
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

Extending JUnit 4 with Java Annotations and Reflection to
Test Variant Model Transformation Assets

Fábio Paulo Basso, Toacy Cavalcante Oliveira
 COPPE, Universidade Federal do Rio de Janeiro (UFRJ),

Rio de Janeiro, RJ, Brazil
{fabiopbasso,toacy}@cos.ufrj.br

Kleinner Farias
 PIPCA, Universidade do Vale do Rio dos Sinos,

São Leopoldo, RS, Brazil
kleinnerfarias@unisinos.br

ABSTRACT
Software Product Line (SPL) techniques are widely used to repre-
sent variability and commonality in reusable software assets. Sim-
ilarly, model transformations are also software assets and can be
reused with the same techniques. However, their applicability in
the model transformations domain demands an extra effort to test
the generated/adapted assets. Automated test cases should consid-
er isolated transformations and also their combined use in a model
transformation chain, that can vary according to different needs in
software projects, e.g. libraries and frameworks. In order to facili-
tate the specification of automated test cases, this paper presents a
JUnit extension to support unit and integration tests that execute
dynamic SPL-based model transformation chains.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Object-oriented design methods,
Model Driven Development (MDD), Context specific languages -
API languages.

General Terms
Design, Theory.

Keywords
Model transformation chain, Software Product Lines, MDE, Java
annotations, Java reflection, Unit tests, Integration tests.

1. INTRODUCTION
Model Driven Engineering (MDE) [27] is a software development
strategy where models are used to generate code or other models
[25]. In real world scenarios, where models can become complex
and diverse, the whole transformation strategy is typically broken
down into several transformation algorithms that are combined in
a Model Transformation Chain (MTC) [36]. According to Baudry
et al., researchers and practitiones should exhaustively test MTCs
because they are complex and error-prone tasks [7]. In this sense,
testing transformation assets is a critical task [21], since transfor-
mations are frequently changed to support increments [20].

Hervieu et al. [14] and Perrouin et al. [30] claim that it is even
more difficult to specifying automated tests for variant transfor-

mation assets (e.g. model transformations adapted for software
projects using SPL), since it is harder to construct test logic than it
is to construct those for a regular software line [22]. For example,
a domain model composed of variant transformation assets allows
the execution of dynamic MTCs, requiring unit and integration
tests. Therefore, it is necessary a solution to facilitate the specifi-
cation of automated test cases considering variant transformations.

In this sense, Offutt et al. [28] and McGregor et al. [23] introduce
some techniques to test SPLs. In addition, Reuys et al. [31] pre-
sent a top-down solution for automated test case generation, tak-
ing as input a model and generating specific test cases according
variabilities in a domain model. Using a bottom-up solution, pro-
posals [33][19] apply reverse-engineering techniques in existing
software assets to extract relevant test cases to test SPLs. Current-
ly, some works are moving towards agile testing [13], considering
Test Driven Development (TDD) and SPL [17][22][26][24]. In
this sense, bottom-up solutions are more adequate to apply TDD
than top-down is, because variabilities are identified and extracted
while the SPL is being constructed. Bottom-up is also recom-
mended to develop variant model transformations that are incre-
mentally constructed with MTCs [20].

Along the development of test cases, we have found out that exist-
ing JUnit 4 API [16], used to specify and execute unit tests in
Java, lacks in functionalities to apply TDD in variant model trans-
formations. In order to provide a specific solution, this paper pre-
sents an extended JUnit API to automate test cases for variant
transformations, with similar performance to the regular API. We
introduce this solution into a model transformation engine, name-
ly WCT [5]. The validation of this work is a set of automated test
cases that deals with a complex and real scenario in adapting large
scale transformations, presenting some results in comparison with
previous experiences in [4].

This paper is organized as follows. Section 2 presents a motivat-
ing example. Section 3 introduces the proposed automated test
API.. Section 4 evaluates the proposed extension and describes
the ongoing works. Section 5 presents drawbacks and limitations
of the proposed extension. Section 6 present the related works.
Finally, Section 7 shows the conclusions.

2. MOTIVATING EXAMPLE
This section presents a practical scenario extracted from industrial
projects using large-scale model transformations. This scenario
will help demonstrate the issues related to the practice of testing
model transformation assets. This experience reported by example

1601http://dx.doi.org/10.1145/2554850.2555054

is relevant for studies related to reuse techniques, applied in mod-
el transformations in following works [11][14][32][37][2].

FOMDA (Features-Oriented Model-Driven Architecture) is a
methodology to specify generative and dynamic model transfor-
mation chains [4]. In order to support these specifications, WCT is
a tool that allows designing and also executing transformations
based on three kinds of assets: Feature Model [18][10] (Figure 1
A); Model Transformations (Figure 1 B); and Model Transfor-
mation Chains (Figure 1 C).

A platform domain model (PDM) [35] is represented a Features
Model (illustrated in Figure 1 (A) and Figure 2) that exposes the
system’s characteristics. In addition, each feature found in the
PDM can be related to a set of Model Transformers that will even-
tually generate code (or other models) that represents such feature
with more details. Another important aspect of our approach is
combing Transformers into a Model Transformation Chain. This
step allows defining the sequence in which Model Transformers
are executed to generate a given product from the Product Line
(Figure 1 (C) and Figure 3 (A)).

Figure 1. Domain Models Used in FOMDA Methodology
In order to exemplify transformations based on real scenario, re-
ported in an industrial effort in tailoring transformation assets in
[5], next section exemplifies some points that varied in the gen-
eration of source-code for Object Relational Mappings (ORM) in
support for development of information systems. The relationship
below “ORM” is a mandatory XOR. This means that it is neces-
sary to select one and only one feature among “JPA”, “XDoclet”,
“JDO” and so on. These features support the specification of
ORM into entity classes, illustrated in Figure 4 (B). Examples of
source-code for JPA and XDoclet are presented in Figure 4 (A
and C). Such examples can be generated with the support of two
different model transformations, exemplified in [5] using model-
to-code generations. In contribution, next section exemplifies the
use of variant transformations.

2.1 Transformation Chain Domain Model
Figure 3 shows an example of variant transformations. This ex-
ample prestens a diagram with transformations that generates the
model layer of an information system, i.e. a Transformation Chain
Domain Model (TCDM). Figure 4 (B) illustrates an element of a

model layer, which is used as input for transformations. The
TCDM owns an abstraction (dotted element), used to generalize
transformations that perform ORM transformations for different
target implementation technologies shown in the PDM. Abstrac-
tions groups mutually exclusive transformations, represented by
the relationship stereotyped with «requires», between transfor-
mations and features, and with the stereotype «XOR», owned by
the abstraction. Considering this example, the abstraction “ORM
to PSM” is replaced, in runtime or by generating a concrete MTC,
by: 1) “Generate JPA”, whose result from a transformation is
shown in Figure 4 (A), or; 2) by “Generate XDoclet”, whose
result of a transformation is shown in Figure 4 (C).

2.2 Platform Domain Model
An example of a PDM is shown in Figure 2 as a feature model
where the filled circle means the feature is mandatory and, other-
wise, it means feature is optional. Therefore, “Remote Layer” is
an optional feature and “Model Layer” is mandatory.

Figure 2. Screenshot of a Platform Domain Model (PDM)
The “Remote Layer” variant is used to integrate a subsystem, that
runs in desktop or mobile platform, with the application logic, that
runs on a web server. In this case, when generating source-code in
Figure 4 (A) or (C), the class named Person must implement the
Serializable Java interface, as shown in Figure 4 (D). With this in
mind, when the feature “OSEFwk” is selected, then the class Per-
son must extend the class com.osefwk.Entity, as exemplified in
Figure 4 (E). In this sense, the transformation named “Generate
OSE FWK” is executed or generated into an MTC.

With support of WCT, one can fragment a transformation into
independent modules that are used in runtime or combined
through generative techniques discussed in [4][5]. These elements
are also abstractions illustrated in Figure 3 (A) with model ele-
ments named “implSpecPoint” and “extSpecPoint”. The execu-
tion of transformation showed in Figure 3 (B) results in Figure 4
(E) in case the feature “OSEFwk” is selected. Figure 3 (C) illus-
trates another model-to-model transformation that results into

Figure 3. Screenshot of a Transformation Chain Domain Model

public class TransformToOseFwk extends AbstractTransformer{
1 public Object doTransformation() {
2 Class entity = (Class) getParameter("extSpecPoint");
3 if (entity.containsStereotype("Entity")) {
4 entity.addGeneralizationFrom("com.osefwk.Entity");

}
5 return entity;

public class TransformToSerializable extends AbstractTransformer{
1 public Object doTransformation() {
2 Class entity = (Class) getParameter("implSpecPoint");
3 if (entity.containsStereotype("Entity")) {
4 entity.addRealizationFrom("java.lang.Serializable");

}
5 return entity;

A B

C

Mandatory feature (1)

Optional feature (0..1)

Mandatory and mutual
exclusive features (1)

1602

MTC 1:[Generate JPA] Input Model Element (entity) MTC 2: [Generate XDoclet]
@Entity
@Table(name="PERSON_TB")
public class Person {
 @Id @Column(name="PERSON_ID")
 private Long id;

 @Column(name="PERSON_NAME")
 private String name;
}

/*@hibernate.class table="PERSON_TB"*/
public class Person {
 /* @hibernate.id @hibernate.column

name="PERSON_ID"*/
 private Long id;

 /*@hibernate.column name="PERSON_NAME"*/
 private String name;
}

MTC 3:[A or C] and [Implements Serialization] MTC 4: [A or C] and [Generalize OSE FWK]
//JPA or XDoclet fragments are included here
public class Person implements java.lang.Serializable {

//JPA or XDoclet fragments are included here
public class Person extends com.osefwk.Entity {

MTC 5: [A or C] and [Generalize OSE FWK] and [Implements Serialization]

//JPA or XDoclet included here
public class Person extends com.osefwk.Entity implements java.lang.Serializable {

Figure 4. Exemplification of the Results from Different Model Transformation Chains Obtained in TCDM shown in Figure 3

the source-code shown in Figure 4 (D) in case the feature “Re-
mote Layer” is selected. If both features are selected, then both
model transformations are executed or included in a generated
MTC, generating the code illustrated in Figure 4 (F).

The building of application generators considering variants re-
quires the writing of unit and integration test cases for each possi-
ble combination among features and transformations [7]. This
leads to a complex scenario to test dynamic software product
lines, requiring a procedure depicted by McGregor [23]. Although
a procedure is important to write test cases, this paper does not
attempt to procedures, but to an extension for a JUnit required to
perform variant test cases, as discussed in the next section.

3. PROPOSED AUTOMATED TEST API
In order to allow the application of TDD in variant model trans-
formation assets, JUnit was extended through the class
junit.framework.TestCase, inherited by FomdaTestCase to over-
ride setUp and tearDown operations and adding new operations. It
was also extended with custom Java annotations and Java reflec-
tion. Java annotation is the extension mechanism provided since
version 5, allowing the addition of compiled extra-information to
classes, attributes, operations, and parameters. We are using anno-
tations to specify information commonly used by test cases to test
transformation units. Moreover, through Java reflection we are
also injecting dependencies for variant model transformations,
making test cases also variant and ruled by a domain context.

The program shown in Figure 6 is a derived JUnit test case to test
variant transformations. Lines 1 and 2 show a new Java annota-
tion developed to handle common test tasks applied for model
transformations, such as to open a transformation chain, to apply
model-to-model and model-to-code transformation, to open and
save a UML model target of a transformation among others. The

task in these lines informs the test case to open a transformation
chain file named “config/transf_chain.fomda”. This is executed
before any test operation annotated with @Test.

3.1 Extended JUnit 4 with Java Reflection
Our proposed test case must inherit from FomdaTestCase. It owns
at least an operation annotated with @Test, where test logic is
programmed, and others annotated with @Before, used to ensure
that test case pre-conditions are satisfied before executing any
logical test. It is important to notice that such annotations were
introduced by the regular JUnit 4 and are not part of our proposed
annotations. Thus, the other annotations and functionalities are
our contributions as an extension to JUnit 4 test engine.

This particular kind of test executes transformations using a
TCDM specified with the @IOTask annotation shown in line 2.
TCDM owns transformation specified in diverse transformation
languages. However, we have exemplified only Java-based trans-
formations. Then, the lines 4 and 5 show how to inject a transfor-
mation dependency to an attribute whose type handle executions,
linking to the real transformation shown in Figure 3 (C). The in-
jected instance of the model transformer named “Implements
Serialization”. Thus, the executor assumes the task to orchestrate
different and heterogeneous transformation languages (e.g., Java
or Velocity). In [7], the authors advocate that this is a big chal-
lenge in current MDE tools, deserving in-depth discussions.

The extended JUnit test engine searches into the TCDM the trans-
formation “Implements Serialization”: Lines 4 and 5 ensure that
the required model transformer was found in the TCDM and it is
placed into the attribute named “executor”. The FomdaTestCase,
using Java Reflection, performs this. Moreover, line 9 ensures that
the PDM was correctly imported and line 10 ensures that “Remote
Layer” feature is selected in the PDM.

1 @FomdaTask(tasks = { //Initialization tasks in order to open a domain model (PDM and TCDM)
2 @IOTask(inputFilePath = "config/transf_chain.fomda", kind = IOKind.INPUT, fileKind = WctFileHandlerKind.FOMDA) })
3 public class ImplementsSerializationUnitTestCase extends FomdaTestCase {

//This is our annotation that injects a transformation shown in Figure 3 (C)
4 @InjectTransformerConfig(reference = @TransformerReference(name = "Implements Serialization"))
5 private TransformationExecutor executor;
6 @Before()// This is a JUnit 4 annotation executed before the operation named testTransformations() in line 11
7 public void testInjectedDependencies() throws Throwable {
8 assertTrue(executor != null); //Ensure that the transformation executor was successful injected
9 assertNotNull(getFomdaModel());//Ensure that the transformation chain was imported correctly
10 assertTrue(getFomdaModel().isSelectedFeature("Remote Layer"));//Ensure that, in the PDM, the feature 'Remote Layer' is selected

}
11 @Test()// This is a JUnit 4 annotation that executes the test logic
12 public void testTransformations() throws Throwable {
 // Programmatically creates an element of type class (analog to Figure 4 (B)) to test the injected instance in line 5
13 Model m = ElementFactory.instance().createModel();
14 Class entity = ElementFactory.instance().createClass(m);
15 entity.setName("Product");// Specifying programmatically the class shown in Figure 4 (B)
16 entity.assignStereotype("Entity");
17 Class value = (Class) executor.execute("implSpecPoint",entity);// Executes the transformation: parameter name and value
18 assertTrue(value.isRealizationFrom("java.lang.Serializable"));//Assert that transformation returned the correct result

Figure 5. Example of a unit test case to assert if model transformer ‘Implements Serializable’ do not fails

 JPA Trans. XDoclet Trans.

A B C

D E

F

1603

3.2 Unit Test Cases
The lines from 13 to 18 show the logic related to the test case: (a)
UML elements of type Model and Class (lines 13 and 14) were
programmatically created to be used as transformation input pa-
rameters, see the entity:Class input parameter shown in Figure 3
(A); (b) in line 17 a transformation is executed, using as input the
created class and returning other element of type Class as a result;
and (c) Finally, in line 18, the test asserts that the returned value
from a transformation (a Class element) owns a Realization rela-
tionship with the data type “java.lang.Serializable”.

3.3 Testing Mutually Exclusive Transformations
Another type of unit test is shown in Figure 6. Such example en-
sures that abstract transformers are replaced in a MTC by concrete
model transformers. In this sense, it asserts that between mutually
exclusive transformers “Generate JPA” and “Generate XDoclet”,
the last one is used in the generated MTC. Accordingly, lines 14
and 15 show the injection of a transformer named “ORM to
PSM”. Notice that abstractions propagates it use in a MTC for a
child. Therefore, or “Generate JPA” or “Generate XDoclet” is
injected in line 14.
1 @FomdaTask(
2 tasks = {
 // ... open mtc "config/transf_chain.fomda",
 //after, import/open a UML model used as input
3 @IOTask(
4 inputFilePath = "xmis/mdwe_sample1.xmi",
5 kind=IOKind.INPUT, fileKind = WctFileHandlerKind.XMI,
6 inputModels={
 //assert that the imported model owns entityHash
7 @AssertInputModel(
 //this name is used further in test algorithm
8 targetKeyName="entityHash",
9 targetElements={
 //searches inside model for an element
10 @SearchElement(

//from a specific instance
11 elementType=org.wct.uml.Class.class,

//and stereotyped with <<Entity>>
12 stereotypedWith={"Entity"}

) }) }) })
13 public class OrmToPsmTestCase extends FomdaTestCase{
14 @InjectTransformerConfig(

reference = @TransformerReference(name = "ORM to PSM"))
15 private TransformationExecutor executor;
 @Before()// This is a JUnit 4 annotation
16 public void checkPreConditions() throws Exception{
17 assertTrue(isSelectedFeature("JPA"));
18 assertNotNull(executor);
19 assertTrue(executor.getName().equals("Generate JPA"));
 }
 @Test()// This is a JUnit 4 annotation
 public void testExecuteGenerateJPA() throws Throwable{
20 Model model = getInputElementAsModel(0);
21 assertNotNull(model);
22 List<org.wct.uml.Class> inputList =

getInputModelElement("entityHash");
23 if(inputList != null && !inputList.isEmpty()){
24 for(org.wct.uml.Class entClass : inputList){
25 assertNotNull(entClass);
26 Object obj = executor.execute("entity", entClass);

 ...

Figure 6. A unit test case supporting abstract MTs test
A test unit must assert the validity of transformations for a specif-
ic scenario: not a variant chain, but for the adapted transfor-
mations. In this sense, it is necessary to constraint that the test
case shown in Figure 6 executes the operation
testExecuteGenerateJPA only if JPA is used in support for ORM.
With this in mind, line 17 specifies this constraint, which requires
the selection of the feature “JPA” before the execution of the unit
test case in line 20. Therefore, in case “JPA” is selected, the in-
jected transformation must be named as “Generate JPA” as as-
serted in line 19.

3.4 Initializing the Test Case with Queries
Figure 6 presents other annotations and properties added to
@FomdaTask. Lines 4 and 5 configure the test case to import a
UML model [9] in XMI file format [27]. It is used in line 20, in-
side the test logic, as input for a transformation in line 26. It is
possible also to import EMF-based models and extend the pro-
posed API to import/export models in other languages.

In order to apply queries in the initialization of the test case, the
line 6 assert that the input model (the UML model) contains a sort
of elements decorated with some tags and stereotypes (line 12).
Line 8 allow to place all found model elements that fulfill the
conditions specified in lines 11 and 12 into a hash table, retrieved
in line 22 of the test algorithm. Therefore, the exemplified annota-
tions allow retrieving entity classes as the one illustrated in Figure
4 (B), iterating from a list (line 24) populated in test case initiali-
zation in line 8. Then, for each entity class, one of the concrete
children for “ORM to PSM” is executed (lines 26 and 27).

3.5 Integration Test Cases
Integration test cases must assert that a sequence of transfor-
mations was correctly executed. In this sense, Figure 7 illustrates
an integration test case for transformations of a TCDM discussed
and exemplified in [5] that complements the TCDM illustrated in
Figure 3 (A). This example brings many transformations repre-
senting all the Model Driven Architecture (MDA) recommended
views [27], including Computation Independent Model (CIM);
Platform Independent Model (PIM), Platform Specific Model
(PSM) and Source-code.
1 public class DynamicMTCIntegrTestCase extends FomdaTestCase{

2 @InjectTransformerConfig(
reference = @TransformerReference(name = "ORM to PSM"))

3 private TransformationExecutor ormExec;

4 @InjectTransformerConfig(
reference = @TransformerReference(name = "Generate Code"))

5 private TransformationExecutor defCodeGen;

6 @InjectTransformerConfig(
reference = @TransformerReference(name = "Apply ORM"))

7 private TransformationExecutor ormWizard;

8 @InjectTransformerConfig(
reference = @TransformerReference(

name = "Reverse Code to Model"))
9 private TransformationExecutor revEng;

@Test()// This is a JUnit 4 annotation
10 public void testIntegration() throws Throwable{
 //Reverse a simple class to a model element in a CIM view (MDA)
11 org.wct.uml.Class cimClass = (org.wct.uml.Class)

revEng.execute(("clazz", "src/test/SomeEntity.java");
12 assertNotNull(cimClass);
 //Use of a wizard that refines the CIM into a PIM view (MDA)
13 Object obj = ormWizard.execute("entity", cimClass);
14 org.wct.uml.Class pimClass = (org.wct.uml.Class) obj;
15 assertNotNull(pimClass);
 //Transform a PIM into a JPA or XDoclet dependent PSM
16 obj = ormExec.execute("entity", pimClass);
17 org.wct.uml.Class psmClass = (org.wct.uml.Class) obj;
18 assertNotNull(psmClass);
 //Generates Source-code using default source-code generator
19 defCodeGen.execute("entity", psmClass);

Figure 7. An integration test case testing MTC sequences
The difference between a unit test case and an integration test case
is the need for execution of more than one model transformation
in the test logic, as shown between lines 11 to 19. This brings an
extra effort to write these types of test cases, since many possible
MTCs may be acquired from the TCDM, as illustrates Figure 4 (A
to F). In order to assert that transformations are correctly chained
and executed, current proposals for integration test cases (owning
MTC logic) develop many test cases for each chain derived from

1604

the TCDM. This implies at least six possible MTCs to perform the
example shown in Figure 4, requiring even more if other trans-
formations for other features for “ORM” are used.

On the other hand, our proposal uses a single test case, facilitating
the specification of automated integration test cases. In this sense,
Line 11 exemplifies the execution of a transformation that applies
reverse engineering from source-code to a UML model. This
model is used as input for the second transformation task shown
in line 13, which displays a wizard to annotate entity classes with
a UML Profile. Then the “ORM to PSM” derived transformation
is executed in line 16 and, finally, the entity class is used as input
for a transformation from model-to-code that generates a Java
source-code on line 19.

3.6 Preconditions to Execute Test Cases
It is possible to ensure that a complete set of features is selected in
the PDM to attempt to a specific generated chain as shown in
Figure 8. This is demonstrated in annotations supported inside the
@FomdaTask into the property shown in line 3. The annotation
@AssertFeatures is used to ensure that features are selected (line
5), hence others not, as well as to check if some features are mu-
tually exclusive (line 11). This is an important aspect to test, be-
cause the PDM evolves and test cases must firstly ensure that their
pre-conditions to execute a test are satisfied. Accordingly, the
XOR relationships can be replaced by inclusive OR relationships
in PDM, invalidating the test case logic. Therefore, in case a set of
features are not more defined as XOR in the PDM, the current
algorithm of a test case must be changed.
1 @FomdaTask(
2 selected features agree in pre-conditions
3 assertFeatures={
4 @AssertFeatures(

//a rule can be IS_SELECTED, IS_NOT_SELECTED, IS_XOR,
//IS_OR, IS_OPTIONAL, IS_MANDATORY, IS_DEPENDENCY

5 rule=AssertFeatureKind.IS_SELECTED,
6 features={
9 @FeatureReference(featureName="Remote Layer"),
10 @FeatureReference(featureName="JPA")

}),
@AssertFeatures(

11 rule=AssertFeatureKind.IS_XOR,
features={

12 @FeatureReference(featureName="JPA"),
13 @FeatureReference(featureName="XDoclet")
 }) })
14 public class FeatureDependentTestCase extends FomdaTestCase{

Figure 8. Preconditions to execute a test case

3.7 Variant Test Suites
Aforementioned annotations allow embedding test cases inside a
generic test suite as shown in Figure 9. In this sense, some test
cases that do not satisfy the rules are ignored in the initialization.
In this sense, one can register in @Suite.SuiteClasses, some test
cases developed for mutually exclusive transformations that
should not be executed in the same test suite. Therefore, pre-
conditions ensure that some tests are not executed.
@Suite.SuiteClasses({// This is a JUnit 4 annotation

ImplementsSerializationUnitTestCase.class,
GenerateDBScriptTestCase.class,
OrmToPsmTestCase.class,
DynamicMTCIntegrTestCase.class,
FeatureDependentTestCase.class

})public class TestSuite extends FomdaTestCase{ }

Figure 9. JUnit Test Suites with Variant Test Cases

3.8 Generating Test Cases
The discussed set of annotations and functionalities available in
the FomdaTestCase class is strictly applicable to test dynamic
compositions among TCDM and PDM elements. In other words,
they are very useful to test model transformations that run inside

WCT transformation engine. However, it is also possible to use
TCDM and PDM to generate model transformation assets that can
be used and executed in other transformation engines. This is
exemplified through generative techniques in [33][3] for software
test cases extractions. Moreover, in [5] we exemplified the gen-
eration of many types of model transformation assets and in [6]
we demonstrate how to generate MTCs taking as input the TCDM
and PDM.

In fact, test cases are also model transformation assets, target for
adaptations inside a TCDM. Therefore, the same concepts we
have been applying in model transformation fragments [5][6] are
also applicable to generate reusable test cases.

3.9 Test Cases in Action
Figure 10 (A) shows a screenshot of the execution of aforemen-
tioned test cases. In the failure trace area is shown one test case
that uses the annotation @AssertInputModel, reporting that some
element required to execute the test case is not available in the
input model. This figure also demonstrates the use of existing
Eclipse plugins to execute JUnit test case. Therefore, only the
JUnit class was extended, not requiring extending plugins to exe-
cute variant transformations and variant test cases.

4. VALIDATION AND ONGOING WORKS
The FOMDA methodology and WCT tool have been used since
2007 at Adapit, a small Brazilian software development company,
to create model-driven information systems with Java program-
ming language. The company used the tool to develop some pro-
jects discussed in [5] that required the use of variant MTCs.

In order to have a clearer idea about these variants, we have com-
puted a total of 343 model transformation assets, including the
small ones shown in Figure 3 (B) and (C). Thus, do not confuse
this number with complete model transformations. In this sense, a
total of 193 model-to-text (53 white box and 140 compiled black
box) and 150 model-to-model transformation units of type com-
piled black box. These assets are tested with 41 unit test cases and
only 5 integration tests, developed to execute dynamic MTCs. The
low number of integration tests is justified because we use dynam-
ic compositions discussed in Section 3. On the other hand, this
number of integration would be bigger if MTCs had been generat-
ed through generative techniques.

In order to improve FOMDA methodology, we are changing our
practices towards the design of TCDM. Before the development
of proposed Java annotations, we used to use a top-down ap-
proach by firstly designing the PDM; then TCDM; then we devel-
op variant model transformations; to then execute tests. This top-
down approach is suggested by domain engineering proposals
[23] [10] and, so far, has been satisfactory for our necessities.
However, we are researching the implications in using agile test-
ing [13], which requires a bottom-up approach, starting from test
cases. Thus, we are adapting Test Driven Development (TDD)
practices [13] to create model transformation assets and upload
them into the TCDM with Java Reflection.

For instance, we noticed that the Java reflection reverse annotated
model transformers into the TCDM, similarly as Kim et al. [19].
This allows uploading information related to features and also to
compose transformations into TCDM. This practice has been used
in a case study regarding development of started from scratch
variant model transformations in support for wireless sensor net-
works domain in [29], whose preliminary results are promising.

1605

Figure 10. A) Screenshot of the Extended JUnit Test API in Action, Executed in an Eclipse IDE. B) Test Case Benchmarks
According to our observations in the recent study, the perfor-
mance of the proposed extension for JUnit is similar to the regular
API. This is illustrated on the benchmark shown in Figure 10 (B)
considering a PC with Windows 7 32 bits, Intel Core 2 Duo 2.93
GHz, 3 GB RAM. This figure compares the required milliseconds
to execute two integration tests owning 16 transformations: one
using manual instantiation for transformations and the other one
using dependency injections (using XOR transformations) with
annotations of type @InjectTransformerConfig. The dependency
injection requires 392 milliseconds more than manually instantiat-
ed requires. The benchmark considered a domain model com-
posed by 148 features in the PDM and 45 transformation units in
the TCDM. It is also necessary 3629 milliseconds on average to
load the domain model for each test case execution.

The performance is a problem when executing transformations
that requires the display of graphic user interfaces (GUI), such as
the transformation task referred in Figure 7, line 13. This is a limi-
tation of the JUnit engine that manages all instances of Java ob-
jects, overloading the Java Virtual Machine (JVM).

5. DRAWBACKS AND LIMITATIONS
Except for the generative approach, discussed in Section 3.8, that
is independent from a model transformation engine; our proposed
extensions require the use of WCT as a transformation engine.
This is a limitation for the applicability of the proposed JUnit
extension, but the proposed annotations can be reused and re-
implemented in support for other engines. Moreover, WCT has an
extensible framework to include other transformation languages.
Through these extensions, our proposal can be applied to execute
any Java program.

A limitation of this work is that it exemplifies model transfor-
mations developed in Java, while other technologies are used to
write model transformers. Considering that different model trans-
formation frameworks are available and some do not support the
same set of languages [39][34][5], transformation rules pro-
grammed with heterogeneous languages impose threats to the
validity of the exemplified transformation assets. This limitation
in our work is suppressed by T-Core framework, which supports
the execution and validation of heterogeneous model transfor-
mations in MTCs [34].

Another threat to the proposed solution is the interoperability of
input and output models used among transformations. Some trans-
formation languages such as ATL and QVT [15] require import-
ing and exporting a model before and after executing a
transformation in an MTC. In this sense, a model can be exported
by a transformation 1 in a version not supported by a sequent
transformation 2. This kind of constraint should be detected in a

test case and during the transformation chain design. We still have
no solution for this eventual problem during the design of TCDM,
but test cases are capable to detect fail in a sequence of transfor-
mations.

6. RELATED WORK
Literature of the area reports the use of automated test cases ap-
plied to software product lines that does not require modifications
in current test engines. Santos et al. applied a study in two prod-
ucts to extract features that are used in test cases to ensure that
derived products are in conformance with the expected results
[33]. Their work focuses on techniques to extract information
from existing source-code and uploads this information in a fea-
ture model. Kim et al. have also used Java annotations in software
product source-code to extract fragments to be included in reusa-
ble core assets [19]. They suggest that some features are behavior-
irrelevant for tests, since they do not change the application logic,
and can be excluded from the test cases.

These works show a clear difference from our proposal: they did
not use annotations to extend JUnit to execute dynamic programs,
as we are proposing. On the other hand, we did not extract fea-
tures of a software domain model. Moreover, in our solution we
need to assert that correct model transformation are used in a dy-
namic MTC and also ensure that transformation return the correct
result after execution. Therefore, our work is not directly related
to these works, since dynamic and variant model transformations
require some different test techniques than those used to test
fragments for a family of software applications.

Regarding the test for model transformation chains, Küster et al.
used incremental development of model transformations using
automated tests to assert their validity in an MTC [20]. This is the
most similar proposal regarding automated test cases that we have
found in literature. Although providing very important guidance
to develop incremental transformations with test driven develop-
ment practices, the tests are applied over an MTC simpler than the
ones that we have exemplified, since they did not consider variant
MTCs. In order to execute a dynamic MTC, our model transfor-
mation assets must deal with commonalities and variability, which
should be tested. Therefore, besides validating the return of trans-
formations, test cases must ensure that bindings between trans-
formation input and outputs attempt to specific configurations
established when a new set of transformation compositions is
selected for a particular software project.

Other work is dedicated to applying validation in model transfor-
mation compositions. Fleurey et al presented strategies that adapt
traditional tests to better suit model transformation compositions,
considering metamodels and model transformation chains [12].

A B

1606

More recently, in order to apply these validations, Etien et al. [11]
and Yie et al. [39] extended these concepts with tool solutions to
design MTCs and validate their compositions through IO parame-
ters. Although these works are interesting and contribute to vali-
date a composition established in a TCDM, they are not
applicable to the type of test cases that we have exemplified in
this paper. Therefore, these contributions don't relate directly to
our proposal.

Hervieu et al. executed a similar study in the industry towards the
use of SPL-based techniques in support for test adaptations [14].
They propose adapting test specifications created to test transfor-
mation chains that must consider a PDM. Although an interesting
work, since it was applied in industry and reinforce the necessity
to specific techniques to deal with model transformation assets,
they do not have an approach to support the test of variant model
transformations. Moreover, their study is focused in reusing textu-
al guidance for test cases, not in adapting automated test cases.

Our work is complementary and presents a contribution in com-
parison to related works. In order to provide a specific solution to
test variant model transformation assets, our contribution facili-
tates the specification of automated JUnit test cases.

In this sense, our contribution is directly important to test model
transformation assets specified and generated through some relat-
ed works as follows: 1) Almeida et al. proposed a solution to
compose model transformations in MTCs [1]; 2) Boas proposed
the design of a MTC using workflow to model a transformation
process according MDA views [8]; 3) Basso et al. [4] and Völter
et al. [37] applied SPL-based techniques to specify dynamic
MTC; 4) Vanhooff et al. proposed a MTC modeling language to
generate specifications used by some transformation execution
engines [36] and Wagelaar et al. proposed a framework to chain
black-box model transformations [38], similar as those exempli-
fied in Section 3; 5) Etien et al. complemented these works to
include validation for metamodels interoperated among different
transformation compositions [11], similarly as Yie et al. that ap-
plied validation between transformation IO parameters consider-
ing an MTC specification [39]; 6) Rosenmüller et al. applied
techniques to control dynamic SPLs [32] and, despite not being
related to model transformation reuse, can also be applied in this
context; 7) Aranega et al. [2] and Basso et al. [6] applied SPL-
based techniques to fragment and merge model transformation
assets. Although these works present an important contribution as
a means of reuse techniques, they have not tackled automated test
cases to validate the generated assets. Therefore, we present sin-
gular contributions for MDE-based techniques.

7. CONCLUSION REMARKS
In order to reuse model transformations, some MDE proposals are
using Software Product Line (SPL) techniques to fragment and
merge pieces of transformations. This brings an extra-effort to test
the adapted assets, since many test cases must be specified to test
the generated products. Due to the necessity to adopt a test driven
development practice, we present a solution to specify automated
test cases for variant model transformation assets.

In this sense, this paper bridges the gap between variant model
transformations and automated test cases. Thus, we presented an
extension of the JUnit 4 API that allows specifying variant execu-
tions for test cases. The exemplified scenario is based on a real
experience and allowed to unveil some import direction towards

future works to improve test practices and a methodology, namely
FOMDA, used to design reusable model transformations.

Differently from our previous works that focused on constructing
transformation assets with the FOMDA methodology in a top-
down solution, this one presents a solution to automate unit and
integration tests that allows applying a bottom-up methodology,
starting from tests. In this sense, a set of Java annotations was
presented. They are reversed with Java reflection, allowing the
execution of dynamic and variant test cases.

Due to the use of SPL-based techniques in model transformation
assets, it is necessary to assert that these assets are valid after
adaptations. With this in mind, some automated test cases were
developed to test each possible fail and error condition regarding
this context. So far, the set of test cases exemplified in this paper
has never been tackled before in the literature of the area. There-
fore, this paper presents a singular contribution for MDE re-
searchers and practitioners.

8. ACKNOWLEDGMENTS
This work was partially supported by the Brazilian agencies
CAPES and CNPq.

9. REFERENCES
[1] Almeida, J., Dijkman, R., Sinderen, M., and Pires, L. Plat-

form-independent modeling in MDA: Supporting abstract
platforms. In Proc. of Model-Driven Architecture: Founda-
tions and Applications, June 2004. pp 217-231.

[2] Aranega, V., Etien, A., and Mosser, S. Using feature models
to tame the complexity of model transformation engineering.
In ACM/IEEE 15th International Conference on Model
Driven Engineering Languages and Systems MODELS 2012.

[3] Asaithambi, S.P.R., and Jarzabek, S. Towards Test Case
Reuse: A Study of Redundancies in Android Platform Test
Libraries. In ICSR 2013, pp. 49–64.

[4] Basso, F. P., Oliveira, T. C. and Becker, L. B. Using the
FOMDA Approach to Support Object-Oriented Real-Time
Systems Development; In Proc. of International Symposium
on Object and Component-Oriented Real-Time Distributed
Computing. Gyeongju, Korea. 2006. pp. 374-381.

[5] Basso, F. P., Pillat, R. M., Oliveira, T. C. and Becker, L. B.
Supporting large scale model transformation reuse. In 12th
International Conference on Generative Programming: Con-
cepts & Experiences (GPCE'13), Indianapolis, USA. 2013.
pp 169-178.

[6] Basso, F. P., Pillat, R. M., Oliveira, T. C. and Fabro, M. D.
D. Generative Adaptation of Model Transformation Assets:
Experiences, Lessons and Drawbacks. In Proceedings of
ACM Symposium on Applied Computing (SAC’14)
Gyeongju, Korea. March 24 - 28, 2014 (to appear).

[7] Baudry, B., Ghosh, S., Fleurey, F., France, R., Traon, Y. L.,
and Mottu, J. M. Barriers to systematic model transfor-
mation testing. In Communications of the ACM Volume 53,
Issue 6, 1 June 2010, pp 139-143.

[8] Boas, G. From the Workfloor: Developing Workflow for the
Generative Model Transformer. OOPSLA 2005.

[9] Boch, G., Rumbaugh, J. and Jacobson, I. The Unified Model-
ing Language: User Guide, Addison-Wesley, 1999.

1607

[10] Eisenecker, U. and Czarnecki, K. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[11] Etien, A., Muller, A., Legrand, T., and Blanc, X. Combining
Independent Model Transformations. In Proceedings of
ACM Symposium on Applied Computing (SAC’10). 2010.

[12] Fleurey, F., Steel, J. and Baudry, B.. Validation in model-
driven engineering: Testing model transformations. In 1st In-
ternational Workshop on Model, Design and Validation,
SIVOES - MoDeVa 2004. pp 29-40.

[13] Hellmann, T. D., Sharma, A., Ferreira, J., and Maurer, F.
Agile testing: Past, present, and future - Charting a system-
atic map of testing in agile software development. Proceed-
ings - 2012 Agile Conference, Agile 2012. pp 55-63.

[14] Hervieu, A., Baudry, B., and Gotlieb, A. Managing execution
environment variability during software testing: An industri-
al experience. In International Conference on Testing Soft-
ware and Systems, ICTSS 2012. pp 24-38.

[15] Jouault, F. and Kurtev, I. On the Architectural Alignment of
ATL and QVT. In: Proceedings of ACM Symposium on Ap-
plied Computing (SAC 06), Model Transformation Track.
April 2006.

[16] JUnit 4 API. At December 2013. Available at
<http://en.wikipedia.org/wiki/JUnit>.

[17] Kakarontzas, G., Stamelos, I. and Katsaros, P. Product line
variability with elastic components and test-driven develop-
ment. In International Conference on Computational Intelli-
gence for Modelling Control and Automation, CIMCA 2008.
pp 146-151.

[18] Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E. and Huh, M.
A feature-oriented reuse method with domain-specific refer-
ence architectures. Ann. Softw. Eng., Jan. 1998, 5:143–168.

[19] Kim, C. H. P., Batory, D. S., and Khurshid, S. Reducing
combinatorics in testing product lines. In Proceedings of the
tenth international conference on Aspect-oriented software
development, AOSD '11, 2011, pp 57-68.

[20] Küster, J. M., Gshwind, T., and Zimmermann O. Incremental
Development of Model Transformation Chains Using Auto-
mated Testing. Springer-Verlag MODELS 2009, Berlin Hei-
delberg 2009. LNCS 5795, pp 733-744, 2009.

[21] Lúcio, L., Bruno, B., and Vasco, A. A Technique for Auto-
matic Validation of Model Transformations. In Model
Driven Engineering Languages and Systems (MODELS 10),
2010. pp 136-150.

[22] McGregor, J. D. “Agile software product lines, deconstruct-
ed”. Journal of Object Technology, 7(8), Nov., 2008, 7-19.

[23] McGregor, J.Testing a Software Product Line, Software En-
gineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, CMU/SEI-2001-TR-022, 2001.

[24] Mohan, K., Ramesh B. and Sugumaran, V. “Integrating
software product line engineering and agile development”.
IEEE Software, 2010.

[25] Nanda, M. G., Mani, S., Sinha, V. S., and Sinha, S. Demysti-
fying Model Transformations: An Approach Based on Auto-
mated Rule Inference. OOPSLA 2009, Orlando, USA.

[26] Noor, M. A., Rabiser R., and Grünbacher, P. “Agile product
line planning: a collaborative approach and a case study”.
Journal of Systems and Software, 2007, 81(6), 868-882.

[27] Object Management Group - MDA Specifications. June 2011.
Available at <http://www.omg.org/mda/specs.htm>.

[28] Offutt, J., and Abdurazik, A. Generating Tests from UML
Specifications, 2nd Intl. Conference on UML’99, 1999.

[29] Paulon, A. R., Fröhlich, A. A., Becker, L. B., and Basso, F.
P. Model-Driven Development of WSN Applications. In III
Simpósio Brasileiro de Engenharia de Sistemas Computacio-
nais (SBESC) 2013.

[30] Perrouin, G., Sen, S., Klein, J., Baudry, B. and Traon, Y. L.
Automated and scalable T-wise test case generation strate-
gies for Software Product Lines. ICST 2010 - 3rd Interna-
tional Conference on Software Testing, Verification and
Validation. 2010. pp 459-468.

[31] Reuys, A., Kamsties, E., Klaus, P., and Reis, S. Model-Based
System Testing of Software Product Families. In Advanced
Information Systems Engineering, Lecture Notes in Comput-
er Science, volume 3520. 2005. pp 519-534.

[32] Rosenmüller, M., Siegmund, N., Pukall, M., and Apel,S.
Tailoring dynamic software product lines. In 10th Interna-
tional Conference on Generative Programming (GPCE’11),
2011. 47(3):3–12.

[33] Santos, A., Gaia, F., Figueiredo, E., Neto, P. S., and Araújo,
J. Test-based SPL extraction: an exploratory study. In Pro-
ceedings of ACM Symposium on Applied Computing
(SAC'13). 2013. pp 1031-1036.

[34] Syriani, E., Vangheluwe, H. and LaShomb, B. T-Core: a
framework for custom-built model transformation engines.
Software & Systems Modeling Journal. DOI:
10.1007/s10270-013-0370-4. 2013.

[35] Tekinerdogan, B., Bilir, S. and Abatlevi, C. Integrating Plat-
form Selection Rules in the Model Driven Architecture Ap-
proach. In Proc. of Model-Driven Architecture: Foundations
and Applications, June 2004. pp 184-200.

[36] Vanhooff, B., Baelen, S. V., Hovsepyan, A. Joosen, W. and
Berbers, Y. Towards a Transformation Chain Modeling
Language. Springer-Verlag and SAMOS 2006, Berlin Hei-
delberg. LNCS 4017, 2006, pp. 39–48.

[37] Völter, M. and Groher, I. Handling variability in model
transformations and generators. In Proceedings of the 7th
OOPSLA Workshop on Domain-Specific Modeling
(DSM'07), 2007.

[38] Wagelaar, D. Blackbox Composition of Model Transfor-
mations using Domain-Specific Modeling Languages. In
First European Workshop on Composition of Model Trans-
formations. 2006.

[39] Yie, A., Casallas, R., Deridder, D. and Wagelaar, D. Realiz-
ing model transformation chain interoperability. Software &
Systems Modeling, 2012, 11(1):55–75.

1608

