
Rescheduling and Checkpointing as Strategies to Run

Synchronous Parallel Programs on P2P Desktop Grids

Rodrigo da Rosa Righi, Alexandre Veith,

Vinicius Facco Rodrigues, Gustavo

Rostirolla, Cristiano André da Costa,

Kleinner Farias

Applied Computing Graduate Program -

Unisinos - Brazil

{rrrighi,veith,vfrodrigues,rostirolla,cac,kleinnerfarias}@unisinos.br

Antonio Marcos Alberti

Instituto Nacional de Telecomunicações

INATEL - Brazil

alberti@inatel.br

ABSTRACT
Today, BSP (Bulk-Synchronous Parallel) represents one of
the most often used models for writing tightly-coupled par-
allel programs. As resource substrates, commonly clusters
and eventually computational grids are used to run BSP ap-
plications. In this context, here we investigate the use of col-
laborative computing and idle resources to execute this kind
of demand, so we are proposing a model named BSPonP2P
to answer the following question: How can we develop an
e�cient and viable model to run BSP applications on P2P
Desktop Grids? We answer it by providing both process
rescheduling and checkpointing to deal with dynamism at
application and infrastructure levels and resource hetero-
geneity. The results concern a prototype that ran over a
subset of the Grid5000, showing encouraging results on us-
ing collaboration and volatile resources for HPC.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Distributed architectures;
D.4.1 [Process Management]: Scheduling; H.3.4 [Systems
and Software]: Distributed systems

General Terms
Performance, Management

Keywords
Bulk-Synchronous Parallel, P2P, Process Rescheduling, Check-
pointing, Performance

1. INTRODUCTION
Bulk Synchronous Parallel (BSP) represents a common

model for writing successful parallel programs that exhibit
phase-based computational behaviors [5]. As deployment

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SAC’15 April 13-17, 2015, Salamanca, Spain.

Copyright 2015 ACM 978-1-4503-3196-8/15/04 $15.00

http://dx.doi.org/10.1145/2695664.2695979.

machines, this programming model has been used on clusters
and computational grids [6]. Particularly, this kind of struc-
ture is known by normally presenting a centralized or hierar-
chical architecture, high-speed networks linked to the Inter-
net and nodes that slowly change their participation behav-
ior along the time [6]. In addition, for using one of the afore-
mentioned parallel machines, the user must either buy the
computational and network infrastructures or present a pre-
vious contract/agreement with the institution that host it.
Concerning this landscape, we started the study of low cost
and collaborative environments to take profit of end nodes
around the Internet e↵ortlessly. This e↵ort culminated in
an architecture proposed by Zhao, Liu and Li named P2P
Desktop Grids [16] (PDG). Although joining the power of
idle resources, a high level of dynamism with the sudden
leaving of users, worldwide-scale and Internet-based connec-
tions are challenges when associating this environment with
the purpose of HPC. In this way, our work presents the fol-
lowing problem statement: How can we explore collaborative
computing on PDG to run BSP applications e�ciently?
Aiming at answering the posed question, we are proposing

BSPonP2P - a model that encompasses an infrastructure,
overlay network, scheduling algorithms and runtime man-
agement to run BSP applications on PDG. BSPonP2P ad-
dresses collaborative computing at middleware level, where
programmers do not need to change their applications in or-
der to execute them in the P2P setting. Consequently, the
proposed model acts as a middleware to run round-based
parallel applications with spatial decoupling in an easier and
costless way. Moreover, we also present its evaluation with a
BSP application in a real infrastructure of multiple clusters.
The remainder of this article will first introduce the re-

lated work in Section 2. Section 3 describes BSPonP2P in
detail, demonstrating its rationales and contributions. Eval-
uation methodology and the discussion of the results are pre-
sented in Sections 4 and 5, respectively. Finally, Section 6
emphasizes the scientific contribution of the work and notes
several challenges that we can address in the future.

2. RELATED WORK
This section briefly presents initiatives to run applications

on collaborative environments. Focusing to support Bag-of-
Tasks (BoT) applications, the authors in [1] present a generic
content-based publish/subscribe system called DPS. More-
over, Leite et al. [8] propose a load balancing architecture

501

using a P2P-like structure for desktop grids.
Besides BoT, the master-slave approach is addressed in [4,

12,13,15]. Balasubramaniam et al. [2] and Byung et al. [14]
presented aproaches targeting Desktop Grids, and Godfrey
et al. [4], Shudo [13], Seńıs et al. [12] and Wu and Tian [15]
present aproaches targeting PDG.
Concerning BSP parallel applications, both Mizan [7] and

Camargo et al. [3] are representative for heterogeneous and
dynamic environments. Mizan is a dynamic load balancing
that captures data from computation and communication
metrics. Camargo enable the use of not only idle processor
cycles, but also unused disk space of shared machines, and
a checkpointing-based mechanism.
Table 1 presents a summary of the aforementioned sys-

tems and algorithms. As shown, the initiatives approach
di↵erent models for collaborative environments and assorted
scheduling strategies. We can note that few works are focus-
ing on metrics di↵erent of computation, as well as on failure
control. In this regard, we observe a research opportunity
to work with tightly-coupled applications, such as BSP, on
collaborative environments, o↵ering pertinent strategies to
cover BSP features on highly dynamic and heterogeneous
substrates.

3. BSPONP2P: PROPOSAL TO RUN BSP
PROGRAMS ON P2P DESKTOP GRIDS

BSPonP2P architecture was developed taking in mind both
structured and unstructured P2P networks as shown in Fig-
ure 1. Firstly, we are working with a structured ring-based
network following the Chord P2P protocol [9]. This kind
of network is used to connect nodes, named as Managers.
Each Manager is responsible for a specific cluster, where the
cluster here means a parallel machine, a local network, a mo-
bile device, or a single computer. A cluster is organized in
an unstructured manner, since it o↵ers better flexibility and
dynamism with heterogeneous and unstable resources. The
nodes inside a cluster are named End Nodes, or only Nodes,
and they are responsible to execute the BSP applications.

Ring-based Managers Network
Structured P2P Network

End Nodes
Network

Non-Structured
P2P Network

Cluster

Figure 1: Computational Overlay Network with two
communication levels: (i) among the Managers; (ii)
between a Manager and an End Node.

Each resource can act as a Manager or End Node. We cre-
ated a Computational Overlay Network (CON) to manage
message routing, scheduling, as well as the entrance and the
leaving of a resource in the infrastructure. Each cluster has
at maximum n End Nodes. Thus, the first resource will act
as a Manager and the others up to n will serve as End Nodes
to the composed cluster. Aiming at getting End Node data
periodically, a Manager sends query requests at intervals of
t

m

seconds (defined by the Manager). If the Manager does
not receive a response from an End Node two consecutive
times, the node is disconnected from the CON.

CON automatically reorganizes the network when a node
su↵ers a crash or intentionally leaves the collaborative in-
frastructure. This node can be either a Manager or an End
Node. In this case of a Manager, the oldest End Node in
the cluster is promoted to be the Manager. Another pos-
sibility consists of an outgoing of an End Node that had
its computation abruptly interrupted. In this context, the
Manager has partial data about the execution and can select
other peer in accordance with the scheduling function. Since
BSPonP2P works with process checkpoiting it is possible to
continue application execution from the last saved point.
BSPonP2P also uses the process migration strategy to

treat the heterogeneity of resources in an e�cient way to
properly run a phase-based application. This strategy is pro-
vided at middleware level, not imposing modification in the
user’s application. The evaluation of the first level will de-
cide which cluster will execute a particular process. For that,
we are using a decision function denoted PM (Potential of
Migration) proposed by Righi et. al. [10] in the MigBSP ap-
proach. PM is computed through Equation 1, which receives
as inputs i and j, a process and a cluster, respectively. In
this context, Comp, Comm and Mem denote computation,
communication and memory metrics. The larger the PM
value, the most profitable is the target cluster j on receiving
a process i. Di↵erent from MigBSP, BSPonP2P uses PDG,
which implies in a modification of the computation metric in
accordance with Equation 2. T (i) and Set(j) are inherited
from MigBSP [10], and denote the computational time of
process i in the last superstep and the relative performance
of the cluster j, respectively. BSPonP2P adds X

Resource

and X

User

in order to evaluate the resource utilization in a
cluster and the resource utilization by the user.

PM(i, j) = Comp(i, j) + Comm(i, j)�Mem(i, j) (1)

Comp(i, j) = (
X

Resourc(j) +X

User(j)

2
).T (i).Set(j) (2)

The evaluation in the second communication level is used
to define which End Node in a cluster will run a specific
process. The definition of the executor node is made based
on the availability of the equipment. At this point, a simple
assessment is made, where samples of at least three ratings
and a maximum of ten reviews of availability (amount of
computational resource available) are used. The samples
are based on past records received by the Manager.
As runtime strategies, BSPonP2P o↵ers process reschedul-

ing and checkpointing. Both take place after ending a par-
ticular superstep, because of this point refers to a consistent
global state of the distributed system. The idea is to o↵er a
runtime management that aims at reducing the load imbal-
ance among the processes, so decreasing the execution time
of each superstep. Rescheduling tests are done not at each
superstep, but the superstep index is defined on-the-fly in
accordance with the MigBSP parameter called ↵.

4. EVALUATION METHODOLOGY
The evaluation was performed using SimGrid1, a deter-

ministic scientific instrument to study the behavior of schedul-
ing algorithms in heterogeneous platforms. We applied sim-

1http://simgrid.gforge.inria.fr

502

Table 1: Comparison among initiatives to run parallel applications on collaborative environments.
Initiatives

Target

system

Model

application

Migration

Data

Replication

Load

balancing

Monitoring

Anceaume et al. [1] PDG Bags of Task - - Computation Computation

Balasubramaniam et al. [2] Desktop Grids Master/Slave - - Computation Computation

Camargo et al. [3] PDG BSP yes yes Computation Computation

Godfrey et al. [4] PDG Master/Slave yes yes Computation Computation

Khayyat et al. [7] Desktop Grids BSP yes no Computation Computation

Leite et al. [8] PDG Bags of Task yes yes Work Stealing Computation

Sent́ıs et al. [12] PDG Master/Slave yes no Computation Computation and Memory

Shudo et al. [13] PDG Master/Slave yes no Computation Computation

Byung et al. [14] Desktop Grids Master/Slave yes no Computation Computation

Wu et al. [15] PDG Master/Slave yes yes Computation Computation

ulation in the three scenarios using the Simgrid’s MSG mod-
ule, using as platform the first 15 nodes of the following
Grid5000 clusters2: chimint, chicon, paradent, grephene,
gdx, capricorne, adonis, borderplage, pastel and suno.
Scenario i represents the simple execution of a BSP ap-

plication, disabling any service or scheduling functionality.
Scenario ii adds the scheduling calculus in the first and sec-
ond levels of the CON. Finally scenario iii enables process
checkpointing and rescheduling. The objective is to show
the overload imposed by BPSonP2P (comparing scenarios i
and ii), and the gain or loss of time when migration is en-
abled (comparing scenarios i and iii). We also performed a
recovery validation: in this case, we evaluated the time to
resume the execution with checkpoint and compared with
the time without this service.
We implemented a BSP application for computational fluid

dynamics based on the principle of the Lattice Boltzmann
Method (LBM) [11]. Tests conducted on each scenario suf-
fered the variation of three parameters: (i) ↵, starting with
4, 8 and 16 (same values used by [10]); (ii) Amount of su-
persteps whose values tested were 10, 50, 100, 500, 1000 and
2000; (iii) Amount of processes, assuming the values 11, 26,
51 and 89, randomly chosen to represent the environment
that is found on PDG.

5. DISCUSSING THE RESULTS
Aiming at analyzing the changes in the execution time

according to the variation of the parameters presented in
the previous section, the results were organized in Figure 2
according to the number of processes showing the percentage
change in scenarios ii and iii in comparison to scenario i.
Analyzing the results, we can observe that, when ↵ is

equal to 4 and the amount of supersteps is equal or bigger
than 1000 scenario iii is always better than scenario ii. In
cases with 51 and 89 processes and 1000 supersteps a gain
of 8% and 16% respectively can be obtained above scenario
i. With ↵ equal to 8, scenario iii is better than scenario ii in
almost every test losing only when the amount of supersteps
is 500 with 89 processes by 0.56%. In these cases, the ROI
(Return of Investments) of migrations reaches almost 17% of
gain above scenario i with 89 processes and 1000 supersteps.
When scenario i is faster than scenario iii with ↵ equal to 8,
it is by less than 3% from 10 to 100 supersteps and less than
1% for more than 500 supersteps. It is also important to
observe that with 26 processes and 2000 supersteps, scenario
iii presents a performance better than scenario i with all ↵
values.
In a second experiment we analyze the recovery after an

unexpected exit of a machine from the CON. In this context

2Details about computing resources and network connec-
tions can be found at http://www.grid5000.fr

we evaluate scenario iii with 89 processes running, 2000 su-
persteps and ↵ is equal to 16, simulating an exit in di↵erent
supersteps as can be seen in Table 2. An exit on superstep
9 for instance did not cause any gain because there was no
migration and consequently no checkpoint. On the other
hand, when there is a bigger amount of superstep and a
closer checkpoint, like occurred in the last case with an er-
ror in the superstep 1999, an economy of more than 57% in
time could be obtained.

Table 2: Time in seconds with and without check-
point according to the supersteps with failure

Superstep with failure 1999 999 499 199 49 9

With checkpoint 29178 15925 6904 1507 813 454

Without checkpoint 68742 40246 15244 3054 1684 454

6. CONCLUSION
This article presented BSPonP2P as an alternative to run

BSP applications on PDG. To the best of our knowledge, the
proposed model is the first that joins the aforementioned
programming model and the collaborative execution envi-
ronment. Process rescheduling and checkpointing manage-
ment is the BSPonP2P’s scientific contribution. Thanks to
both strategies, we demonstrated that the word “e�ciency”
referred in the problem statement means here performance
and fault tolerance. Besides presenting situations in which
BSPonP2P outperforms the simple execution of a BSP ap-
plication, most results using Grid5000 clusters showed an
average overhead of 1.09% when using process reschedul-
ing and checkpoiting. We classify this rate as positive to
BSPonP2P, because an application must not be restarted
from the scratch when any fault occurs. Future research
should evaluate BSPonP2P with process replication in or-
der to launch copies of a process at specific superstep to
run concurrently, so helping at both performance and fault
tolerance areas.

Acknowledgments
The authors would like to thank to the following Brazilian
agencies: CAPES, CNPq and FAPERGS.

7. REFERENCES
[1] E. Anceaume, M. Gradinariu, A. Datta, G. Simon,

and A. Virgillito. A semantic overlay for self-
peer-to-peer publish/subscribe. In Distributed
Computing Systems, 2006. ICDCS 2006. 26th IEEE
International Conference on, pages 22–22, 2006.

[2] M. Balasubramaniam, N. Sukhija, F. Ciorba,
I. Banicescu, and S. Srivastava. Towards the

503

-18%-15%-12%-9%-6%-3%0%
3%6%
9%12%15%18%

"10" "50" "100" "500" "1000" "2000"

TI
m
e

Supersteps

α = 4 Scenario ii α = 4 Scenario iii α = 8 Scenario ii α = 8 Scenario iii α = 16 Scenario ii α = 16 Scenario iii

-18%
-15%
-12%
-9%
-6%
-3%
0%
3%
6%
9%

12%
15%
18%

R
el

at
iv

e
Ti

m
e

Supersteps

(a) 11 Processes

10 50 100 500 1000 2000 -18%
-15%
-12%
-9%
-6%
-3%
0%
3%
6%
9%

12%
15%
18%

R
el

at
iv

e
Ti

m
e

Supersteps

(b) 26 Processes

10 50 100 500 1000 2000

-18%
-15%
-12%
-9%
-6%
-3%
0%
3%
6%
9%

12%
15%
18%

R
el

at
iv

e
Ti

m
e

Supersteps

(c) 51 Processes

10 50 100 500 1000 2000 -18%
-15%
-12%
-9%
-6%
-3%
0%
3%
6%
9%

12%
15%
18%

R
el

at
iv

e
Ti

m
e

Supersteps

(d) 89 Processes

10 50 100 500 1000 2000

Figure 2: Relative Time change of scenarios ii and iii in comparison with scenario i

scalability of dynamic loop scheduling techniques via
discrete event simulation. In Parallel and Distributed
Processing Symposium Workshops PhD Forum
(IPDPSW), 2012 IEEE 26th International, pages
1343–1351, 2012.

[3] R. Camargo, F. Castor, and F. Kon. Reliable
management of checkpointing and application data in
opportunistic grids. Journal of the Brazilian Computer
Society, 16(3):177–190, 2010.

[4] B. Godfrey, K. Lakshminarayanan, S. Surana,
R. Karp, and I. Stoica. Load balancing in dynamic
structured p2p systems. In INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, volume 4,
pages 2253–2262 vol.4, March 2004.

[5] B. Hendrickson. Computational science: Emerging
opportunities and challenges. Journal of Physics:
Conference Series, 180(1):012013, 2009.

[6] K. Khan, K. Qureshi, and M. Abd-El-Barr. An
e�cient grid scheduling strategy for data parallel
applications. The Journal of Supercomputing,
68(3):1487–1502, 2014.

[7] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,
D. Williams, and P. Kalnis. Mizan: a system for
dynamic load balancing in large-scale graph
processing. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages
169–182, New York, NY, USA, 2013. ACM.

[8] A. F. Leite, H. C. Mendes, L. Weigang, A. C. M. A.
Melo, and A. Boukerche. An architecture for p2p
bag-of-tasks execution with multiple task allocation
policies in desktop grids. Cluster Computing,
15(4):351–361, 2012.

[9] L. Lin, K. Koyanagi, T. Tsuchiya, T. Miyosawa, and
H. Hirose. Improving routing load balance on chord.
In Advanced Communication Technology (ICACT),
2014 16th International Conference on, pages

733–738, Feb 2014.
[10] R. d. R. Righi, L. Graebin, and C. A. da Costa. On the

replacement of objects from round-based applications
over heterogeneous environments. Software: Practice
and Experience, pages n/a–n/a, 2014.

[11] C. Schepke and N. Maillard. Performance
improvement of the parallel lattice boltzmann method
through blocked data distributions. In Computer
Architecture and High Performance Computing, 2007.
SBAC-PAD 2007. 19th International Symposium on,
pages 71–78, Oct 2007.

[12] J. Sent́ıs, F. Solsona, D. Castellà, and J. Rius.
Discop2p: an e�cient p2p computing overlay. The
Journal of Supercomputing, 68(2):557–573, 2014.

[13] K. Shudo, Y. Tanaka, and S. Sekiguchi. P3: P2p-based
middleware enabling transfer and aggregation of
computational resources. In Cluster Computing and
the Grid, 2005. CCGrid 2005. IEEE International
Symposium on, volume 1, pages 259–266 Vol. 1, 2005.

[14] B. H. Son, S. woo Lee, and H.-Y. Youn.
Prediction-based dynamic load balancing using agent
migration for multi-agent system. In High
Performance Computing and Communications
(HPCC), 2010 12th IEEE International Conference
on, pages 485–490, 2010.

[15] D. Wu, Y. Tian, and K.-W. Ng. On the e↵ectiveness
of migration-based load balancing strategies in dht
systems. In Computer Communications and Networks,
2006. ICCCN 2006. Proceedings.15th International
Conference on, pages 405–410, 2006.

[16] H. Zhao, X. Liu, and X. Li. A taxonomy of
peer-to-peer desktop grid paradigms. Cluster
Computing, 14(2):129–144, 2011.

504

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryList_V1
 qi2base

