
Towards a Quality Model for Model Composition Effort
Kleinner Farias1, Alessandro Garcia2, Carlos Lucena2, Luiz Gonzaga Jr1,

Cristiano André da Costa1, Rodrigo da Rosa Righi1, Fábio Basso3, Toacy Oliveira3
1PIPCA, University of Vale do Rio dos Sinos, São Leopoldo, Brazil

2Informatics Department, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
3COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil

kleinnerfarias@unisinos.br, {afgarcia,lucena}@inf.puc-rio.br,
{lgonzaga,cac,rrrighi}@unisinos.br, {fabiopbasso,toacy}@cos.ufrj.br

ABSTRACT
This paper proposes an initial quality model for model
composition effort, which serves as a frame of reference to
developers and researchers to plan and perform qualitative and
quantitative investigations, as well as replicate and reproduce
empirical studies. A series of empirical studies supports the
proposed quality model, including five industrial case studies, two
controlled experiments, three quasi-experiments, interviews and
seven observational studies. Moreover, these studies have
systematically demonstrated the real benefits of using a frame of
reference to enable learning about model composition effort from
experimentation.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Measurement, Documentation, Design, Experimentation

Keywords
Model composition, empirical software engineering.

1. INTRODUCTION
Model composition plays a central role in many software
engineering activities, e.g. evolving design models to add new
features [1] or reconciling multiple models developed in parallel
by different software development teams [2]. The composition of
design models can be defined as a set of tasks that should be
performed over two input models, MA and MB, to produce an
output intended model, MAB. For this, software developers use the
composition techniques to match the model elements in MA and
MB by automatically “guessing” their semantics and then combine
the corresponding elements to create the output intended model,
MAB. Nevertheless, the state-of-the-art composition techniques
can produce an output composed model, MCM, that does not match
with the intended model, MAB, i.e. MCM ≠ MAB. This is because
MA and MB often conflict with each other and commonly these
conflicts are converted into inconsistencies in MCM. Hence,
developers should invest some considerable effort to resolve

them, i.e. transforming MCM into MAB. In fact, compose design
model is still considered a tedious, error-prone, and time-
consuming task [1][2].

However, researchers rarely perform empirical studies
concerning model composition or confront the collected results
because the current literature fails to provide a “frame of
reference” that guides them to produce comparable results. Still,
the influential factors of composition effort cannot even be
comparable taking into consideration a huge number of
confounding variables in real-life contexts. In [3], Runeson and
Host emphasize the real need for defining the frame of reference
to make the context of empirical studies clear, and helps
conducting the research and reviewing the results of them.

Without a frame of reference, it is hard (if not impossible) to:
(1) replicate empirical studies as they cannot specify and test the
same hypothesis in different analyses or even compare the effects
of similar experimental procedures adopted [3]; (2) compare the
confidence level for results of an original and replicated study,
thereby jeopardizing the improvement of the internal validity and
reliability of the conclusions, and hindering the generalization;
and (3) generalize results by minimizing the threats to external
validity since they are not able to reproduce the design, the
planning or even the execution of practical studies.

This paper, therefore, proposes an initial quality model
(described in Section 3) for model composition effort, which
serves as a frame of reference to developers and researchers to
plan and perform qualitative and quantitative investigations, as
well as replicate and reproduce empirical studies. The proposed
quality model is based on an analysis of the current literature
[8][10] and stemmed from authors own experiences in conducting
qualitative and quantitative research concerning model
composition effort, including five industrial case studies [4], two
controlled experiments [5][6], three quasi-experiments [7],
interviews and seven observational studies [4][5][6].

2. RELATED WORK
Some quality models in the area of modeling have been proposed
through the last decades, such as [8][10][11][12][13]. In [10] and
[11], the authors present quality models for conceptual modeling.
However, they do not convey any concept related to model
composition, such as conflicts and inconsistencies. In [8], Lange
aims at proposing an extension of [10] and [11] in the context of
software modeling; they provide guidelines for selecting metrics
and rules to quantify the quality of UML models. The purpose of
this quality model is to support a broad quality evaluation of UML
models. Although the Lange’s quality model has been created
based on a literature review and on experiences from industrial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’14, March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03…$15.00.

1181
http://dx.doi.org/10.1145/2554850.2555131

case studies, it is not suitable to evaluate model composition effort
due to the reasons described in the previous section.

Thus, this paper overcomes some critical problems so that
researchers and developers are able to characterize and evaluate
model composition tasks (Section 3.1). The main differences
considering the previous studies are (1) an abstract syntax is
defined to represent the concepts that are the basis of the quality
model, (2) new concepts are included in the model (such as
conflict, inconsistency, composition technique, and design
characteristic), and (3) four quality notions are added (such as
effort, application, detection, and resolution notions).

3. QUALITY MODEL

3.1 Model Composition Effort
Model composition effort refers to the time to produce the output
intended model. Figure 1 shows an effort equation that
summarizes three complementary facets of composition effort.
The equation makes explicit that developers invest some effort to
perform three key tasks to produce an intended model, MAB, from
two input models MA, i.e. the base model, and MB, the model
having the changes to be inserted into MA. It is important to
highlight that developers usually need to spend some additional
effort to solve inconsistencies in MCM before producing MAB.
These three tasks are: (1) f(MA,MB), effort to apply composition
technique to produce MCM from MA and MB; (2) diff(MCM, MAB),
effort to detect inconsistencies in MCM; and (3) g(MCM), the effort
to resolve inconsistencies, i.e. the effort to transform MCM into
MAB. Note that if MCM is equal to MAB, then diff(MCM,MAB) = 0
and g(MCM) = 0. Otherwise, diff(MCM,MAB) > 0 and g(MCM) > 0.
Thus, developers spend effort to accommodate changes from MB
to MA.

Figure 1. Overview of model composition effort: an equation.

3.2 Abstract Syntax of the Quality Model
Figure 2 shows the abstract syntax of the quality model, which

identifies the main concepts and relationship. It follows the UML
metamodel specification pattern. The numbers in Figure 2
correspond to the numbers in brackets of the quality notions to be
discussed in Section 3.3. Following we described each one of
these concepts and relationships.

Domain. This concept represents an area of expertise or
application that needs to be examined to solve a problem. The
solution of the problem is represented in a design model

Modeling Language. It is the concept that represents the
language used to design a software system. Object-oriented
modeling languages and aspect-oriented modeling languages are
two examples of typical categories of languages used to represent
significantly different forms of design decompositions.

Design Model. It refers to the diagram used to represent static
and dynamic aspects of a software system. UML class and
sequence diagrams are examples of these design models.
Developers commonly use these two diagrams, for example, to
design structural and dynamic aspects of an application.
Moreover, a design model represents the concepts (and their
relations) from a domain. This representation helps to describe
this domain.

User. It represents a person who interprets design models to
get an understanding of the domain [8]. A user can interpret one
(or more) design model and compose design models for any
particular purpose. Additionally, the user detects and resolves
inconsistencies that arise from the compositions. Typical
categories of users are software developers and researchers.

Conflict. It is the concept that represents the contradictions
between different Design Models to be composed. Conflicts arise
when the design models have conflicting changes. These
contradictions happen when the ordered association composes:
Design Model [2..*] from User to Design Model is instantiated.
Thus, conflict is a concept derived from the association composes.
For example, a developer defines that a class is abstract (i.e.,
isAbstract = true) while another developer specifies that the same
class is concrete (i.e., isAbstract = false). User should grasp and
deal with these conflicts to produce the intended design model.

Inconsistency. It is the concept that represents the defects
found in the output composed model and usually arises because
User tends to incorrectly resolve a Conflict. For example,
developers can incorrectly resolve the conflict whether a class
should be abstract or not.

Design Characteristic. A design characteristic is the concept
that illustrates the strategies used by developers to structure
design models, including coupling and cohesion. Design
characteristics are used to improve, for example, the capability of
design models to be (more straightforwardly) composed. The
design characteristics can be also used to indicate error proneness.
An example of this design characteristic is the model stability
[9][14].

Composition Technique. It is the concept that represents the
technique used by developers to compose the design models.
Examples of these techniques are Epsilon® and IBM Rational
Software Architect®. A model composition technique defines a
set of operators that are used to manipulate the input model
elements.
3.3 Quality Notions
We propose four quality notions, namely effort, application,
detection, and resolution, and tailor three other ones from the
previous works [8][13], namely semantic, social and syntactic.
Using these quality notions researchers can qualitatively evaluate
the composition effort in different contexts, as well as compare
the results, since they will be based on a common frame of
reference that drives the studies. Each quality notion is carefully
described as follows.

Syntactic Quality (1). It represents the correctness of design
models produced by a design modeling language [8]: if a design
modeling language is not properly used, then some syntactic
inconsistencies may emerge. This quality notion is relevant to our
quality model as syntactic inconsistencies can also arise during
model compositions [1]. Developers concern with checking the
syntactic consistency of MCM. The degree of correctness should be
evaluated in terms of the presence or absence of inconsistencies in
MCM. In other words, syntactic quality is computed by measuring
the inconsistencies resulting from conflicts between the input

1182

models. This notion helps developers to identify the number of
deviations in MCM with respect to the language specification.

Semantic Quality (2). This notion deals with the degree of
correspondence between the design model and the problem
domain [8]. If the semantics of the model elements are affected,
the main purpose of use of the design models, i.e. communication
between the team members can be damaged.

Social Quality (3). Design models are essentially used to
communicate design decisions between the software development
teams. If there is a disagreement between the interpretations of the
design models, the communication between the developers is
severely impaired. So, researchers should elaborate studies in
order to understand the effects of the misinterpretations on the
implementation.

Effort Quality (4). It refers to the cost, including time, that
developers should invest to produce an output intended model,
MAB. It is expected that the practice of applying a composition
technique, detecting, and resolving inconsistencies is not an
effort-consuming task.

Application Quality (5). It addresses the ease of producing
an output composed model by applying a model composition
technique. Ideally, developers need to easily compose design
models, using composition technique, including heuristic-based or
specification-based composition techniques.

Detection Quality (6). When inconsistencies arise,
developers should be able to quickly locate them. If the detection
of inconsistencies is hard, then the assurance of the correctness of
the models may also be hard. Researchers should study the degree
of difficulty that developers face to located inconsistency so that
consistency in MCM can be assured. The focus of this quality
notion is on evaluating the cost to localize inconsistencies in MCM.

Resolution Quality (7). Developers should invest some
additional effort trying to find some solution to the inconsistencies
located. Otherwise, the practice of composing design model can
become prone to inconsistencies or even require more effort than
it would be expected. This additional effort can make the practice
of assuring the consistency of the composed models difficult and
costly. This notion, therefore, addresses the degree of difficulty to
resolve inconsistencies.

Figure 2. Abstract syntax of the quality model for model
composition (based on [8]).

4. CONCLUSIONS AND FUTURE WORK
Researchers and developers recognize the need to evaluate model
composition effort. However, the evaluation without any quality
model is not trivial, as usually developers have no previous

knowledge or experience about empirical evaluations of model
composition. This paper addressed an ever-present problem: the
difficult of planning and performing qualitative and quantitative
investigations, as well as replicating and reproducing empirical
studies. Thus, we presented an initial quality model for model
composition effort, which serves as a frame of reference. To date
a systematic description on what factors affect the developers’
effort and how they ideally and practically should be evaluated
was insufficiently covered in the literature.

Therefore, we can see this work as a first step in a more
ambitious agenda to propose a more established and empirically
ground frame of reference for evaluation of model composition
effort in different real-world contexts. Lastly, we hope that the
issues outlined throughout the paper encourage other researchers
to perform empirical studies following the proposed quality model
and also evaluate it in future under different circumstances.

5. REFERENCES
[1] Mens, T. A State-of-the-Art Survey on Software Merging,

IEEE Transac. on Soft. Engineering, 28(5):449-562, 2002.
[2] Rosa, M et. al., Business Process Model Merging: An

Approach to Business Process Consolidation, Journal Trans.
on Soft. Eng. Method. vol. 22, no. 2, 2013.

[3] Runeson, P., et al., Variation Factors in the Design and
Analysis of Replicated Controlled Experiments, Journal
Empirical Software Engineering, pages 1-28, 2013.

[4] Farias, K., Garcia, A., Whittle, J., Lucena, C., Analyzing the
Effort of Composing Design Models of Large-Scale Software
in Industrial Case Studies, In: MODELS'13, 2013.

[5] Farias, K., Garcia, A., Lucena, C., Evaluating the Impact of
Aspects on Inconsistency Detection Effort: A Controlled
Experiment, In: MODELS'12, pages 219-234, 2012.

[6] Farias, K. et al., Evaluating the Effort of Composing Design
Models: A Controlled Experiment, In: MODELS'12, pages
676-691, 2012.

[7] Farias, K., Garcia, A., Whittle, J., Assessing the Impact of
Aspects on Model Composition Effort, In: 9th AOSD, pages
73-84, Rennes and Saint-Malo, France, 2010.

[8] Lange, C. Assessing and Improving the Quality of Modeling
A Series of Empirical Studies about the UML, PhD Thesis,
Technische Universiteit Eindhoven, Eindhoven, 2007.

[9] Wust, J. The Software Design Metrics Tool for the UML,
http://www.sdmetrics.com, 2012.

[10] Boehm, B., et al., Characteristics of Software Quality, vol. 1
of TRW Series of Software Technology, North-Holland
Publishing Company, Amsterdam, 1978.

[11] Mccall, J., Richards, P., Walters, G. Factors in Software
Quality, vol. 1-3 of AD/A-049-015/055, Springfield, 1977.

[12] Marín, B., et al., A Quality Model for Conceptual Models of
MDD Environments, Advances in Soft. Engineering, 2010.

[13] Lindland, O.; Sindre, G.; Sølvberg, A. Understanding Quality
in Conceptual Modeling, IEEE Software, 11(2): 42-49,
March 1994.

[14] Farias, K., Garcia, A., Lucena, C. Effects of Stability on
Model Composition Effort: an Exploratory Study, Journal on
Software and Systems Modeling, pages 1-22, January 2013.

1183

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 0
 1

 1

 HistoryList_V1
 qi2base

