
Redesigning Transaction Load Balancing on Electronic
Funds Transfer Scenarios

Rodrigo da Rosa Righi, Cristiano André da Costa, Luiz Gonzaga Jr, Kleinner Farias,
Alexandre Luis Andrade, Lucas Graebin

Universidade do Vale do Rio dos Sinos - Applied Computing Graduate Program
Unisinos Av. 950, São Leopoldo, RS, Brazil

{rrrighi, cac, lgonzaga, kleinnerfarias}@unisinos.br, {alexandreluisandrade,
lgraebin}@gmail.com

ABSTRACT
The use of electronic medias for payment has been increas-
ingly adopted, instead of employing money in currency pa-
per or check directly. Considering this electronic funds trans-
fer (EFT) scenario, we developed a model called GetLB
which comprises not only a completely new and efficient
scheduler but also a cooperative communication infrastruc-
ture for handling heterogeneous and dynamic environments.
The scientific contribution consists of a scheduling heuristic
that combines static data from transactions and dynamic
one from processing nodes to overcome the limitations of
Round-Robin. Besides the GetLB’s description, this article
also presents a prototype evaluation by using both traces
and configurations obtained with a real EFT company.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods—Scheduling ; D.2.8 [Software Engineering]: Met-
rics—complexity measures, performance measures

General Terms
Algorithms, Performance, Management, Experimentation

Keywords
Load balancing, cooperation, scheduling, heuristic, GetLB

1. INTRODUCTION
Nowadays, we can observe that the use of electronic me-

dias for payment operations is increasingly adopted, instead
of using money in currency paper and check [1]. Normally,
an electronic transaction is related to either a purchase or
balance requisition and runs through a round-trip path from
one terminal up to a processing center [2]. POS (Point of
Sale), EFT (Electronic Funds Transfer), ATM (Automatic
Teller Machine) and mobile devices are examples of the most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gwangju, South Korea.
Copyright 2014 ACM 978-1-60558-638-0/10/03 ...$10.00.

used terminals [3]. After arriving in the provider company,
transactions are received by a switch that acts as a scheduler
that assigns them to processing machines, or PMs.

Both resource management and scheduling are key ser-
vices for getting efficiency when dealing with the observed
growing of transactions per second (TPS) on processing com-
panies [4]. The standard mechanism for mapping transac-
tions to PMs is the so-called Round-Robin, in which em-
ploys a list of resources in a circular fashion [5, 6]. Round-
Robin method represents an easy way to achieve an opti-
mal scheduling when both sets of transactions and PMs are
characterized by a homogeneous system. However, since the
electronic transactions are heterogeneous (withdraw, bal-
ance, prepaid telephony, etc), Round-Robin algorithm can
distribute them for processing on highly-loaded machines,
leaving others with moderated load idle.

In this context, this article presents a proposal for load
balancing framework called GetLB. It acts as an alterna-
tive to employing the Round-Robin method and presents
the following structure: (i) cooperative communication; (ii)
scheduling and; (iii) notification. The communication topic
concerns the efficient and cooperative interaction between
the switch and PMs for collecting scheduling data. In its
turn, the scheduling is responsible for assigning transactions
in accordance with their types (requirements of CPU, net-
work, memory and disk) and dynamic data regarding PMs
and network status. Notifications are useful for enlarging or
dropping the number of PMs without loosing system avail-
ability. The input workload adopted for tests was based on
traces obtained with a real Brazilian service provider com-
pany.

2. GETLB: LOAD BALANCING MODEL
FOR EFT SYSTEMS

GetLB was structured with the following design decisions
in mind: (i) the scheduling heuristic algorithm runs in the
switch module and must work with up to date information
regarding the PMs; (ii) the heuristic scheduling must com-
bine relevant data in order to compose the notion of load;
(iii) PMs must be capable to notify the switch; (iv) the
framework must deal with heterogeneous resources at both
communication and computing levels.

2.1 Cooperative and Extensible Architecture
The proposed architecture is shown in Figure 1. The first

775http://dx.doi.org/10.1145/2554850.2555121

difference when comparing it to the traditional approach
comprises the network. In GetLB, the disposition of the
elements in the same network is not mandatory. The only
prerequisite consists of the fact that each element must be
accessed through an IP address. Regarding the switch per-
spective, the time for accessing a PM should not be the
same for another one. The same can be applied for com-
munications from PM components to internal subsystems.
Although the Internet offers a network latency often 1000
times greater than local area networks, the flexibility offered
by GetLB brings the following benefits: (i) given that the
resources of an institution are limited, it is possible to add
additional ones from business partners in order to support
a specific demand; (ii) it helps the growth of the enterprise,
since some countries presents strong regulations that claim
EFT being processed by MPs located in national territory.

Cards

Cellphone
Prepaid

Transport
cards

Terminal
Configuration

Information
Security

Fraud
Prevention

Processing
Machine 1

Internal Subsystems

POS

ATM

X.25➝IP

Output
Systems 1

Output
Systems 2

Output
Systems m

Incomming
Transactions

Switch

DB DB DB DB
Auxiliary
Systems

EFT

Processing
Machine 2

Processing
Machine n

"Load Level"
Scheduler

Notifications and
Scheduling
Data

Figure 1: GetLB architecture

Other relevant aspect of GetLB architecture concerns the
heterogeneity treatment. Besides exploring this feature at
network level, GetLB also deals with PMs that present dif-
ferent features such as CPU clock, access times to the switch
and subsystems, as well as different configurations of pri-
mary and secondary memories. So the switch works with a
vector that contains information of all PMs. We designed a
pull-based interaction between the switch and PMs, where
each processing machine updates its part on the remote vec-
tor periodically. The cooperation among the architecture
elements enables switch to act only with in-memory data
for performing scheduling calculus. The updating period
will inform how recent is data regarding CPU, memory and
network from the processing machines. Due this approach,
notifications allows to inform the switch about a particular
event asynchronously. Notifications will not be covered in
this paper in details.

2.2 Transaction Scheduling
The switch module identifies the type of a transaction,

which has its own CPU and I/O requirements, and finds the
most suitable target for its processing. Considering a model-
ing where transactions and PMs are heterogeneous and PMs

can be also seen as a dynamic environment, we developed
a scheduling heuristic called LL (Load Level). LL can be
viewed as a decision function LL(i, j) where i means a spe-
cific type of transaction while j denotes a candidate target
PM for receiving transaction i. For each new transaction i,
the switch will calculate n equations LL(i, j), where n means
the number of processing machines. In this way, the lowest
result will inform the target that will receive a transaction.
LL(i, j) can be obtained by computing Equation 1.

LL(i, j) = Recv(i, j) + Proc(i, j) (1)

Recv(i, j) = bytes(i) . transfer(j) (2)

Proc(i, j) = transaction(i, j) +

m−1∑
z=0

transaction(z, j) (3)

transaction(i, j) =
instructions(i)

clock(j) . (1− load(j))

+
RAM(i) . serviceRAM(j)

freeRAM(j)
+

HD(i) . serviceHD(j)

freeHD(j)

+ sub(i, j)

(4)

sub(i, j) =

x−1∑
y=0

[(2 . suba(y, j)) + subc(y)] . subr(i, y) (5)

LL(i, j) is obtained by calculating the time required for
receiving and processing a given transaction i in a target ma-
chine j. So, the term Recv(i, j) considers the time required
to transfer all bytes of the transaction from the switch to the
PM. For that, transfer(j) comprises the time to send 1 byte
between both communication entities. Equation 2 can rep-
resent the most significant parameter on LL equation since
this part should be the most onerous one for accessing PMs
around the Internet. Proc(i, j) corresponds to the process-
ing time of all transactions mapped to machine j, including
the candidate transaction i. Thus, Equation 3 can be di-
vided in two sub-elements: (i) a prediction of computation
time for transaction i on PM j; (ii) a prediction of all m
transactions that have already mapped to PM j previously
and remain on its input queue.

Equation 4 is used for measuring the execution time of a
transaction i on PM j. It can be divided in four subparts:
the first denotes CPU operations, the second and the third
I/O operations and the fourth refers to subsystems. Each
transaction is defined by the following parameters: (i) num-
ber of instructions; (ii) number of RAM operations; (iii)
number of HD operations; (iv) which subsystems are nec-
essary for computing a transaction and the number of in-
teractions with each one; (v) access time to each subsystem.
Considering that the use of local area network is not manda-
tory, the aforementioned parameter v is useful to add a delay
for using subsystems distributing along different Internet do-
mains. In Equation 4, serviceRAM(j) and serviceHD(j)
denote the mean I/O time for performing a single instruction
of write in memory and disk, respectively. The parameters
freeRAM(j) and freeHD(j) are percentages the indicate
the availability of each I/O resource in a specific moment.

The time involving the subsystems is computed by sub(i, j)
in accordance with Equation 5. Each type of transaction
i must access x subsystems. Thus, suba(y, j) considers the

776

time spent by PM j for accessing the particular subsystem y
through network interaction. This time is multiplied for 2 in
order to consider a round-trip evaluation. The field subc(y)
refers to the service time of the subsystem y and subr(i, y)
represent the number of times that subsystem y is called
for the complete computation of i. Finally, the switch has
two tables for helping the scheduling process: (i) types of
transactions with requirements; (ii) subsystems with com-
putation times. Data needed for the functions bytes(i),
instructions(i), RAM(i), HD(i), subc(y) and subr(i, y) are
fixed (taken by querying these tables).

3. EVALUATION RESULTS
We implemented a prototype in Java using RMI (Re-

mote Method Invocation) on two types of interactions: (i)
“PM→Switch” for updating PM data to the switch and for
sending notifications; (ii) “Switch→PM” for transaction dis-
patching. Table 1 presents the results when using an ho-
mogeneous cluster. The time displayed in this table has a
hh:mm:ss notation and denotes the time difference from the
beginning until the last transaction processing. Clearly, the
distributing transactions with RR is balanced, but this fact
does not imply on better performance, regarding the pro-
cessing time perspective. Although the machines are homo-
geneous, the set of transactions is not, and RR maps them to
resources cyclically without observing their characteristics.

The results with the heterogeneous cluster are shown in
Table 2 (4 PMs with 2.4 GHz and 2 PMs with 1.2 GHz).
RR penalizes the final time because some transactions are
sent to machines with lower capacity. Thus, besides the set
of transactions being characterized as an heterogeneous sys-
tem, and the resources being classified as well, it contributes
for degrading the RR performance. GetLB dispatches more
than 90% of the amount of transactions for the collection
of four machines with greater capacity. Despite the gain of
11.51% for GetLB, the machines PM0 and PM1 are under-
utilized, it happens due the interval of 1 second for updating
scheduling data (PM to switch).

Table 1: Results with homogeneous cluster

Machi-
ne

GetLB Round-Robin
Number
transac.

%
Total
time

Number
transac.

%
Total
time

PM0 1470 18 00:04:45 1362 16,66 00:05:51
PM1 1192 15 00:04:47 1362 16,66 00:05:52
PM2 1467 18 00:05:21 1361 16,66 00:06:26
PM3 1365 17 00:04:46 1361 16,66 00:05:52
PM4 1377 17 00:04:38 1361 16,66 00:05:44
PM5 1297 17 00:04:06 1361 16,66 00:05:27

Total
8168

Total
100

Highest
00:05:21

Total
8168

Total
100

Highest
00:06:26

Table 2: Results with heterogeneous cluster

Machi-
ne

GetLB Round-Robin
Number
transac.

%
Total
time

Number
transac.

%
Total
time

PM0 653 7,99 00:07:10 1362 16,67 00:10:20
PM1 5 0,06 00:00:15 1362 16,67 00:10:22
PM2 1787 21,88 00:09:59 1361 16,66 00:11:08
PM3 1865 22,83 00:09:08 1361 16,66 00:10:18
PM4 1940 23,75 00:09:01 1361 16,66 00:10:10
PM5 1918 23,48 00;09:11 1361 16,66 00:10:21

Total
8168

Total
100

Highest
00:09:59

Total
8168

Total
100

Highest
00:11:08

4. CONCLUSION
This paper presented GetLB - a load balancing model for

electronic funds transfer scenarios. GetLB’s technical con-
tribution consists of its cooperative and extensible commu-
nication framework, which considers an autonomic interac-
tion between processing machines (PMs) and the switch el-
ement for updating scheduling and notifications data. This
organization optimizes the decision making regarding trans-
actions assignment since network interaction does not take
place. The scientific contribution of GetLB comprises
its sche-duling heuristic called Load Level or LL. For each
incoming transaction, LL functions are calculated according
to the number of candidate machines and the lowest level
indicates the target. LL considers both static data about
the type of each transaction, and dynamic one about the
network, CPU, memory, disk and subsystems status. Both
resources and transactions levels of heterogeneity were eval-
uated in the current paper. Future work includes tests with
resource dynamics and the use of notifications.

Acknowledgments
This work was partially supported by FAPERGS, GetNet
and CNPq.

5. REFERENCES
[1] L. Xiaojing, W. Weiqing, and Z. Liwei, “Analysis of the

impact of ecommerce to the changing of economic
growth mode,” in IEEE Symp. on Robotics and
Applications (ISRA), 2012, pp. 698–700.

[2] R. Sastre, S. Bascon, and F. Herrero, “New electronic
funds transfer services over ip,” in IEEE
Electrotechnical Conf., 2006, pp. 733 –736.

[3] C. Araujo, E. Sousa, P. Maciel, F. Chicout, and
E. Andrade, “Performance modeling for evaluation and
planning of electronic funds transfer systems with
bursty arrival traffic,” in Intensive Applications and
Services, INTENSIVE ’09., 2009, pp. 65–70.

[4] E. Sousa, P. Maciel, C. Araujo, and F. Chicout,
“Performability evaluation of eft systems for sla
assurance,” in Parallel Distributed Processing, 2009.
IPDPS., 2009, pp. 1–8.

[5] T. Tchrakian, B. Basu, and M. O’Mahony, “Real-time
traffic flow forecasting using spectral analysis,”
Intelligent Transportation Systems, IEEE Transactions
on, vol. 13, no. 2, pp. 519 –526, june 2012.

[6] S. N. Mehmood Shah, A. K. B. Mahmood, and
A. Oxley, “Analysis and evaluation of grid scheduling
algorithms using real workload traces,” in Int. Conf. on
Management of Emergent Digital EcoSystems, ser.
MEDES ’10. ACM, 2010, pp. 234–239.

[7] P. Liang and J. Bigham, “A taxonomy of electronic
funds transfer domain intrusions and its feasibility
converting into ontology,” in Communications, 2006.
APCC ’06., 2006, pp. 1–5.

[8] M. Maurer, I. Brandic, and R. Sakellariou, “Adaptive
resource configuration for cloud infrastructure
management,” Future Generation Computer Systems,
vol. 29, no. 2, pp. 472 – 487, 2013.

[9] A. Aboulnaga and S. Babu, “Workload management for
big data analytics,” in Int. conference on Management
of data, ser. SIGMOD ’13. New York, NY, USA:
ACM, 2013, pp. 929–932.

777

