DORIC: An Architecture for Data-intensive Real-time
Applications

Miguel Kassick Cadaviz
University of Vale do Rio dos Sinos
S&o Leopoldo, Brazil
miguelcadaviz@gmail.com

Lucian José Gongales
University of Vale do Rio dos Sinos
Sao Leopoldo, Brazil
lucianj@edu.unisinos.br

ABSTRACT

This study presents Doric, a software architecture for data-intensive
real-time applications. Dimensions of data-intensive real-time ap-
plications are introduced, as well as technologies that enable the im-
plementation of such dimensions. A case study involving a portable
electroencephalogram (EEG) enabled data collection based on real-
istic scenarios found in data-intensive real-time applications. The
Doric architecture was implemented using recent technologies (e.g.,
Apache Kafka) for building real-time data pipelines and stream-
ing applications. This prototype was evaluated in five scenarios
containing different volumes of data. The obtained results were
encouraging and show the potential for applying Doric as a struc-
ture to foster the development of modern information systems in
organizations and to support serve as a guideline for new corporate
architectures.

CCS CONCEPTS

« Human-centered computing — HCI theory, concepts and
models;

KEYWORDS

Software Architecture, Real Time, Large Scale

ACM Reference Format:

Miguel Kassick Cadaviz, Kleinner Farias, Lucian José Gongales, and Vinicius
Bischoff. 2018. DORIC: An Architecture for Data-intensive Real-time Appli-
cations. In Proceedings of ACM Woodstock conference (SBSI’2018), Jennifer
B. Sartor, Theo D’Hondt, and Wolfgang De Meuter (Eds.). ACM, New York,
NY, USA, Article 4, 7 pages. https://doi.org/10.475/123_4

1 INTRODUCTION

In Greece, Doric denotes an architectural structure related to sup-
portability of heavyweight constructions, such as the Temple of
Parthenon in Athens. It is one of the three columns of ancient Greek

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SBSI'2018, Junho 2018, Caxias do Sul, Rio Grande do Sul Brazil

© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

Kleinner Farias
University of Vale do Rio dos Sinos
S&o Leopoldo, Brazil
kleinnerfarias@unisinos.br

Vinicius Bischoff
University of Vale do Rio dos Sinos
Sao Leopoldo, Brazil
viniciusbischof@edu.unisinos.br

and later Roman architecture used to support heavy marble struc-
tures of the Greek temples; the other two canonical columns were
the Ionic and the Corinthian. In the context of modern information
systems (IS), the reality is not different. Their structures should be
designed to withstand or support a heavy volume of data as most
of them are data-intensive, real-time (DIRT) applications. These
DIRT applications are in a natural way related to Doric architec-
tural structure with regards to how software architecture provides
data, integrates heterogeneous data sources, provides information
processing, and analysis and storage support.

Nowadays, data are produced comes from devices, such as porta-
bles EEG (Electroencephalography), body sensors and cameras. In
recent years, the trend of data production has intensified with the
rise of the internet of things [13], where interconnected sensors
and devices are in practically all everyday objects. These devices
are beginning to become popular and to be applied in many areas
where information systems are essential, such as mental health
care.

For example, portable devices, such as Emotiv Epoc!, have been
used in several actions of mental health care such as collection
of mental data, supervision of facial expressions, and the mental
health status of patients. These activities produce a big amount of
structured and unstructured data. Extracting valuable information
from these data implies into properly processing, analyzing, linking,
and storing data [12]. However, this becomes a challenging task
due to the long processing time in a scenario that users are not
willing to wait much for a server response.

Although several works have been carried out by proposing tech-
niques and architectures for information systems, they do not treat
information systems as a DIRT application. This implies that hard-
ware and software should operate under time constraints, returns
results quickly enough to influence the environment whereas this
system receives and processes the data. Still, when developers need
to implement DIRT applications, traditional software architectures
are no longer adequate [6][10]. There is a lack of a comprehensive
architecture to properly represent important aspects of generic
DIRT applications.

This study, therefore, presents Doric, a software architecture for
data-intensive real-time applications. Dimensions of data-intensive

'Emotiv Epoc: https://www.emotiv.com/

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

SBSI’2018, Junho 2018, Caxias do Sul, Rio Grande do Sul Brazil

real-time applications are introduced, as well as technologies that
enable the implementation of such dimensions.

A case study involving a portable electroencephalogram (EEG)
enabled data collection based on realistic scenarios found in DIRT
applications. The Doric architecture was implemented using re-
cent technologies (e.g., Apache Kafka?) for building real-time data
pipelines and streaming applications. This prototype was evaluated
in five scenarios containing different volumes of data. The obtained
results were encouraging and show the potential for applying Doric
as a structure to foster the development of modern information
systems in organizations and to support serve as a guideline for
new corporate architectures.

This article is organized as follows. Section 2 presents the pro-
posed architecture. Section 3 describes the results and discussion
of the empirical evaluation. Section 4 presents the related works.
Finally, Section 5 presents the conclusion and final considerations.

2 THE PROPOSED ARCHITECTURE

This section describes the proposed architecture. Section 2.1 presents
an overview of the Doric architecture. Section 2.2 introduces the
architectural design by describing the Doric’s requirements and
architectural components.

2.1 General View

Figure 1 presents the overview of the proposed architecture. It is
composed by six steps to process data and six architectural compo-
nents. These steps are described below.

o Step 1: Producers send information to the application servers
to execute the data analysis;

o Step 2: The received data are processed. Once the process is
finished the information are sent back to the servers. Then,
the servers store this information;

o Step 3: This data flow is not mandatory. An application may
use this flow in the case of requiring a detailed analysis over
a specific block of information;

e Step 4: The resulting data come from the analysis step that
are stored in a distributed database;

o Step 5: The consumers can receive the information without
any treatment;

o Step 6: This data flow is used when consumers desire to
access the result of the analysis.

The objective of the proposed architecture is receiving a huge
amount of data in real-time from many producers at the same
time. For this, our architecture has a broker that receives the input
data. This broker controls the processing, analyses, and storage of
these data providing them to consumers. This component enables
the relation between data source and consumer components. Each
Doric component will be described in Section 2.2.2.

Table 1 shows as the Doric components can be supported by
current technologies. The Doric architecture defines standards to
support DIRT applications. This will enable developers reusing
aspects of the architecture in multiple domains, such as smart cities
[1], health systems [8], and smart highways [4]. A system orga-
nized in this manner allows developers mapping and modelling a

2 Apache Kafka: https://kafka.apache.org/

M. Cadaviz et al.

Data Source Publisher/Subscriber Consumers

Government

RO —O (4

Applcaions \ 1% I -‘s.

D — = c“m; —- :?:

al” é'éiﬁ b #
O,

Information’s Processing Storage

Analysis @
S’

HO

®
%
(L Q 'z \.%
O - \
40%. Database .eebw

N——

Figure 1: Proposed Architecture.

structure in distinct blocks, as proposed in [14]. This enables the
encapsulation of assignments and responsibilities of each block, as
well as facilitating the maintenance, and configuration of each step.
This is because the well-defined interfaces were designed with the
purpose to make feasible an architecture with low coupling.

Table 1: Dimensions of DIRT applications (based on [14]).

Publisher Analysis
Information
Data Sources and and Consumers
Processing
Subscriber Storage
Data Centers Apache Kafka Apache Spark Apache Cassandra | Health
Web Applications | Amazon Kinesis | Apache Storm Apache Hbase TI Operations
Air Pictures Google Pub/Sub | Apache Stamza | Apache Druid Retail
Machines MapR Streams | Twitter Heron Elasticsearch Government
Buildings Apache Amazon Kinesis | Apache Solr Agriculture
Vehicles DistributedLog | Google Dataflow | MapR-DB Marketing
Wearables Apache Apex FiloDB Manufacture
Azure Event
Smartphones Apache Flink memsql Industry
Tablets Apache Flume Apache Kudu Science
Internet
Azure Strem Google Cloud Financial
of Things) X
Analytics Storage Services
Apache Kafka Google Cloud Media
Streams Bigtable Agencies

DORIC: An Architecture for Data-intensive Real-time Applications

2.2 Architectural project

The proposed architecture was built in two steps. In the first step, we
identified the requirement an architecture must have. The second
step, the technologies that implement each architecture module is
described. These technologies are defined according to the defined
requirements in Step 1. These steps are described below.

2.2.1 Requirements of the Proposed Architecture. The require-
ments were elaborated based on suggested features on the articles
and research reports. We elaborated three non-functional require-
ments (NFR). These requirements are described below.

o NFRO1: support the process and reception of large-scale
information with integrity. The architecture must sup-
port and guarantee the correctness of information’s that are
transferred in high volume.

o NFRO2: able to return real-time responses. The analyzed
information’s must be provided in real-time to the consumers
by the system;

o NFRO3: the architecture must be extensible. The archi-
tecture must be well encapsulated and provide extensible
points. This enables reuse of modules and the addition of
new ones.

2.2.2 Architectural components. This section describes the Doric
components as well as suggests some technologies to implement
them. Figure 3 shows how the components of the architecture
were organized. Table 1 suggests some technologies to implement
the Doric components. The chosen technologies seek to meet the
requirements previously mentioned. Note that each dimension
present in Table 1 corresponds to a Doric component, which is
implemented by using technologies for building real-time data
pipelines and streaming applications. The following each compo-
nent is briefly described:

e Data source. The data source is not present in the architec-
ture because they are external components. This architecture
is adapted to receive information from any data source.
Publisher/subscriber. We choose the Apache Kafka for
this component. Kafka is largely applied in the industry and
is open source. Kafka is suitable for two kinds of applica-
tions: first, obtaining data in real time from many application
and systems safely. Second, systems that convert or react
to a certain data flux in real-time. Kafka also promotes the
abstraction of the data record from a determined topic. Top-
ics are categories for which the records are published. The
topics in Kafka are always multi-subscriber, i.e., a topic can
have "n" subscribers to access their data. The version of
Apache Kafka used in this architecture is 0.10.2.0. In addi-
tion, in this module the Apache ZooKeeper are implemented
to cooperate with kafka [7]. Apache ZooKeeper [3] provides
several functionalities for distributed applications, such as
distributed configuration management, information coor-
dination, and locks. The deployed version was ZooKeeper
3.4.9. Both Kafka and ZooKeeper use Java 8 [11] release 131
of the Java Runtime Environment (JRE). JRE consists on a
Java virtual machine for running applications.

SBSI’2018, Junho 2018, Caxias do Sul, Rio Grande do Sul Brazil

o Information Processering: The Apache Spark [2] is re-
sponsible to manage the information processing. This tech-
nology is powerful and open source.

e Data analysis: We implemented an application using Java
to manage the data analysis. This is because there is no
suggestion and consolidate techniques to conduct the data
analysis.

o Storage of information: These components implement the
MongoDB [9] database. This database is the state-of-art tech-
nology for storing massive data, and non-structured infor-
mation’s. We used the MongoDB version 3.4.4.

e Consumers: Consumers are not defined in this architecture
because they are external entities. Any external entity can
consume the data provided by the architecture.

Publisher/Subscriber

Data Source Consumers

Y /

Information’s Processing Storage

MY Y

spak

Analysis

(A

) mongo

N—— \

Figure 2: Implemented architecture.

3 ASPECTS OF IMPLEMENTATION AND
EVALUATION

This section presents an empirical evaluation of the proposed archi-
tecture. The architecture is evaluated through realistic scenarios,
in which a large amount of data is generated in real time from
a portable electroencephalogram (EEG). Section 3.1 describes the
implementation aspects of the proposed architecture. Section 3.2 de-
scribes the adopted evaluation method. Finally, Section 3.3 presents
the results and discussion about the performance of the imple-
mented system that adopted the proposed architecture.

SBSI’2018, Junho 2018, Caxias do Sul, Rio Grande do Sul Brazil

woacHe) o ANALYSIS

SPARK 1\ appucaTion]

DATA SOURCES 3| AO>_ ‘:('Zﬂf @ 4<O_

CONSUMERS E

1

Legend:

L

O—— provided ntrtace

P Aspectual Connector

MONGODB @

Figure 3: Component diagram.

3.1 Implementation Aspects

The publishing and receiving stage, implemented with Apache
Kafka, controls the entire data flux, acting as the central nervous
system of the structure, but the available producer and consumer
in the prototype work via prompt through the use of batch files.
In addition, activities such as starting the Kafka server, creating a
new information topic, or even listing messages also are managed
through the prompt command lines.

The prototype of the Doric architecture was constructed using
Java language. Maven® were used to manage the construction, and
dependencies of the project. User interface was created using Swing
java library using Netbeans IDE. The prototype was built to sim-
ulate simple interactions with the Kafka cluster, the sending of
information to the servers, and consumers obtaining the analyzed
information.

Figure 4 shows an overview of the prototype. It is possible to
verify the existence of areas representing the dimensions of DIRT
applications. Each of these areas implements some functions related
to the respective area. The list bellow describes these functions
according to each dimension:

The DORIC components implemented in the prototype were:

(1) Publish and subscribe. This component, represented in
Figure 4(1), is related to the functions responsible for: (a) change
topics: it allows to switch between the existing topics in
Kafka. As previously mentioned, a topic is a category in
which the input data are recorded; (b) create topics: it allows
the creation of a new topic.

(2) Data source: We have used the EPOC Emotiv * as data
source. This component, represented in Figure 4(2), is re-
sponsible for the functions related to manage of data sources.
These functions enable: (a) create new message: generates a
single and unique message in the selected topic; (b) import
messages: performs the import of plain text messages from
the file to the selected topic.

3Maven: https://maven.apache.org/
4EPOC Emotiv: https://www.emotiv.com/epoc/

M. Cadaviz et al.

| Protétipo — (] >
Publicagio e Recebimento @ Consumidor @

Topicos (@) Utimas Mensagens (&)

‘TES‘G " 177.000000000 0«

T

Fonte de dados @

Nova mensagem (@)

ok

importar mensagens (&)

Importar

Figure 4: An overview of the prototype.

(3) Consumer: responsible to accommodate functions to man-
age Consumers, such as: (a) last messages: displays the last
messages sent to the selected topic.

3.2 Evaluation method

The purpose of architecture evaluation is to present some results ob-
tained after submitting information to the publishing and receiving
component. Then, the objective is to demonstrate the architecture
to handle large-scale and real-time information. The architecture
was built on a virtual machine with the following requirements:

e Windows 10 Operating System;

e Intel i7 (2,7 GHz) CPU with 4 cores;

e 4 GB RAM DDR4 2133 MHz of memory;
e 30 GB (5400 RPM) of Hard Disk.

The scenario where this architecture is evaluated consists in
processing and analyzing data from a health-care system. This
system collects mental indicators data from a portable EEG. Then
the test is divided in two steps.

The first assessment considers the architecture’s ability to read
large files. For this, several files with information of a wireless
electroencephalogram in a csv file were submitted to the infra-
structure. The largest of them has 50 MB of information, totaling
more than 50 thousand of lines records, and around of 51 million
characters. The second step tests the concept of large scale. For this,
several threads are being created to process the associated data of
the producer, to the system publish information simultaneously.

3.3 Results

Measurements of time used in the experiment were carried on
the upper layers of the prototype, thus creating a more realistic
environment for the end user. However, this method of measuring
just considering the time spent in the transmission of information
such as processing time. Several tests of single message submission
were performed using the prototype, which obtained an average
response time of 318 ms. We did not observe a correlation between
response time and the size of the message, the type of content,
neither the frequency of the topic structure.

DORIC: An Architecture for Data-intensive Real-time Applications

The evaluation of capacity of real-time response was performed
with five different file sizes. Table 2 presents the obtained results.
The import process was repeated fifty times for each file to obtain
reliable values. The size of the file influences in the processing
time. The time increased when larger files were processed. We
also observed the time between sending the last record and the
notification of process completion. In this case, the average time also
increased according to the size of the file. Specifically, the average
time increases significantly for 30 MB files. Figure 5 illustrates the
results contained on Table2.

Table 2: Test results of data provided from direct files.

File Dispatch Time | Receiving Time
Size (MB) | Averarge (ms) | Averarge (ms)
10 343,66 1274,3
20 396,82 1400,25
30 425,62 2019,19
40 906,72 2227,83
50 1628,45 2262,6

Next, we also evaluated the architecture’s capability to handle
large-scale data. For this, we executed multiple threads to simulate
the role of data sources. These threads simultaneously executed
and provided the same topic. Each thread creates a producer and
generates a certain number of messages. We monitored two aver-
age times in this case: (1) the average time spent on sending the
messages to the server; and (2) the average time the infrastructure
takes to signalize that it received the information. Figure 5 depicts
the results. Table 3 specifies the results obtained.

2400,00 W78 2262,60

2200,00 2
201,19
2000,00

1800,00

Time (ms)

1600,00
1400,25
1400,00 127430
1200,00
1000,00
10 20 30 40 50

File Size (MB)

Figure 5: Receiving time average.

The results evidence a gradual increase in the receiving time
when there are more threads in execution. The same occurs in the
moment that the number of messages increases. This behavior was
expected because the tests were conducted on a virtual machine.
There is a limitation regarding the hardware capability, e.g., there is
only one CPU. This implies that a larger number of threads causes

SBSI’2018, Junho 2018, Caxias do Sul, Rio Grande do Sul Brazil

Table 3: Test results of data provided from threads.

Threads Menssages | Dispatch Time | Receiving Time
Number Averarge (ms) | Averarge (ms)

2 2 0 450,83

4 2 0 524,82

8 2 0 671,11

16 2 0 684,27

32 2 3,2 759,04

1024 2 259,2 1820,25

2 20 0 250,02

4 20 0 218,81

8 20 0 331,74

16 20 0 974,86

32 20 6,32 1027,32

1024 20 314,48 2005,72

congestion on the processing queue. There is more processes wait-
ing on the queue because there is no available resource to execute
all simultaneously. Furthermore, this overall hardware resource is
shared with the operating system on which the virtual machine is
deployed. This also impacts negatively in the average time.

Figure 6 shows the results obtained. Analyzing the extreme case
on the second test, there are 20 messages being sent from 1024
data sources simultaneously. This is a total of 20,480 messages.
These numbers of messages were processed in 2005,72 ms. In the
case of transmitting messages from a single producer, we reached
at the number of 106,650 messages processed in 784ms. Due to
resource limitation, the increasing of threads impacts negatively
on the performance of messages sent.

Time (ms)

» /

4 8 16 32 1024
=w=] Messages 450,83 524,82 571,11 68427 759,04 1820,25

Number of Threads

20 Messages 250,02 218,81 331,74 974,8¢ 1027,32 2005,72

Figure 6: Representation of receiving average time from
tread.

4 RELATED WORKS

There is a growing concern on which architecture must be used for
applications that process large volumes of data in real time. Recent

SBSI’2018, Junho 2018, Caxias do Sul, Rio Grande do Sul Brazil

literature has explored this challenge in the last years. However,
little has been done to clarify about how different architectural
approaches might be brought together to address particular facets
of DIRT information systems.

By doing so, this section explores three architectures for DIRT
applications applied to different domains. Section 4.1 describes an
architecture for scientific applications. Section 4.2 describes an
architecture for weather applications. Section 4.3 presents an ar-
chitecture for application control. Finally, Section 4.4 presents a
comparative analysis between the Doric and the architectures dis-
cussed in order to identify the similarities and differences between
them, as well as the research gaps the proposed architecture fulfills.

4.1 Large-Scale and Real Time Processing for
Scientific Applications

Based on dynamic data-driven application systems (DDDAS) con-
cept, Cao and Li propose in [5] a framework to optimize the perfor-
mance of data processing, where data is generated in high volume,
about 10 MB per second, almost 1 TB per day. Another challenge
is the issue of transportation, since the equipment is spread over
thousands of miles away. In this context, performance is a critical
factor, since the processing of the collected information must be
completed in 30 minutes.

The architecture proposed is based on four layers: (1) appli-
cation: allows the input of parameters and publishes the results
in a user-friendly way; (2) data processing: performs additional
data processing based on monitoring outputs; (3) data monitor-
ing: dynamically accompanies information on a central monitor;
and (4) instrumentation: receives elements collected from one or
more measurement systems and submits them to treatment steps,
subsequently storing the assembly in the instrumentation layer.
According to [5], the framework’s strengths are in data reduction
algorithms, which can reduce a block of data from 9063 MB to 29
MB, thus reducing possible bottlenecks in the transport area.

The authors believe that, in the near future, the data scales
will grow exponentially. In this scenario, although the concept of
DDDAS is directed to simulation applications, the framework will
have the possibility of revealing its potential for several scientific
applications.

4.2 Real-time Processing for Weather Stations

In China, it is common to use autonomous weather stations with
more than 30,000 units [16]. Data-generating devices and control
terminals are commonly located in different locations, such as fields,
islands, reservations, among others.

Using the concept of client/server, all collected data is sent to a
data server simultaneously. In this system, where there is a large
data transmission network that is transmitted with a small amount
of information and in large scale, making use of sequential transmis-
sions, it is necessary to implement an efficient real-time processing,
capable of receiving and treating the data synchronously.

Guangsheng and colleagues in [16] presents a detailed discussion
on the design of a system for receiving and processing data from
autonomous meteorological stations in Guangdong province. Each
observation station produces a group of data every 5 minutes on
days of good weather or 1 minute in atypical situations. Thus, the

M. Cadaviz et al.

model must be auditable and extensible according to the technical
or operational needs of the meteorological stations, in addition to
avoiding the congestion in the observation data uploaded at critical
moments. For this, the premise is that the entire processing and
data storage cycle must be completed within 1 minute or less.

This system was deployed in more than 1700 weather stations
for over a year. Running with stability, efficiency and reliability. All
stations send their packets to the control center at the same time
every minute. The time for receiving, processing and uploading
the response for each cycle was less than 1 minute and the hard-
ware requirements are low, reducing maintenance and reducing
the complexity of the systems used.

4.3 Real-Time Scheduling for Large Scale
Application Control

In [15], Waknis and Sztipanovits argue that real-time application
requirements can be satisfied by a scheduling scheme appropriate
to a model-based programming environment. They developed an
intelligent process control system, which is a model-based system
and acts as a real-time supervisor of large-scale industrial processes,
able to control various activities, monitor different operations, and
making use of the sensor information to diagnose a system failure
[15].

The schema is constructed in three layers: (1) model building
tools layer, which allows the qualitative and quantitative repre-
sentation of the information; (2) model interpretation layer, where
the information is stored in a descriptive way, which is used for
monitoring, control and diagnosis, besides having the capacity to
transform the models into executable computational structures; and
(3) the environment execution layer, which is implemented with the
multigraph architecture, using directional graphs. The nodes of the
graph represent the computational blocks and their connections
represent the flow of data between them. Each block has a program
segment that is staggered according to demand and data flow.

One notable feature that is offered by this framework is the
ability to dynamically reconfigure. This is not limited only to ad-
justments in system parameters, allowing for architectural changes
at runtime by the inclusion and removal of nodes and connections.
The structure also presents interfaces for receiving information
from the external environment and integration with its consumers;
in addition, it also has an interface, implemented by each node,
responsible for the parallel and scalable processing of the input
data and a similar function that processes the output data.

4.4 Comparative Analysis

This section presents a comparative analysis of the related works.
This comparison serves as a basis to identify the similarities and
differences between the Doric and the selected works. The com-
parison criteria seek to reveal specific characteristics of the related
works, which can be contrasted with the proposed architecture.
The comparison criteria are discussed as follows:

e Data source: Studies that seek to offer expandable archi-
tectures, allowing to support several data sources. Modern
architectures for information systems need to give their pro-
tection to multiple types and formats of data.

DORIC: An Architecture for Data-intensive Real-time Applications

SBSI’2018, Junho 2018, Caxias do Sul, Rio Grande do Sul Brazil

Table 4: Comparative Analysis

I | Data Source | Publish and Subscrib | Information Processing Analysis Storage Consumers
i Expandable | Expandable | Scalable | Expandable | Scalabl Expandabl lable | Expandable | Scalable | Expandabl

Real-time and Large-scale

~ - ~ + ~ + ~ + ~ + -
processing for Scientific Applications
Real-time and Large-scale

~ - ~ + ~ + ~ + ~ ~ +
processing for Weather Stations
Real-time Scheduling For

~ ~ + + ~ + ~ + ~ + +
Large-scale Control Applications
Proposed Architecture + + + + + + + + + + +

Legend: “+”: Supports “~”: Partially Supports “-” : Does not Support

Publish/Subscribe: Studies that are based on the publish-

subscribe pattern.

e Information processing: Studies that are scalable and ex-
pandable for information processing. Processing information
is fundamental to any architecture for the development of
modern information systems.

e Analysis: Studies that provide support for data analysis
through machine learning techniques.

o Storage: Studies that are extensible and scalable with regard
to the type and volume of data storage.

e Consumers: Studies that are flexible to support different

types of customers.

Table 4 presents the comparative analysis considering these
criteria. It is observed that only the Doric fully meets the defined
criteria, highlighting the contribution and the differential of this
work.

It is possible to verify that, in spite of the great scalability of the
evaluated projects, there is a deficiency in the issue of expansion
and reuse of the structure, for this reason, the proposed architec-
ture aims not only to satisfy the demands presented, but also to
provide a structure divided into modules and reusable, making use
of microservices and emphasizing the separation between its pro-
cessing stages. Such an implementation favors the construction of
expandable, reusable and easily understood structures, contributing
both to existing systems and to those that will still be built.

5 CONCLUSION

The adoption of DIRT applications increased in recent years. How-
ever, there is a lack of standardization and modularized architec-
tures. This implies that a specific infrastructure was needed to be
projected to attend a different demand of the applications. In other
words, a different construction was made despite they have the
same essential purpose. This purpose is to serve as a large-scale
and real-time architecture.

To resolve this problem this work proposed the Doric, a flexible
and modular architecture for data-intensive and real-time systems.
This architecture was built to accommodate the state-of-the-art
technologies related to this purpose. A prototype was implemented
to conduct an empirical evaluation. This evaluation demonstrated
that the architecture could process a large volume of data in a short
period of time. This was possible even with a hardware limitation.
Lastly, the future work consists of deploying the architecture in an
environment with improved hardware capability, and evaluate the
architecture adaptability in more scenarios.

6 ACKNOWLEDGMENTS

Thank you to Unisinos for providing the spaces and resources to
conduct this research.

REFERENCES

[1] Ricardo Alexandre Afonso, WM Da Silva, GHRP Tomas, Kiev Gama, Alezy
Oliveira, Alexandre Alvaro, and Vinicius Cardoso Garcia. 2013. Br-SCMM: Mod-
elo Brasileiro de Maturidade para Cidades Inteligentes. Simpdsio Brasileiro De
Sistemas De Informagdo (2013).

[2] Apache. 2018. Apache Spark. "https://spark.apache.org/". [online, accessed on
january 2018].

[3] Apache. 2018. Apache Zookeper. "https://zookeeper.apache.org/".
accessed on january 2018].

[4] LucianaRegina Bencke, Anderson Luiz Fernandes Perez, and Osvaldo da Costa Ar-
mendaris. 2017. Rodovias Inteligentes: uma visdo geral sobre as tecnologias em-
pregadas no Brasil e no mundo. iSys-Revista Brasileira de Sistemas de Informagao
10, 4 (2017), 80-102.

[5] Junwei Cao and Junwei Li. 2011. Large-scale real-time data-driven scientific
applications. In Networking and Distributed Computing (ICNDC), 2011 Second
International Conference on. IEEE, 116-121.

[6] Dave Evans. 2012. The Internet of Things how the next evolution of the internet is
changing everything (april 2011). White Paper by Cisco Internet Business Solutions
Group (IBSG) (2012).

[7] Apache Kafka. 2017. Apache Kafka: a distributed system platform. Introduction.
"http://kafka.apache.org/intro.html". [online, accessed on january 2018].

[8] Julio Menezes Jr and Cristine Gusmao. 2014. InteliMED-Proposta de Sistema de
Apoio ao Diagnostico Médico para Dispositivos Moveis. iSys-Revista Brasileira
de Sistemas de Informagdo 6, 1 (2014), 44-61.

[9] Mongo. 2018. MongoDB. "https://www.mongodb.com/". [online, accessed on

january 2018].

Linda Northrop, Peter Feiler, Richard P Gabriel, John Goodenough, Rick Linger,

Tom Longstaff, Rick Kazman, Mark Klein, Douglas Schmidt, Kevin Sullivan, et al.

2006. Ultra-large-scale systems: The software challenge of the future. Technical Re-

port. CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING

INST.

Oracle. 2018. Java 8. "http://www.oracle.com/technetwork/pt/java/javase/

downloads/jre8-downloads-2133155.html". [online, accessed on january 2018].

Dan Puiu, Payam Barnaghi, Ralf Toenjes, Daniel Kiimper, Muhammad Intizar

Ali, Alessandra Mileo, Josiane Xavier Parreira, Marten Fischer, Sefki Kolozali,

Nazli Farajidavar, et al. 2016. Citypulse: Large scale data analytics framework for

smart cities. IEEE Access 4 (2016), 1086—1108.

The Statistics Portal STATISTA. 2017. Internet of Things (IoT): number of con-

nected devices worldwide from 2015 to 2025 (in billions). https://www.statista.

com/statistics/471264/iot-number- of-connected-devices-worldwide

STRATA. 2015. Large-Scale Real-Time Applications. [Strata + Hadoop World

Conferences].

Prashant Waknis and Janos Sztipanovits. 1993. Hard real-time scheduling for

large scale process control applications. In Proceedings of the IEEE Workshop on

Real-Time Applications. IEEE, 71-75.

Guangsheng Wu, Zhenlang Ao, Jianyong Li, and Qingiang Zhou. 2011. A Real-

time Receiving and Distributed Processing System for Large-scale Burst Data. In

2011 Second International Conference on Networking and Distributed Computing

(ICNDC). IEEE, 111-115.

[online,

[11

[12

(13]

[15

[16

"https://spark.apache.org/"
"https://zookeeper.apache.org/"
"http://kafka.apache.org /intro.html"
"https://www.mongodb.com/"
"http://www.oracle.com/technetwork/pt/java/javase/downloads/jre8-downloads-2133155.html"
"http://www.oracle.com/technetwork/pt/java/javase/downloads/jre8-downloads-2133155.html"
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide

	Abstract
	1 Introduction
	2 The Proposed Architecture
	2.1 General View
	2.2 Architectural project

	3 Aspects of Implementation and Evaluation
	3.1 Implementation Aspects
	3.2 Evaluation method
	3.3 Results

	4 Related Works
	4.1 Large-Scale and Real Time Processing for Scientific Applications
	4.2 Real-time Processing for Weather Stations
	4.3 Real-Time Scheduling for Large Scale Application Control
	4.4 Comparative Analysis

	5 Conclusion
	6 Acknowledgments
	References

