, model composition plays a central role, e.g., evolv-
ing architecturally relevant software components to add new fea-
tures, or even reconciling components changed in parallel. The
term model composition can be seen as a set of activities to be car-
ried out over two input model,MA andMB , to produce an output-
desired component,MAB . In practice, an output-composed model
with inconsistencies may be produced,MCM , instead ofMAB , due
to conflict problems. The input modelsMA andMB have often con-
flicting parts, which are typically resolved improperly by software
developers, given the problem at hand. Previous studies (e.g., [4, 14])
highlight that these conflicts are common in real-world settings,
and software developers end up investing some extra effort to de-
tect and resolve inconsistencies found inMCM to transform it into
MAB .

The problem is that, even though several approaches have been
proposed to represent and combine UML component diagrams au-
tomatically (e.g., Epsilon and IBM Rational Software Architect (IBM
RSA)), they are not effective enough to produce an output-desired
component diagram without requiring extra effort. The current
composition approaches consider a low number of properties of
UML components (e.g., name), rather than all properties defined in
the UML metamodel (Section 2.1) to integrate two or more software
components. Moreover, they were not built to combine architec-
turally relevant software components upfront. Instead, they are
focused on generic design diagrams (e.g., domain models), over-
looking specific elements of UML component diagrams. In [10], the

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


SBSI’2018, June 2018, Caxias do Sul, Rio Grande do Sul Brazil G. Ermel et al.

authors report that the current approaches, such as Astha, Epsilon
and IBM Rational Software Architect (IBM RSA), have not shown
to be effective to combine design models. In fact, usuallyMCM and
MAB do not match (i.e.,MCM ,MAB ).

To overcome these shortcomings, this article, therefore, proposes
MoCoTo, a tool-supported approach for the composition of UML
diagram components. It exploits equivalence relationships between
the UML component elements to improve the precision and ac-
curacy of the compositions. Developers and system analysts can
benefit from using MoCoTo when evolving or maintaining archi-
tectural models of enterprise information systems. MoCoTo was
implemented as an Eclipse platform plug-in. The tool was used to
support the composition of architectural components in three realis-
tic evolution scenarios of a Software Product Line. Our preliminary
results indicated that MoCoTo was able to integrate architectural
models represented using UML component diagrams. The metrics
used to evaluate the effectiveness of the proposed tool (i.e., preci-
sion, recall and F-measure) presented values higher than 0.6 in all
evaluation scenarios.

The remainder of the paper is organized as follows. Section 2
provides the main concepts and knowledge that are going to be
used and discussed throughout the article. Section 3 presents the
proposed approach. Section 4 discusses the implementation and
evaluation aspects, describing technologies used to develop the pro-
posed approach and metrics applied to assess it. Section 5 contrasts
this study with the current literature. Finally, Section 6 presents
some conclusions and future works.

2 BACKGROUND
This section presents the main concepts related to the understand-
ing of our work. For this, Section 2.1 introduces the UML component
diagram. Next, Section 2.2 presents a brief definition of model com-
position, conflicts, inconsistencies, as well as introduces an example
of composition.

2.1 UML Component Diagram
The UML component diagram is one of the most used UML dia-
gram [4], which allows developers to represent modules of software
systems and their relationships [16]. Each component has one or
more provided and/or required interfaces (potentially exposed via
ports), and its internal details are hidden and inaccessible other
than as provided by its interfaces. Even though the component
may be dependent on other elements in terms of interfaces that
are required, a component is encapsulated and its dependencies
are designed such that it can be treated as independently as possi-
ble. A component can be seen as a modular unit with well-defined
interfaces that is replaceable within its environment [16, 17].

Figure 1 shows the Order component, with two provided inter-
faces (i.e., Person and Invoice) and two required interfaces (i.e., Item
and Tracking). The provided interface defines the behavior that
an architectural component offers to the environment, while the
required interface specifies the behavior that the behavior needs to
work.

The UML component diagram is defined following a metamodel-
ing approach. This means that each component diagram is produced
based on the instance of the UML metamodel. The UML metamodel

defines a set of constructs, which can be used to define software
systems of arbitrary size and complexity [16]. Any composition
approach (Section 3) should thus manipulate each attribute in the
UML metamodel for properly combining the input models,MA and
MB .

Figure 1: Example of a component [17].

2.2 Model Composition, Conflicts and
Inconsistencies

Researchers and practitioners recognize the importance of the
model composition in many software engineering activities, e.g.,
during the evolution of design models to add new features and
consolidate models developed in parallel by different software de-
velopment teams [8, 9].

Composition. As already mentioned in Section 1, the term com-
position of UML component diagrams can be defined as a set of activ-
ities that should be performed over two input models,MA andMB ,
so that an output-desired model,MAB , can be generated. To realize
the model composition in practice, software developers often make
use of composition heuristics (e.g., override and union described
in [5]) to produceMAB , which matching the input model elements
ofMA andMB by automatically guessing their semantics and then
bring the similar elements together to create a big picture view of
the overall design model.

Composition conflicts. It can be defined as conflicting changes
assigned to the model elements of MA and MB . They are usually
detected when software developers seek to fuse the overlapping
parts ofMA andMB .

Inconsistencies. Inconsistencies are unexpected values assigned
to the properties (or characteristics) of the design models [7]. For
example, Researcher.isAbstract = false represents an inconsistency
as the expected value is true. Note that when the conflicts are incor-
rectly resolved, they are converted into inconsistencies inMCM .

The proposed approach (presented in Section 3) addresses the
difficulty of developers to overcome two main problems. First, soft-
ware developers have no support to indicate which model elements
should be combined, given a large number of architectural com-
ponents. Second, developers tend to be unable to understand the
accuracy of the composition to be performed upfront, as well as
how much effort the derivation of MAB from MCM can demand,
given the problem at hand.

3 THE PROPOSED APPROACH
To better explain the proposed approach, we propose a model com-
position process (Section 3.1) and describe the main features sup-
ported by the approach, as well as show the variability of features
supported (Section 3.2). Finally, we describe how each feature is
mapped into the modules of proposed approach (Section 3.3).



Supporting the Composition of UML Component Diagrams SBSI’2018, June 2018, Caxias do Sul, Rio Grande do Sul Brazil

3.1 Model Composition Process
Figure 2 shows the model composition process used to combine
two input models,MA andMB . We have adopted this process since
earlier works [11, 15] have mentioned its utility for composition
in general terms. Before producing an output-intended model, the
input diagrams go through four stages: (1) analysis, (2) comparison,
(3) composition, and (4) evaluation steps. These steps are better
specified as follows:

1) Analysis: this step prevents the tools processing incompati-
ble, and inconsistent input models. For this, the approach checks
whether (1) the tool supports the type of file of the input models, (2)
both input diagrams are of the same type, and (3) the input models
do not have any invalid characters. The composition process will
finish if the tool does not comply with one of these criteria. If these
input models check these three criteria, the input models follows
directly to the comparison phase.

2) Comparison: the input diagrams are validated and then the
composition approach verifies the equivalence between the ele-
ments of the input models. For this, this step receives as inputs, such
as valid models from the previous step, an algorithm for comput-
ing string equivalence (LCS common substring [6]), the synonym
dictionary, the matching strategy, and the threshold. This step is
important to determine which elements are equivalent, identifying
overlapping parts of the input model elements.

3) Composition: this step aims at integrating the input models
based on the outputs produced in the previous step, i.e., similar-
ity matrix, list of equivalent elements, and equivalent elements.
Moreover, it makes use of well-established composition strategies
(i.e., override, merge, and union) to combine the elements of the
input models (MA, MB ). Therefore, while the matching elements
are unified, the no matching ones are added to the resulting model.

4) Evaluation: this step aims at evaluating if there are inconsis-
tencies in the output composed modelMCM . The tool receives as
input the well-formedness rules, the composed modelMCM , and
the features defined by the user. The composition process finishes
when the well-formedness rules meet the requirements defined by
the user in the composed modelMCM , and then, theMCM is stored.
Otherwise, the composition mechanism applies some transforma-
tion rules on MCM to try the overcome the inconsistencies, and
thenMCM is stored.

After presenting the composition process, the next step is to
describe the main features of the proposed composition tool.

3.2 Feature Diagram
Given that MoCoTo tool was designed as a Software Product Line,
the proposed feature diagram, shown in Figure 3, can visually
demonstrate the units of program construction, so-called features [12]
— i.e., fine-grained increments in the context of program functions.
We have used feature diagram to represent all characteristics sup-
ported by the MoCoTo tool. Thus, we can present a compact rep-
resentation of all its functions of the tool in terms of features. A
software in an SPL can be identified by a unique and legal combina-
tion of features. Thus, we can produce different MoCoTo tools based
on the combination of the features available in Figure 3. Using this
diagram it is possible to represent the variability of the MoCoTo

Figure 2: The general view of the model composition pro-
cess.

tools, as well as upcoming features can be inserted into the current
supported feature settings.

Figure 3 presents an excerpt of the feature diagram representing
the overview of the main characteristics supported by the proposed
architecture. The architecture is formed by the essential features for
putting in practice the activities of the model composition process
defined in the previous Section. In practice, these features corre-
spond to its main steps of the model composition, as previously
described, including Analysis, Comparison, Composition and Eval-
uation. In addition, the persistence is a concern that spreads over
the phases of the model composition process (like a crosscutting
concern) as it always need to persist models and files in each phase.

This means that, for example, the analysis feature implements
the first phase in the composition process. The notations used to
represent Figure 3 may be divided into two main groups, namely ba-
sic representation feature (e.g., MoCoTo, Analysis and Comparison)
and their relationships. Relationships between a parent feature and
its child features shown in Figure 3 can be categorized as: Manda-
tory, child feature is required (represent by a filled circle); Optional,
child feature is optional (represent by an empty circle); and Or, at
least one of the sub-features must be selected (represent by a filled
bow). Therefore, all versions of the MoCoTo tool instances must
have the following features Analysis, Comparison, Composition,
Persistence, and Evaluation . The UML profile format and UML
format can be present or not in MoCoTo tool instance, being called
optional features (represent by an empty circle).



SBSI’2018, June 2018, Caxias do Sul, Rio Grande do Sul Brazil G. Ermel et al.

Figure 3: Features of the MoCoTo composition tool.

3.3 Architectural Design Model
As previously mentioned, each feature presented in Figure 3 was
mapped into a module, which implements, in practice, each feature
of the MoCoTo tool. We have chosen the UML component diagram
to represent these modules, which are displayed in Figure 4. This
mapping is identified on the small squares located on the left or
bottom sides of the components. For example, the letter M in the
side of Composition component (Figure 4) means that it implements
the composition feature (Figure 3).

In practical terms, to make feasible the implementation of well-
modularized components we are concerned on building: (1) self-
contained components encapsulating the state and behavior of a
set of executable elements, which are responsible for the imple-
mentation of one feature; and (2) well-defined interfaces. Therefore,
to add a new strategy for composing two input models, the new
Composition component must implement the provided interface,
CompositionStrategy.

Figure 4: The architectural design of the MoCoTo tool.

4 EVALUATION
This section aims at presenting the implementation aspects of the
proposed approach, as well as evaluating it in realistic composition
scenarios. First, we present a target case used to evaluate the pro-
posed approach (Section 4.1). After, we described the evaluation
procedures (Section 4.2). Then, we describe three usage scenarios
(Section 4.3). Finally, we present some additional discussions and
limitations of the proposed approach.

Table 1: Description of the metrics applied.

Metric Description
#Comp The number of component present.
#IntProv The number of provided interfaces.
#IntReq The number of required Interfaces.
#Operat The number of operations of the interfaces.

4.1 Target Case
We apply the proposed approach to support the evolution of the
component diagrams of a software product line, calledMobile Media
SPL [18, 19]. The diagrams used in this study are adapted from [18].
The Mobile Media SPL supports the manipulation of photos, music,
and videos on mobile devices. The choice of the Mobile Media SPL
as the target case can be explained by some reasons. First, it went
through the four types of change commonly found in software
design, including addition, removal, modification and derivation (as
described in Section 2.2). Second, the Mobile Media’s architectural
models are well structured and elaborated by independent devel-
opers. Third, the original developers were available to help us to
detect and evaluate the composition problems, including syntactic
and semantic inconsistencies.

Finally, three evolution scenarios of Mobile Media SPL were
considered in our study. In each scenario the focal point was to
support the evolution of the product line Mobile Media [19]. We
discuss the evaluation method used in our study in the following
section.

4.2 Method
Evaluation procedures. The proposed approach was used to re-
alize the three evolution scenarios of the Mobile Media SPL (Sec-
tion 4.3). The output composed models were evaluated collabora-
tively by the authors. For this, the following steps were performed.
First, the authors examined each composition and extracted infor-
mation related to likely composition problems, e.g., inconsistencies.
After, the observations collected were analyzed and discussed so
that a consensus between the authors might be obtained. In addi-
tion, the original developers of the Mobile Media SPL might also
validate the compositions realized. For this, two evaluation cycles
were held.

Evolution scenarios and metrics. With this in mind, the Mo-
CoTo tool was evaluated in three evolution scenarios. Thus, for each
step there is a reference model, MA, and a delta model, MB , that
represents what was developed in that cycle. From these diagrams
three experiments were drawn up. In each scenario the proposed
approach was used to compose two models,MA andMB (e.g., Fig-
ure 5), producing a new model MCM . The tool was used with a
same configuration, in terms of strategies used, for all composition
scenarios. The SDMetrics tool was applied toMA,MB ,MCM and
MAB to compute the indicators: Precision, Recall and F-measure.
Table 1 presents the metrics computed.

After presenting the metrics used and explaining the reasons
to choose the Mobile Media SPL as the target case, we describe
carefully the three case studies.



Supporting the Composition of UML Component Diagrams SBSI’2018, June 2018, Caxias do Sul, Rio Grande do Sul Brazil

Table 2: The results obtained in the first experiment.

Metric MA MB MAB MCM MCM ∩MAB Precision Recall F-Measure
#Comp 8 3 8 8 8 1 1 1
#IntProv 7 2 7 7 7 1 1 1
#IntReq 12 2 12 12 12 1 1 1
#Operat 37 20 37 37 37 1 1 1

4.3 Case studies
We evaluate the proposed approach in the context of three evolution
scenarios of the Mobile Media SPL (Section 4.1). By doing so, the
MoCoTo tool was used to perform three composition scenarios
described as follows.

4.3.1 First Composition Scenario. Figure 5 represents the first
target composition case supported (i.e., MA and MB ), while Fig-
ure 6 introduces the result of the composition (i.e.,MAB ). We used
the MoCoTo tool to realize the composition expressed through a
merge relationship in Figure 5. Thus, the model elements in MB
(i.e., the components BaseController, ImageAcessor, and AlgumData)
are accommodated into the diagramMA. In particular, this compo-
sition represents the case in which the elements present inMB are
already inMA, so the resulting composed model becomes equal to
MA. After performing the composition, the metrics were applied.
The collected results are shown in Table 2. This evaluation was
performed to show the high precision (described in Table 2) of the
tool in case whereMB is a subset ofMA.

Figure 5: First usage scenario to evaluate the tool.

There is no addition of new elements and interfaces in Figure
5. After the composition of the modelsMA andMB , we can check
that there were no change in the model; hence, the metrics forMAB
andMCM are equal. We might observe that given that the metric
measures inMAB andMCM are equal toMCM ∩MAB , the precision
and recall as well as their F-measure indicators are equivalent in all
cases. This result indicates that the tool worked properly in case
where the model elements found inMB overlap ones found inMA.

4.3.2 SecondComposition Scenario. The second scenario, shown
in Figure 7, displays a case in which the model elements need to
be accommodated intoMA, not necessarily overlapping model el-
ements found in MB . Figure 7 presents the input models, while
Figure 8 depicts the output desired model. Two new components

Figure 6: The desired model of the first usage scenario.

can be observed in MB (i.e., NewLabelScreen and PhotoController)
and their provided and required interfaces. In addition, some opera-
tions were added and removed at this stage of development (which
are not shown in the illustration). This more realistic scenario al-
lowed us to evaluate the tool in scenarios where it was required
to support the integration of overlapping model elements, as well
as non-overlapping ones, i.e., the latter will accommodate into the
MA without requiring more severe changes.

Table 3 shows the results obtained after combining the diagrams
presented in Figure 7. The lower values of the Precision and F-
Measure (compared to the previous experiment) can be explained
for the fact the tool is not able to remove undesired model elements
found inMA. A careful analysis of the results has pointed out that
the reduction of the precision and F-Measure was strictly motivated
for more severe evolution scenarios, in which model elements have
some properties modified; for instance, the component NewAlbum-
Screen (Figure 7 inMA) has its name modified to NewLabelScreen
in Release 2 (Figure 7 inMB ). The precision demonstrates the cor-
rectness of the composition process, we can note that the metrics
ranges from 0.89 to 0.96, being the average of the precision equal
to 0.91. This means that the proposed tool reached a high-precision
rate.

Decomposing the value of the precision metric, we might see
that the number of components obtained was 0.9, the number of
provided interfaces was 0.92, the number of required interfaces is
0.89, the number of operations was 0.96. Regarding the recall values,
found also in Table 3, we might observe a high value, measuring



SBSI’2018, June 2018, Caxias do Sul, Rio Grande do Sul Brazil G. Ermel et al.

Figure 7: Second usage scenario to evaluate the tool.

Table 3: The results obtained in the second experiment.

Metric MA MB MAB MCM MCM ∩MAB Precision Recall F-Measure
#Comp 8 6 9 10 9 0.9 1 0.95
#IntProv 7 8 11 12 11 0.92 1 0.96
#IntReq 12 11 17 19 17 0.89 1 0.94
#Operat 37 41 47 49 47 0.96 1 0.98

Figure 8: The desiredmodel from the second usage scenario.

1 for the four metrics. Remember that F-Measure aims at analyz-
ing the accuracy in the results extracted during the composition
process. Thus, the F-measure obtained was, on average, equal to
0.95, which is distributed as follows: the number of components
obtained was 0.95; the number of provided interfaces produced was
0.96; the number of required interfaces was 0.94; and the number
of operations was 0.98. Therefore, based on the collected measures
for the Precision, Recall and F-measure, we can conclude that the
MoCoTo tool was also effective to support the evolution found in
the second usage scenario.

4.3.3 Third Composition Scenario. The third usage scenario pre-
sented a higher number of changes, including addition, removal,
modification and derivation of model elements, compared to pre-
vious usage scenarios. Figure 9 presents two UML component dia-
grams, while Figure 10 displays the desired model. As previously
mentioned, the first model,MA, represents the model receiving a
set of new model elements from the second model, MB . For this,
we have used the MoCoTo tool to accommodate the elements from
MB intoMA.

In MA, the BaseController component has the ControlPhoto in-
terface, however, in the development cycle this interface has been
moved to PhotoController component and therefore appears onMB
as shown in Figure 9. Thus, the components that used this interface
inMA should point to the new interface in PhotoController. How-
ever, the tool does not identify that the ControlPhoto interface inMA
is equivalent to one inMB , as this could just be a new interface with
the same name and methods (as well as several HandleCommand
interfaces inMB ).

Even though the third usage scenario presented more severe
changes, leading to more critical changes, the results indicated
that the MoCoTo was able to combineMA andMB , producing the
values of the metrics Precision, Recall and F-Measure higher than
0.6. Table 4 shows the results obtained.

An interesting observation can be seen in the first metric, i.e., the
number of components. Where 14 components were created, but
only 10were expected. This occurred because theMA.BaseController
andMB .PhotoController did not obtain a similarity equals or greater
than the required threshold defined (i.e., 0.7). Thus,MA.BaseController,
MB .. BaseController, MB .PhotoController, MB .PhotoController were
generated. Thus, inMCM two things can be observed, the first one



Supporting the Composition of UML Component Diagrams SBSI’2018, June 2018, Caxias do Sul, Rio Grande do Sul Brazil

Figure 9: Third usage scenario to evaluate the tool.

Figure 10: The desired model from the third usage scenario.

is the same characteristic already described in scenario 2, where the
tool does not remove components or interfaces. The other feature is
that it does not consider a similarity among interfaces of different
components. In this sense, the tool does not enable that an interface
can be provided by another component inMCM .

Table 4 shows the results obtained in the third experiment. We
can observe that the values obtained from 0.64 to 0.76, the average
of the precision metrics analyzed was 0.71. The Precision consider-
ing the number of components was 0.71, the number of provided
interfaces was 0.75, the number of required Interfaces was 0.64, and
the number of operations was 0.76.

The recall verifies if all the elements were generated, the results
extracted show on average 92.75% efficiency distributed as follows:
83% of the desired components were obtained; 100% of the provided
interfaces were produced; 88% of the required Interfaces were pro-
duced; 100% of the operations (i.e., method) were produced. Finally,
f-measure, whose objective is to analyze the accuracy to the results
extracted during the composition process, obtained an average of
80.75% distributed as follows: the number of components obtained
was 77%; the number of provided interfaces was 86%; the num-
ber of required interfaces was 74%; the number of operations was
86%. Therefore, the collected results indicate that the MoCoTo tool

was effective to support the evolution of architectural components
throughout compositions.

4.4 Discussion and Study Limitations
Although the proposed tool has obtained good results in our initial
empirical studies, we do no claim any generalization of the results.
We highlight that the MoToCo tool might require more composition
effort in more severe composition scenarios where widely-scoped
architecture evolutions often happen, such as the refinement of the
MVC (Model-View-Controller) architecture style of the MobileMe-
dia SPL. In part, this can be explained for the fact the name-based
model comparison used cannot be able to recognize more intri-
cate equivalence relationships between the model elements ofMA
andMB . We have observed that the comparison strategy is rather
restrictive whenever there is a 1:N correspondence relationship
between elements ofMA andMB .

An example of the 1:N relationship category encompassed the
required interface ControlPhoto of the AlbumListScreen compo-
nent. This interface was decomposed into two new required in-
terfaces ControlAlbum and ControlPhotoList, thereby characteriz-
ing an 1:2 relationship. For this particular case, the name-based
model comparison should be able to recognize that ControlAlbum
and ControlPhotoList are equivalent to ControlPhoto. However, in
the output-composed model produced the AlbumListScreen compo-
nent, providing duplicated services to the environment. According
to UML metamodel [16], this duplication can be characterized as a
model inconsistency. The presence of inconsistencies is the respon-
sible for decreasing the values of the metrics Precision, Recall and
F-measure.

Our idea initially would be that developers could provide a set
of well-formedness rules of the design models themselves (e.g.,
the type relationship between components). However, these rules
cannot yet be entered into the tool nor evaluated. Developer should
do this manually. Hence, the transformation rules cannot be applied
toMCM to try the overcome the inconsistencies.

Finally, we have studied one facet supported by the MoCoTo
tool in this study: the use of model composition in adding new
features to architectural components of an SPL. Even though SPLs
commonly involve model composition activities and, while we



SBSI’2018, June 2018, Caxias do Sul, Rio Grande do Sul Brazil G. Ermel et al.

Table 4: The collected results in the third experiment.

Metric MA MB MAB MCM MCM ∩MAB Precision Recall F-Measure
#Comp 9 12 12 14 10 0.71 0.83 0.77
#IntProv 11 15 15 20 15 0.75 1 0.86
#IntReq 17 20 26 36 23 0.64 0.88 0.74
#Operat 47 56 56 74 56 0.76 1 0.86

believe the kinds of model composition in SPLs are representative
of the broader issues, we make no claims about the generality of
our results beyond model composition of SPL of enterprise systems.
We show the results for model compositions of three releases of
an SPL. In each release, models for the new features are composed
with the models for existing features. We analyze, for each release,
how close the output composed model produced is from the desired
model (Section 4).

5 RELATEDWORK
Literature reports developers use compositions techniques to com-
bine UML class diagrams frequently [3]. However, there is a lack of
studies concerned on supporting architecturally relevant software
components, as well as demonstrating their precision.

In [1], the authors proposed a solution for comparing two input
class diagrams. For this, the authors made use of a greedy algorithm
to limit the search-scope for equivalent models. Thus, this technique
compared two input UML class diagrams, instead of comparing and
composing UML component diagrams. In [13], an approach was de-
veloped for a similar purpose, namely GaMMa Meta-model Match-
ing tool. However, the tool has a different purpose, i.e., comparing
metamodels rather than composing component diagrams.

Finally, the current approaches failed in providing tool support
for merging architectural components. Rather, they focused on
solving the composition of traditional diagrams such as UML class
diagrams. To sum up, this study is the first work to propose a tech-
nique for combining UML component diagrams and running a pilot
study to evaluate the tool’s precision through realistic scenarios.

6 CONCLUSIONS AND FUTUREWORK
This article proposed MoCoTo, a tool-supported composition ap-
proach for integration of architectural components. Our work ad-
vanced the state of the art by proposing a model composition pro-
cess, designing a composition approach as an SPL following well-
known design-for-change principles, coming up with a strategy-
based model composition approach based on a flexible, multi-layer
architecture and providing an approach with a seamless integration
with the Eclipse platform.

The preliminary results indicated that the proposed tool was
effective to support the composition of UML component diagrams.
In fact, all three experiments performed presented a high value of
the Precision, Recall and F-Measure metrics. Although the MoCoTo
tool have shown to be useful, further empirical studies are still
required in other contexts.

Upcoming investigations should seek to answer the following
questions: (1) do developers invest significantly more effort to com-
bine design models of enterprise information systems using the pro-
posed tool?; (2) how effective is the proposed approach to combine

realistic, semantically richer design models (e.g., business process
models)?; (3) do developers invest more effort to resolve semantic
inconsistencies than syntactic ones using a strategy-based com-
position technique? Lastly, this work represents a first step in a
more ambitious agenda on better supporting the elaboration of
more effective composition techniques to support the integration
of design models of enterprise information systems.

REFERENCES
[1] M. Al-Khiaty and M. Ahmed. 2014. Similarity assessment of UML class diagrams

using simulated annealing. In Software Engineering and Service Science (ICSESS),
2014 5th IEEE International Conference on. IEEE, 19–23.

[2] Y. Alotaibi and F. Liu. 2016. Survey of business process management: challenges
and solutions. Enterprise Information Systems 11, 8 (2016), 1119–1153. https:
//doi.org/10.1080/17517575.2016.1161238

[3] K. Altmanninger, M. Seidl, and M. Wimmer. 2009. A survey on model versioning
approaches. International Journal ofWeb Information Systems 5, 3 (2009), 271–304.

[4] M. Chaudron, W. Heijstek, and A. Nugroho. 2012. How effective is UML mod-
elling? an empirical perspective on costs and benefits. Software and Systems
Modelling 12 (2012), 571–580.

[5] S. Clarke and R. Walker. 2001. Composition patterns: An approach to designing
reusable aspects. In Proceedings of the 23rd international conference on Software
engineering. IEEE Computer Society, 5–14.

[6] T. H. Cormen. 2009. Introduction to algorithms. MIT press.
[7] Weber et al. 2016. Detecting Inconsistencies in Multi-view UML Models. In-

ternational Journal of Computer Science and Software Engineering (IJCSSE) 5, 12
(December 2016), 260–264.

[8] K. Farias. 2012. Empirical Evaluation of Effort on Composing Design Models. Ph.D.
Dissertation. PUC-Rio, Brazil.

[9] K. Farias, A. Garcia, J. Whittle, C. Chavez, and C. Lucena. 2015. Evaluating the
effort of composing design models: a controlled experiment. Software & Systems
Modeling 14, 4 (2015), 1349–1365.

[10] K. Farias, A. Garcia, J. Whittle, and C. Lucena. 2013. Analyzing the Effort of
Composing Design Models of Large-Scale Software in Industrial Case Studies. In
16th International Conference on Model-Driven Engineering Languages and Systems.
Miami, FL, USA, 639–655.

[11] K. Farias, L. Gonçales, M. Scholl, T. Oliveira, and M. Veronez. 2015. Toward an
Architecture for Model Composition Techniques. In 27th International Conference
on Software Engineering and Knowledge Engineering. Pittsburgh, USA, 656–659.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. 1990. Feature-oriented
domain analysis (FODA) feasibility study. Technical Report. DTIC Document.

[13] M. Kessentini, A. Ouni, P. Langer, M.Wimmer, and S. Bechikh. 2014. Search-based
metamodel matching with structural and syntactic measures. Journal of Systems
and Software 97 (2014), 1–14.

[14] M. La Rosa, M. Dumas, R. Uba, and R. Dijkman. 2013. Business Process Model
Merging: An Approach to Business Process Consolidation. ACM Trans. Softw.
Eng. Methodol. 22, 2, Article 11 (March 2013), 42 pages. https://doi.org/10.1145/
2430545.2430547

[15] K. Oliveira. 2008. Composição de UML Profiles. Master’s thesis. Pontifícia Univer-
sidade Católica do Rio Grande do Sul.

[16] OMG. 2017. Unified Modeling Language: Infrastructure, Version 2.5.1. Available:
https://www.omg.org/spec/UML/2.5.1/.

[17] J. Rumbaugh, I. Jacobson, and G. Booch. 2004. Unified modeling language reference
manual, the. Pearson Higher Education.

[18] C. N. SantAnna. 2018. On the modularity of aspect-oriented design: A concern-
driven measurement approach. Ph.D. Dissertation. PUC-Rio, Rio de Janeiro, Brazil.

[19] L. Tizzei, M. Dias, C. Rubira, A. Garcia, and J. Lee. 2011. Components Meet
Aspects. Information and Software Technology 53 (2011), 121–136.

https://doi.org/10.1080/17517575.2016.1161238
https://doi.org/10.1080/17517575.2016.1161238
https://doi.org/10.1145/2430545.2430547
https://doi.org/10.1145/2430545.2430547

	Abstract
	1 Introduction
	2 Background
	2.1 UML Component Diagram
	2.2 Model Composition, Conflicts and Inconsistencies

	3 The Proposed Approach
	3.1 Model Composition Process
	3.2 Feature Diagram
	3.3 Architectural Design Model

	4 Evaluation
	4.1 Target Case
	4.2 Method
	4.3 Case studies
	4.4 Discussion and Study Limitations

	5 Related Work
	6 Conclusions and Future Work
	References

