> ,' Revista Brasileira de Computacdo Aplicada, November, 2019

DOI: 10.5335/rbca.v11i3.8469
UPF |EDITORA RBCA Vol. 11, N2 3, pp. 39-46

UNIVERSIDADE Homepage: seer.upf.br/index.php/rbca/index

ISSN 2176-6649

ORIGINAL PAPER

Supporting collaborative modelling in UML class diagrams

Raul Antonio Cortiana Neto1, Kleinner Farias*“1, Vinicius Bischoff 1,
Lucian José Gongales !

!Applied Computing Graduate Program (PPGCA), University of Vale do Rio dos Sinos (UNISINOS), Sdo Leopoldo,
Brazil.

raulac@edu.unisinos.br; kleinnerfarias@unisinos.br; viniciusbischof @edu.unisinos.br; lucianj@edu.unisinos.br

Received: 2018-08-06. Revised: 2019-05-22. Accepted: 2019-09-10.

Abstract

Background. Modeling architectural aspects of the system is an essential activity in software development. In
this context, developers work in parallel, and collaborate to define application software models, such as class
diagrams. Problem. Although many software modeling tools have been proposed, there is a lack of distributed
collaboration features. Solution. This study proposes C-SAMT, a web tool for collaborative modeling of UML
class diagrams. Developers can benefit from using C-SAMT when performing modeling tasks, such as creating
domain models in parallel, and collaboratively. Evaluation. We recruited 20 industry professionals to perform
a qualitative evaluation of the tool through a questionnaire. Results. Majority of Industry professionals (85%,
17/20) reported that totally agree that the communication channel of the tool worked properly, they also (80%,
16/20) totally agreed the models generated collaboratively with C-SAMT had small numbers of conflicts, and they
also (90%, 18/20) perceived improved productivity gains using the proposed tool. Conclusion. C-SAMT provided
a collaborative environment, which were positively evaluated by developers, who reported that C-SAMT had a
good communication channel between team members.

Keywords: Class Diagrams; Software Artifacts; Collaboration; UML.

Resumo

Background. A modelagem de aspectos arquiteturais do sistema é uma atividade essencial no desenvolvimento
de software. Nesse contexto, os desenvolvedores trabalham em paralelo colaborando para definir modelos de
software, por exemplo, diagramas de classes. Problema. Embora muitas ferramentas de modelagem de software
tenham sido propostas, ha uma falta de recursos de colaborac¢do distribuida. Solugdo. Este estudo propde o
C-SAMT, uma ferramenta da Web para modelagem colaborativa de diagramas de classes UML. Os desenvolvedores
podem se beneficiar do uso do C-SAMT ao executar tarefas de modelagem, como a criagdo de modelos de dominio
em paralelo e de forma colaborativa. Avaliagdo. Foram recrutados 20 profissionais da industria para realizar
uma avaliacdo qualitativa da ferramenta através de um questionario. Resultados. A maioria dos profissionais
(85%, 17/20) concordaram totalmente que o canal de comunicacdo da ferramenta funcionou adequadamente,
eles também (80 %, 16/20) concordaram totalmente que os modelos gerados colaborativamente com a C-SAMT
resultaram em um pequeno nimero de conflitos, e eles também (90%, 18/20) perceberam ganhos de produtividade
aprimorados usando a ferramenta proposta. Conclusao. A C-SAMT forneceu um ambiente colaborativo que
foi avaliado positivamente pelos desenvolvedores, os quais relataram que a C-SAMT tinha um bom canal de
comunicacdo entre os membros da equipe.

Palavras-Chave: Diagrama de Classe; Artefatos de Software; Colaboracdo; UML.

http://dx.doi.org/10.5335/rbca.v11i3.8469
http://seer.upf.br/index.php/rbca/index
https://orcid.org/0000-0002-7108-0496
https://orcid.org/0000-0003-1891-3580
https://orcid.org/0000-0002-4003-1886
https://orcid.org/0000-0001-7367-9710

40 R.A. Cortiana et al. |

Revista Brasileira de Computagdo Aplicada (2019), v.11, n.3, pp.39-46

1 Introduction

The process of globalization and constant technological
innovation of software-development companies
is motivating the demand for collaborative and
distributed development (Nunes and Falbo, 2006).
The companies have applied efforts to reduce manual
activities and improving collaborative activities
(Conboy, 2009, Rodriguez et al., 2017) aiming to raise
production, and reduce business costs. Thus the use
of collaborative systems in software-development
processes is an alternative for software companies,
due to its well-known benefits de Lange et al. (2016),
such as, collaboration between project participants
regardless their location, and time zone.

In addition, according to Mistrik et al. (2010) and
Lucas et al. (2017) collaborative work improves the
decision making as well as the dissemination of new
ideas. Nowadays, companies have interest on adopting
techniques for the collaborative software modeling due
to their interface in which enables developers, and
collaborators visualize the occurring changes on real-
time in the software project. These tools also provides
some benefits such as, activities are synchronized
between those involved in the project, productivity
gains on development cycle, and consequently, the
reduction of project costs (Nunes and Falbo, 2006,
Conboy, 2009, Rodriguez et al., 2017). This is because
these tools notify changes and conflicts between
versions in real time to development teams (Mistrik
et al., 2010).

Modelling tools lack some essential functionality
to support collaboration on enterprise environments
e.g., changing artefacts simultaneously by distributed
software development teams. For example, Google
docs is a tool that supports this functionality in
the context of online documents. When a real-
time synchronization of the artefact does not occur,
the documents become outdated; otherwise, parallel
changes will be usually contradictory, increasing the
effort of teams for correction of model inconsistencies
(Farias et al., 2014).

According to Xavier et al. (2019) Collaborative
software modeling has become a trend due to the
significant growth in software industry and academic
research. Collaborative Software Modelling for local
teams become more feasible because the team can
interact informally with each other discussing about
the models in development and to solve possible
conflicts that may happen. Productivity may decrease
with globally distributed teams due to a lack of
modeling collaborative tools. In addition, according
to Xavier et al. (2019) modeling collaborative tools
still dependent of audio chat and other collaborative
functionalities like files share.

A review of the proposed tools was executed with
regards to some criteria a collaborative tool should
implement: (C1) supporting real-time changes to
software artefacts simultaneously; (C2) communication
between users; (C3) identification of each users in
the same section; (C4) location of places the users
are acting; (C5) stores the user who did the last

update on the content; (C6) Collaboration of non-
connected users; (C7) allow multi-platform use; (C8)
support to mobile devices; (C9) integration with other
development tools; and (C10) allow the publication
of updates notifications. It was found that well-
known approaches adopted to support the development
teams on collaborative software modelling do not meet
specific criteria essentials to developers. This were also
reported on existing literature (Rodriguez et al., 2017,
Mistrik et al., 2010, Nicolaescu et al., 2018, de Lange
et al., 2016). Furthermore, it also was found a lack
of studies exploring this issue (Rodriguez et al., 2017,
Nicolaescu et al., 2018), as well as empirical studies
about the perception of software developers during
collaborative software modelling activities (Farias et al.,
2014).

For this, this paper proposes C-SAMT, a web-based
tool that supports collaborative modelling of UML class
diagrams. Developers can use C-SAMT on modelling
tasks, such as creating class diagrams. A qualitative
evaluation was performed applying a questionnaire on
20 developers from industry. The main results suggest
that C-SAMT communication channel worked properly
between developers, it also can increase productivity,
as well as produce a number of reduced conflicts on
output class diagrams.

This paper is organized as follows. Section 2
presents the theoretical basis, discussing the main
concepts used throughout the work. Section 3 describes
the tool design and implementation aspects of the
proposed tool. Section 5 presents a comparative
analysis of software modelling tools. Section 6 presents
the main related works. Finally, Section 7 describes
the final considerations and future work.

2 Background

This section presents essential concepts to understand
this research. Libraries used on the development of the
proposed tool are described.

2.1 JointJS and TogetherJS

Joint]S is a modern and extremely effective API for
creating deferent types of diagrams and graphs. The
JavaScript, HTML 5, and Joint]JS is a set of technologies
that enables the renderization of diagrams with static
or even fully interactive structures. Joint]JS is a modern
API, supporting the mobile browsers (Client.I0, 2019).

The Together]JS is an open Source and free JavaScript
library. It provides the proper features to turn
collaboration efficient on web browsers. Specifically,
this API enable users help each other collaboratively
in real-time. Together]JS has a simple, easy, and fast
for users (Mozilla, 2019). The next section describes
the design and implementation aspects of the proposed
collaboration tool prototype.

R.A. Cortiana et al. |

Revista Brasileira de Computagdo Aplicada (2019), v.11, n.3, pp.39-46 YAl

3 C-SAMT: Collaborative Modeling Tool

This section presents the C-SAMT. Section 3.1 presents
the system requirements. Section 3.2 describes the
proposed architecture. Section 3.3 discusses the
implementation aspects of the proposed tool.

3.1 System Requirements

This session presents the definition of the technical
and functional requirements of the proposed tool. The
requirements point what the proposed system should
do, also represent constraints in the development that
were followed during the development of the tool. The
requirements were specified to attend the found gaps
on related works (Section 6). Table 1 describes the
specified requirements of the proposed tool.

3.2 Architecture

This section presents the component diagram of
components of the C-SAMT, and describes each
component. Fig. 1 shows the components HTML5,
Joint]S and Together]S:

- HTML: this component is responsible for managing
the tool. The HTML part is responsible for calling
the Joint]S, and Together]S JavaScript libraries;

- Together]JS: this component is responsible for
assigning collaboration, and also manage the main
collaborative functionalities:

- Real-Time Collaboration: component
responsible for managing the real-time
collaboration capabilities. = This component
enables users change, edit, and view at same
time;

- Joint Navigation: turns the navigation possible
with more than two users within the same
domain;

- Text chat: manages the functionality of text chat;

- Audio Chat: manages the functionality of audio
chat. This functionality is based on RTC Web
technology for audio chat between users;

- User View: enables the identification of each user
from a profile. In addition, enables users to
upload an image, and change other information
of their profile, such as name and color.

- User Focus: manages the actions of each user’s
cursor.

- JointJS: component responsible for assigning the
diagrams and graphs;

- Class Diagram: allows the editing of the class
diagrams through the JointJS API.

3.3 Implementation Aspects

The Together]S API assigns collaboration to web pages.
When the web-page is created by HTML, it is sufficient
that the API is only “called” within the code so that all

il s
Jointls a] TogetherS]

ClassDiagram &)

Real-Time Gollaboration &)

Joint Navigation

Test Chat

Audio Chat

UsarView

User Facus

]

Figure 1: C-SAMT Component Diagram.

its features work perfectly. When a dynamic content
is presented through JavaScript, TogetherJS requires
a function be implemented to other users view the
content changes. Fig. 2 presents this function.

graph.on('change:position’,
var _seletor = id=' + cell.attributes.id + "]°',

_posicao = 'translate(' + cell.attributes.position.x

+ ',' + cell.attributes.position.y + ')"';

function(cell) {

if (TogetherJS.running) {

TogetherJdS.send({type: "changePosition",

gePc seletor:
_seletor, posicao: _pu:icao }):

b

TogetherJS.hub.on("changeP
$(msg.seletor).attr('c

b

", function (msg)
form', msg.posicao);

Figure 2: Instantiation of the TogetherJS (Mozilla,
2019).

The tool being discussed in this article fits in this
context because the class diagram is created based on
the JointJS API. TogetherJS had to be implemented to
allow users to view the changes of the class diagram in
real-time. In relation to the JointJS API, it allows the
creation of diagrams and graphs. The construction of
the class diagram of the tool was performed according
to the code shown in Fig. 3, and Fig. 4 presents the
diagram generated from this code.

Moreover, the proposed tool has as the main
objective to support the edition of UML class diagrams
collaboratively. The tool also has other features,
such as communication via text and audio chat, user
location within the page through the cursor view,
and identification of each user of the same section.
Each of these features will be detailed as follows.
Fig. 4 presents the initially generated class diagram
in the proposed tool. As previously mentioned users
belonging to the same section can change this diagram
at same time and on real-time.

- User Identification: allows the user changing the
characteristics of his/her profile, such as: rename
his/her profile, update the user identification photo,

42 R.A. Cortiana et al. | Revista Brasileira de Computag¢do Aplicada (2019), v.11, n.3, pp.39-46
Table 1: List of tool requirements
Requirement
ID Description
Req-01 Real-time changes Users must be able to make changes to the same diagram and view

changes in real time.

Users must be able to view the cursors and clicks of users in the same

A chat must be embedded in the system for the communication of users.
The tool must be composed of a communication chat via audio.

Users must be able to view who are “logged in” in the same section.
Other users will be directed to the new location every time the main

user navigate to a new position on the page.

The system will allow all “logged in” users in the same section edit the

class diagram on real-time.

Req-02 Users Cursors with focus
section.

Req-03 Chat communication

Req-04 Communication via audio

Req-05 Viewing users

Req-06 Navigation together

Req-07 Class Diagram

Req-08 Start collaboration

Req-09 Fast response time when adding a user to
the section

Reqg-10 Fastresponse time to start the collaboration
menu

Reg-11 Fast response Time to load page assets

The tool has a button on the menu that starts the collaboration.

The system cannot take more than 5 seconds to add the user when
inviting a user to the section.

The system cannot take more than 5 seconds to start the collaboration.

The class diagram should appear in less than 7 seconds when starting

the system page.

var uml = joint.shapes.uml;
var classes = {

mammal: new uml.Interface({
id: 'interface',
position: { x:300 , y: 50 },
size: { width: 240, height: 100 },
name: 'Mammal’,
attributes: ['dob: Date'],
methods: ['+ I

Void', '+ getAge.
b,
person: new uml.Abstract({
id: 'abstract’',
position: { x:300 , y: 300 },
size: { width: 240, height: 100 }

position: { x:20 , y: 190 },

size: { width: 220, height: 100 },

name: 'Bloo

attributes: [

methods: ['+
2N

addresa: new uml.Class({
id: 'address’',

position: [x:630 , y: 190 },
size: { width: 160, height: 100 },
name: 'Address',

attributes: ['h Numk I !

’

methods: []

Figure 3: Example of using
Together]S.hub.on (Mozilla, 2019).

and change the color of their profile. Their profile
can be viewed on the same section by other users;

- Invite a User: generates a link to invite another
user to the collaborative section. When the other
user receives this link, he will receive a notification
asking if he wants to enter the section;

+ Audio Chat: allows connected users to communicate

with each other using audio;
- Text Chat: this functionality gives users the option
to chat via text.

<<Interfaces>
Mammal

dob: Date

= setDateOfBurth(dob: Date): Voud
- getAgedsDays(): Numens

JAN

Figure 4: Class diagram available in C-SAMT tool.

4 C-SAMT Features

This section presents the C-SAMT main functionalities
and describes each one of them.

Profile Setup: Fig. 5.(a) presents a functionality that
allows users to have name and profile color updated and
also the possibility to upload a picture in each avatar.

Profile Checking: Fig. 5.(b) shows a functionality
where enables users to check their profile information.
For this, they must click on profile icon, and then they
can configure their avatar picture, profile color, and
also the user name.

Chat feature: this feature enables users to send and
receive text messages. Fig. 5.(c) shows users sending
text messages through the chat window. Users are also
identified by each Profile characteristics.

Invite collaborators: Fig. 5.(d) presents the Invite
Collaborator feature. A link will be generated
automatically when clicked on second item in
collaborative menu. The new collaborator only needs

R.A. Cortiana et al. |

Revista Brasileira de Computagdo Aplicada (2019), v.11, n.3, pp.39-46 43

to access the environment through this link.

Collaboration environment: Fig. 5.(e) shows three
users using the proposed tool, C-SAMT. This figure
captures the exact moment they locate the cursors of
each collaborator. The small circles generated on the
screen shows the click of a user.

Fig. 6 presents a class diagram being changed by
two users in parallel. The different cursors can identify
both users.

Audio Chat: Users can send audio messages through
the collaborative menu provided. This feature enables
collaborators sending the instructions by recorded
audio. They can also communicate instructions
through a direct call. This feature was implemented
using the Together]S API.

5 Evaluation

The evaluation was performed through a questionnaire
answered by 20 professionals. This questionnaire
aimed at evaluating the functionality of the proposed
collaborative modelling tool. This questionnaire was
elaborated based on a five point Likert scale (Jamieson,
2004). Specifically, these options are: (1) Strongly
Disagree, (2) Partially Disagree; (3) I do not know; (4)
Partly Agree; and (5) Totally Agree.

Team Communication using the C-SAMT tool.
Fig. 7 presents the obtained results from the
questionnaire regarding the communication channel
of the tool. All the participants agreed that the
communication channel of the tool worked properly.
Specifically, the collected results show that 85% (17/20)
totally agree, and 15% (3/20) partially agree. These
results are interesting because according to Mistrik
et al. (2010), a good communication channel between
team members can provides some benefits, such as,
improved understanding of the solution, and of the
elaborated diagram, as well as agility in decision
making, and the dissemination of new ideas.

Conflicts between model versions using the C-
SAMT tool. Fig. 8 shows the results related to the
number of conflicts on output models produced on
the tool. Developers reported that models generated
collaboratively with the C-SAMT had few conflicts.
Specifically, 80% (16/20) totally agree, and 5% (1/20)
partially agree that few conflicts were present on
generated software models. Finally, only 15% (3/20)
of participants were neutral. We attribute this result
due to the social interaction of developers during the
development of software models. Multiple developers
were working and checking emerging inconsistencies
at same time. These benefits are analogous to obtained
using pair programming (Begel and Nagappan, 2008,
Williams and Kessler, 2002).

Productivity. Fig. 9 presents the results related
to the perception of the participants regarding
productivity gains using the proposed tool. Developers
had a positive experience with C-SAMT. They reported
that the collaborative development with this tool were
productive. Results show that 90% (18/20) of industry
professionals totally agree, and 5% (1/20) partially

agree that they perceived had gained productivity
on modeling the class diagrams using the C-SAMT
tool. In addition, this result reinforces the previous
results collected in this evaluation: they reported
that the tool enables their communication, and
generated output models with a reduced number
of conflicts. Consequently, their perception on
productivity gains makes sense. In addition, Mistrik
et al. (2010) highlights that “collaborative tools provide
an improved coordination of activities”. This also
impacts on productivity gains.

6 Related Works

This section presents a comparative analysis of the
related works that focus on supporting collaboration.
The tools that are part of this study, for the most part,
are used within the software industry.

The Web-Based, Collaborative, Computer-Aided
Sequential Control Design Tool (Yen et al., 2003): this
tool has as main objective to design a sequential control
system for devices and electrical circuits. The software
is designed to enable several users work collaboratively
on the Internet browser. In this tool only one user can
make changes, and others can only view for keeping
up with the changes.

Collaborative Project Management Software
(Romano et al., 2002): This article aims to describe
a prototype of a collaborative tool for project
management, called C-PMS (Collaborative Project
Management Software). The main qualities of C-PMS
tool are the efficiency, and effectiveness in the
activities carried out by developers.

Users experiences in collaborative writing using
Collaboratus, an Internet-based collaborative
work (Lowry et al., 2002): The Collaboratus is a tool
for work-groups over the Internet. It also presents its
collaborative functionality that supports work-groups.

IBM Rational Software Architect (IBM, 2018): IBM
RSA is a robust tool for modelling, and designing
software artefacts. IBM developed this tool which is
highly recognized in industry.

Borland Together (Borland, 2018): It is a
set of software modelling tools that enable the
implementation, design, and analysis of software
architectures. This tool also provides collaborative
functionality to users.

COMA - The Tool for a Collaborative Modelling
(Rittgen, 2008): prototype tools for UML modelling
that enables collaborative support for group modelling.
COMMA tool provides models negotiation, and provides
information synthesis through an existent UML
modeling tool.

ColD SPA - The Tool for Collaborative Process
Model Development (Lee et al., 2000): ColD SPA
provides a collaborative modelling support through
a web browser. This tool does not enables collaborators
to change models in real-time and simultaneously.

This works compares the previously mentioned tools
according the following criteria (C):

- C1: supports simultaneous and real-time changes

A

R.A. Cortiana et al. |

Revista Brasileira de Computagdo Aplicada (2019), v.11, n.3, pp.39-46

Raul x

)

Role: Participant
Currently at:
Status: Active

Follow this participant:

(a)

(d)

Figure 5: Invite Collaborators feature.

(c)
0 =
O
o Q ‘=
®
®
(&)
(e)

Table 2: Comparative table between the collaborative tools.

Tools

Criteria
C5 C6

Web-based and Collab. Soft. Tool (Yen et al., 2003)

C-PMS (Romano et al., 2002)

Colaborattus (Lowry et al., 2002)

IBM RSA (IBM, 2018)

Borland Together (Borland, 2018)

COMMA (Rittgen, 2008)

ColD (Lee et al., 2000)

ololo|olololo|a
e o000 e_
e O eooeee
o|o|ojojolo|o|L
oo e eCoe

o000 eoe

olo|o|o|olo|e|§
olo|o|o|o|o|o| 8
e Ol@eee®00Z
ololo|e|ee0|g

Legend: @Apply ODoes not apply

to the same software artefact;

- C2: communication between users;

- C3: identification of each user;

+ C4: locate the users action;

+ C5: stores the user who did the last update on the

content;

+ C6: collaboration of non-connected users;
+ C7: allow multi-platform use;

C8: support to mobile devices support;

- C9: integration with other tools;
- C10: allow the publication of updates notifications.

tools,

Table 2 presents the comparison between produced
in relation to the criteria (C) previously

mentioned. The general considerations regarding these

results are described bellow:

+ Proposed tools do not enable developers changing

and evolving artefacts on real-time (C1), they also
not enable to locate where another users are acting
(C4), they do not support mobile devices (C8), and
only one of them (Web-based and Collab. Soft. Tool
(Yen et al., 2003)) is a multi-plataform (C7);

- Existing tools strongly supports the communication

between users (C2), and enables the collaboration
with non-connected developers (C6). In other words,
their updates are committed as soon they get logged
to the application;

« In exception of COMMA (Rittgen, 2008), majority

of them identifies each user on the collaborative

R.A. Cortiana et al. |

Revista Brasileira de Computagdo Aplicada (2019), v.11, n.3, pp.39-46 45

wImterface==
Mammal
dob Duse o
ﬂl.l
o
hd

Figure 6: UML Diagram designed with simultaneous
collaboration.

Can the tool's communication kermels work?

(1) Strongly Disagree 0%
(2) Partially Disagree)%
(3) I do not know 0%
4) Partially agree 15%
5) Totally agree. P

Figure 7: The communication channel of the proposed
tool.

w o O© O
[=]
]
)

Does the tool reduce the likelihood of conflicts
between versions ?

— (1) Strongly Disagree 0 0%
(2) Partially Disagree o0 0%
(3) I do not know 3 15%
(4) Partially Agree 1 5%
(5) Totally agree. 1 Pé%

Figure 8: Amount of conflicts produced in the output
models.

environment (C3). In addition, majority of them
records the users that make the last modification on
the diagram (C5), in exception of the Collaboratus
Tool (Lowry et al., 2002);

- Some of them (Collaboratus, IBM RSA, Borland
Togheter, and ColD) supports the integration with
another development tools (C9), and other tools (C-

Do the collaborative features provide greater productivity?

(1) Strongly Disagree 0 0%
(2) Partially Disagree 1 5%
(3) | do not know 0 0%
(4) Partially Agree ;o
(5) Totally agree.

Y

18 90%

Figure 9: Developers’ perception of the productivity
with C-SAMT.

PMS, Colaborattus, and IBM RSA) notifies another
developer about the recent changes (C10).

Finally, the IBM RSA were the tool that meet the
majority of the comparison criteria (C2, C3, C5, C6, C9,
and C10), while COMMA were the tool that had less
attended the comparison criteria (C2, C5, and C6). The
proposed tool was built to attend all the comparisons
criteria.

7 Conclusions

Developers demands for collaborative tools for evolving
software models in parallel on current development
environments. In order to seek gaps and overlapping
points on existing tools a comparative analysis were
conducted in this work. This analysis compared
seven related tools according important criteria, such
as support for simultaneous and real-time chances,
communication and tool integration. The main result
of this analysis was the lack of support for developers
change artefacts on real-time.

Therefore, there are limited support for collaboration
in UML diagrams despite many modelling tools have
been proposed. For this, this study proposed C-SAMT,
a web-based tool to support collaborative modelling
of UML Class diagrams. In order to evaluate this
tool, a qualitative evaluation was performed with 20
developers. They used C-SAMT in their daily work
tasks, and evaluated qualitatively the tool through
a questionnaire. The usage of the tool enabled the
communication between team members, few number
of conflicts present on the output model, and team
perceived improved productivity.

Future works will focus on testing the effectiveness
of the proposed tool. Specifically, experiments to test
the precision, and recall in relation to state-of-the art
tools.

References

Begel, A. and Nagappan, N. (2008). Pair programming;:
What’s in it for me?, Proceedings of the Second ACM-
IEEE International Symposzum on Empirical Software
Engineering and Measurement, ESEM ’08, ACM, New
York, NY, USA, pp. 120-128. http://doi.acm.org/10.
1145/1414004.1414026.

http://doi.acm.org/10.1145/1414004.1414026
http://doi.acm.org/10.1145/1414004.1414026

46 R.A. Cortiana et al. |

Revista Brasileira de Computagdo Aplicada (2019), v.11, n.3, pp.39-46

Borland (2018). Borland together. Available at http://
www.borland.com/Products/RequirementsManagement/
Together.

Client.IO (2019). Jointjs javascript diagraming library.
Avaiilable at http://www.jointjs.com.

Conboy, K. (2009). Agility from first principles:
reconstructing the concept of agility in information
systems development, Information Systems Research
20(3): 329-354. http://dx.doi.org/10.1287/isre.
1090.0236.

de Lange, P., Nicolaescu, P., Derntl, M., Jarke, M.
and Klamma, R. (2016). Community application
editor: Collaborative near real-time modeling and
composition of microservice-based web applications.,
Modellierung (Workshops), pp. 123-128.

Farias, K., Garcia, A. and Lucena, C. (2014). Effects of
stability on model composition effort: an exploratory
study, Software & Systems Modeling 13(4): 1473-1494.
https://doi.org/10.1007/s10270-012-0308-2.

IBM (2018). Ibm rational software architect. Available
at http://www.ibm.com/developerworks/downloads/r/
architect/index.html.

Jamieson, S. (2004). Likert scales: how to (ab) use
them, Medical education 38(12): 1217-1218. https://
doi.org/10.1111/j.1365-2929.2004.02012.x.

Lee, J. D., Hickey, A. M., Zhang, D., Santanen,
E. and Zhou, L. (2000). Cold spa: a tool for
collaborative process model development, Annual
Hawaii International Conference on System Sciences,
2000, IEEE, pp. 10-15. https://doi.org/10.1109/
HICSS.2000.926588.

Lowry, P. B., Albrecht, C. C., Lee, J. D. and
Nunamaker, J. F. (2002). Users’ experiences in
collaborative writing using collaboratus, an internet-
based collaborative work, System Sciences, 2002. HICSS.
Proceedings of the 35th Annual Hawaii International
Conference on, IEEE, pp. 243-252. https://doi.org/
10.1109/HICSS.2002.993879.

Lucas, E. M., Oliveira, T. C., Farias, K. and Alencar,
P. S. (2017). Collabrdl: A language to coordinate
collaborative reuse, Journal of Systems and Software
pPp. 505-527. https://doi.org/10.1016/3.jss.2017.
01.031.

Mistrik, 1., Grundy, J., van der Hoek, A. and Whitehead,
J. (2010). Collaborative Software Engineering: Challenges
and Prospects, Springer Berlin Heidelberg. https://
doi.org/10.1007/978-3-642-10294-3_19.

Mozilla (2019). Togetherjs collaboration made easy.
Available at http://www.togetherjs.com.

Nicolaescu, P., Rosenstengel, M., Derntl, M., Klamma,
R. and Jarke, M. (2018). Near real-time collaborative
modeling for view-based web information systems
engineering, Information Systems 74(P1): 23-39.
https://doi.org/10.1016/j.1s.2017.07.008.

Nunes, V. B. and Falbo, R. d. A. (2006). Uma ferramenta
de geréncia de configuracgdo integrada a um ambiente
de desenvolvimento de software, V Simpdsio Brasileiro
de Qualidade de Software, Vila Velha, Brazil .

Rittgen, P. (2008). Coma: A tool for collaborative
modeling, CAiSE Forum, Vol. 344, pp. 61-64.

Rodriguez, P., Haghighatkhah, A., Lwakatare, L. E.,
Teppola, S., Suomalainen, T., Eskeli, J., Karvonen,
T., Kuvaja, P., Verner, J. M. and Oivo, M.
(2017). Continuous deployment of software intensive
products and services: A systematic mapping study,
Journal of Systems and Software 123: 263-291. https:
//doi.org/10.1016/j.jss.2015.12.015.

Romano, N. C., Chen, F. and Nunamaker, J. F. (2002).
Collaborative project management software, System
Sciences, 2002. HICSS. Proceedings of the 35th Annual
Hawaii International Conference on, IEEE, pp. 233-242.
https://doi.org/10.1109/HICSS.2002.993878.

Williams, L. and Kessler, R. (2002). Pair programming
illuminated, Addison-Wesley Longman Publishing
Co., Inc.

Xavier, M. S. d. L., Farias, K., Barbosa, J., Gongales, L.
and Bishoff, V. (2019). Umlcollab: A hybrid approach
for collaborative modeling of uml models, Proceedings
of the XV Brazilian Symposium on Information Systems,
SBSI’19, ACM, New York, NY, USA, pp. 30:1-30:8.
http://doi.acm.org/10.1145/3330204.3330239.

Yen, C., Li, W.-J. and Lin, J.-C. (2003). A web-based,
collaborative, computer-aided sequential control
design tool, IEEE control systems 23(2): 14—-19. https:
//doi.org/10.1109/MCS.2003.1188768.

http://www.borland.com/Products/RequirementsManagement/Together
http://www.borland.com/Products/RequirementsManagement/Together
http://www.borland.com/Products/RequirementsManagement/Together
http://www.jointjs.com
http://dx.doi.org/10.1287/isre.1090.0236
http://dx.doi.org/10.1287/isre.1090.0236
https://doi.org/10.1007/s10270-012-0308-2
http://www.ibm.com/developerworks/downloads/r/architect/index.html
http://www.ibm.com/developerworks/downloads/r/architect/index.html
https://doi.org/10.1111/j.1365-2929.2004.02012.x
https://doi.org/10.1111/j.1365-2929.2004.02012.x
https://doi.org/10.1109/HICSS.2000.926588
https://doi.org/10.1109/HICSS.2000.926588
https://doi.org/10.1109/HICSS.2002.993879
https://doi.org/10.1109/HICSS.2002.993879
https://doi.org/10.1016/j.jss.2017.01.031
https://doi.org/10.1016/j.jss.2017.01.031
https://doi.org/10.1007/978-3-642-10294-3_19
https://doi.org/10.1007/978-3-642-10294-3_19
http://www.togetherjs.com
https://doi.org/10.1016/j.is.2017.07.008
https://doi.org/10.1016/j.jss.2015.12.015
https://doi.org/10.1016/j.jss.2015.12.015
https://doi.org/10.1109/HICSS.2002.993878
http://doi.acm.org/10.1145/3330204.3330239
https://doi.org/10.1109/MCS.2003.1188768
https://doi.org/10.1109/MCS.2003.1188768

	1 Introduction
	2 Background
	2.1 JointJS and TogetherJS

	3 C-SAMT: Collaborative Modeling Tool
	3.1 System Requirements
	3.2 Architecture
	3.3 Implementation Aspects

	4 C-SAMT Features
	5 Evaluation
	6 Related Works
	7 Conclusions

