
A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 639–655, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Analyzing the Effort of Composing Design Models  
of Large-Scale Software in Industrial Case Studies 

Kleinner Farias1, Alessandro Garcia2, Jon Whittle3, and Carlos Lucena2 

1 PIPCA, University of Vale do Rio dos Sinos (Unisinos), São Leopoldo, RS, Brazil 
kleinnerfarias@unisinos.br 

2 OPUS Research Group/LES, Informatics Department, PUC-Rio, RJ, Brazil 
{afgarcia,lucena}@inf.puc-rio.br 

3 School of Computing and Communications, Lancaster University, UK 
whittle@comp.lancs.ac.uk 

Abstract. The importance of model composition in model-centric software de-
velopment is well recognized by researchers and practitioners. However, little is 
known about the critical factors influencing the effort that developers invest to 
combine design models, detect and resolve inconsistencies in practice. This pa-
per, therefore, reports on five industrial case studies where the model composi-
tion was used to evolve and reconcile large-scale design models. These studies 
aim at: (1) gathering empirical evidence about the extent of composition effort 
when realizing different categories of changes, and (2) identifying and analyz-
ing their influential factors. A series of 297 evolution scenarios was performed 
on the target systems, leading to more than 2 million compositions of model 
elements. Our findings suggest that: the inconsistency resolution effort is much 
higher than the upfront effort to apply the composition technique and detect in-
consistencies; the developer’s reputation significantly influences the resolution 
of conflicting changes; and the evolutions dominated by additions required less 
effort. 

Keywords: Model composition effort, empirical studies, effort measurement. 

1 Introduction 

Model composition plays a central role in many software engineering activities, e.g. 
reconciling models developed in parallel by different development teams 
[11][18][33], and evolving models to add new features [14][15][32]. In collaborative 
software development [30], for example, separate development teams may concur-
rently work on a partial model of an overall design model to allow them to concen-
trate more effectively on parts of the model relevant to them. However, at some point, 
it is necessary to bring these models together to generate a “big picture” view of the 
overall design model. So, there has been a significant body of research into defining 
model composition techniques in the area of governance and management of enter-
prise design models [9], software configuration management [11], and the composi-
tion of software product lines [25][28]. 



640 K. Farias et al. 

Consequently, both academia and industry are increasingly concerned in develop-
ing effective techniques for composing design models (e.g. [3-8][10-17]).  Unfortu-
nately, both commercial and academic model composition techniques suffer from 
composition conflict problems [10][11][12]. That is, models to-be composed conflict 
with each other and developers are usually unable to deal with the conflicting 
changes. Hence, these conflicts may be transformed into inconsistencies in the output 
composed model [24][26]. 

The current composition techniques cannot automatically resolve these inconsis-
tencies [24][27][29]. The reason is that the inconsistency resolution relies on an un-
derstanding of what the models actually mean. This semantic information is typically 
not included in any formal way in the design models. Consequently, developers must 
invest some effort to manually detect and resolve these inconsistencies. The problem 
is that high effort compromises the potential benefits of using model composition 
techniques, such as gains in productivity. To date, however, nothing has been done to 
quantify the composition effort and characterize the factors that can influence the 
developers’ effort in practice. Hence, developers cannot adopt or assess model com-
position based on practical, evidence-based knowledge from experimental studies.  

The goal of this paper, therefore, is to report on five industrial exploratory case 
studies that aimed at (1) providing empirical evidence about model composition ef-
fort, and (2) describing the influential factors that affected the developers’ effort. 
These studies were performed in the context of using model composition to evolve 
design models of five large-scale software systems. During 56 weeks, 297 evolution 
scenarios were performed, leading to 2.288.393 compositions between modules, 
classes, interfaces, and their relationships. We draw the conclusions from quantitative 
and qualitative investigations including the use of metrics, interviews, and observa-
tional studies. We investigate the composition phenomena in their context, stressing 
the use of multiple sources of evidence, and making clear the boundary between the 
identified phenomenon and its context.  

The remainder of the paper is organized as follows. Section 2 introduces the main 
concepts used throughout the paper. Section 3 presents the empirical methodology. 
Section 4 discusses the study results. Section 5 contrasts our study with related work. 
Finally, Section 6 presents some concluding remarks and future work. 

2 Background 

2.1 Model Composition Tasks and Effort 

The term model composition refers to a set of activities that should be performed over 
two (or more) input models, MA and MB, in order to produce an output intended mod-
el, MAB. MA is the base model while MB is the delta model that has the needed 
changes to transform MA into MAB. Developers use composition algorithms to pro-
duce MAB. These algorithms are responsible for defining the model composition se-
mantics. In practice, these algorithms are unable to generate MAB in all cases due to 
some influential factors (Section 4.2). Consequently, an output composed model, 
MCM, is produced instead of MAB. 



 Analyzing the Effort of Composing Design Models of Large-Scale Software 641 

We use MCM and MAB to differentiate between the output composed model, which 
has inconsistencies and the model desired by developers, respectively. In practice, 
these models do not often match (MCM ≠ MAB) because the input models, MA and MB, 
have some conflicting changes. However, usually it is not always possible to deal 
with all conflicts properly given the problem at hand [12][32][33]. The problem is 
that syntactic and semantic information should be considered, but they are rarely 
represented in a formal way. Rather, they are represented in natural language. Conse-
quently, some conflicting changes are transformed into inconsistencies in MCM.  

With this in mind, the model composition effort can be defined, as the effort re-
quired to produce MAB from MA and MB. Fig. 1 states the effort equation. The equa-
tion makes it explicit that the composition effort is based on the effort to perform 
three key composition tasks such as: (i) f(MA,MB): the effort to apply a model compo-
sition technique; (ii) diff(MCM,MAB): the effort to detect inconsistencies in the  
composed model; (iii) g(MCM): the effort to resolve inconsistencies i.e., the effort to 
transform MCM into the intended model (MAB). Note that if MCM is equal to MAB, then 
diff(MCM,MAB) = 0 and g(MCM) = 0. Otherwise, diff(MCM,MAB) > 0 and g(MCM) > 0. 
These variables are counted in minutes in our study.  

 

Fig. 1. Model composition effort: an equation 

2.2 Composition Conflict and Inconsistency 

Composition conflicts arise when contradicting values are assigned to model ele-
ment’s properties. Usually these contractions happen when teamwork members edit 
such properties in parallel and they are not aware of the changes. Two types of prop-
erties can be affected: syntactic and semantic properties. While the syntactic proper-
ties are defined in the modeling language’s metamodel [36], the developers are ought 
to specify the (static and behavioral) semantic properties. Developers should deter-
mine which contradicting values assigned to these properties will remain. For exam-
ple, a developer should define if a class A will be concrete (i.e. A.isAbstarct = false) 
or abstract (i.e. A.isAbstarct = true). The output intended class A will be produced, if 
and only if, this decision is done correctly; otherwise, the output composed class A 
will be inconsistent. In practical terms, these inconsistencies are unexpected values 
attributed to model element’s properties e.g., A.isAbstract = false instead of the ex-
pected value true. Two broad categories of inconsistencies are usually present in out-
put models of our study, namely syntactic and semantic inconsistencies.  



642 K. Farias et al. 

Syntactic inconsistencies emerged when any output composed model elements did 
not conform to the rules defined in the modeling language’s metamodel. For example, 
a package UML cannot have UML classes with the same name. Another example 
would be all relationship should have the client and supplier defined. Semantic incon-
sistencies emerged when the meaning of the composed model elements does not 
match with the meaning of the elements of the intended model. For instance, an in-
consistency occurs when functionalities found in MCM are not found in MAB, or when 
model elements assume a meaning that is no longer expected or valid. The presence 
of both types of inconsistencies affects the correctness of the composed model.  

3 Study Methodology  

3.1 Objective and Research Questions 

This study aims at gathering knowledge about the values that the composition effort’s 
variables (Fig. 1) can assume in real-world settings. As these variables may be af-
fected by some influential factors, this work also attempts to reveal and characterize 
these factors. With these aims in mind, we formulate two research questions: 

• RQ1: What is the effort to compose design models? 
• RQ2: What are the factors that affect composition effort?  

3.2 Context and Case Studies 

As previously mentioned, during 56 weeks, 297 evolution scenarios were performed 
leading to 2.288.393 compositions between modules, classes, interfaces, and relation-
ships. All five cases differ in terms of their size, number of participants, and applica-
tion domain. We present a brief description of the five systems used as follows: 

1. System AL (SysAL): controls and manages the importation and exportation of 
products. 

2. System Band (SysBand): a logistics system that manages the flow of goods. 
3. System GR (SysGR): supports weather forecast and controls environmental 

catastrophes. 
4. System Mar (SysMar): simulates the extraction of oil from deep ocean areas. 
5. System PR (SysPR): a logistics system for refineries. 

They were chosen based on some reasons presented in the following. First, they are 
characterized as typical, revelatory [2], and encompassed UML class and sequence 
diagrams, use case specifications, architectural diagrams, glossary of domain terms, 
and business rules.  Still, they are representative of complex software systems, which 
were initially unknown by the developers. This characterizes a typical situation where 
maintainers are not the initial developers of the system.  

Second, the subjects used IBM Rational Software Architect (RSA) [16], a robust 
modeling tool to create and compose design models. The IBM RSA was used due to: 
(1) the implementation robustness of its composition algorithms; (2) the tight integra-
tion with the Eclipse IDE; and (3) the tool had been already adopted in previous suc-
cessful projects. Additionally, all cases used a bug tracking system, i.e., JIRA [37], 



 Analyzing the Effort of Composing Design Models of Large-Scale Software 643 

with which it was possible to coordinate the developers’ tasks, specifically during the 
creation of the design models and review of the models. 

Finally, industrial case studies avoid one of the main criticisms of case studies in 
software engineering regarding the degree of realism of the studies. Thus, we believe 
that the collected data are representative of developers with industrial skills. 

3.3 Subjects 

In total, 12 subjects were recruited based on convenience [2]. Table 1 describes the 
subjects’ background. We analyzed the level of theoretical knowledge and practical 
experience of these subjects. The subjects had, on average, 120 hours of courses (lec-
ture and laboratory) considering theoretical issues about software engineering, includ-
ing object-oriented programming, software architecture, and software modeling using 
UML. This can be seen, in part, as an intensive UML-specific training. The subjects 
also had a considerable practical experience, which was acquired from previous soft-
ware development projects. The data show that the subjects fulfil the requirements in 
terms of age, education, and experience. The knowledge and experience sharing help 
subjects solve the composition problems more properly. All subjects were familiar 
with IBM RSA. Therefore, we are confident that the subjects had the required train-
ing, theoretical knowledge and practical experience about model composition to get 
rid of any threat to the vitality of our findings. 

Table 1. Descriptive statistics: subjects’ background 

Variables Mean SD Min 25th Med 75th Max 

Age 25.3 4.47 21 22 24.5 27 38 

Degree 2.16 1.06 1 1 2 3 4 

Graduation year 2006.4 4.8 1992 2005.25 2006.5 2010 2010 

Years of study at university 5.75 2.8 3 3 5 7.5 12 

YOEW UML 1 1.4 1 1.25 3 4.75 5 

YOEW Java 4.5 1.84 2 2.5 4 6.75 7 

Used IBM RSA (1 or 0) 1 1 1 1 1 1 1 

YOEW software development 5 3.6 2 2.25 4.5 5.75 16 

Hours of software modeling 98.33 40.38 60 60 90 120 180 

Hours of OO programming 156.66 89 80 80 130 225 360 

Hours of software design 130 53.85 80 80 120 190 220 
     Degree: 1 = Student, 2 = Bachelors, 3 = Masters, 4 = PhD, YOEW = Years of experience with, Med: Median,   
     SD = Standard Deviation, 25th = lower quartile, 75th = upper quartile  

3.4 Study Design 

The study design is characterized as a holistic case study [1][2], where contemporary 
phenomena of model composition are studied as a whole in their real-life contexts. 
Five industrial case studies were performed to investigate RQ1 and RQ2. The subjects 
were randomly and equally distributed to the five studies, following a within-subjects 
design [1]. The study had a set of activities that were organized in three phases. In 
each study, the subjects used the IBM Rational Sofwtare Architect to create and com-
bine the design models. Fig. 2 shows through an experimental process how the three 
phases were organized. The activities are further described as follows. 



644 K. Farias et al. 

Firstly, the issues are created and submitted to JIRA, an issue tracking system. Af-
ter opening an issue, the developers may perform three activities, including the crea-
tion of design models, detection and resolution of inconsistencies. 

Training. All subjects received training to ensure they acquired the needed familiarity 
with the  model composition technique.  

Apply Composition Technique. The models used in our study were UML class and 
sequence diagrams. Table 2 shows some metrics about the models used.  The sub-
jects create UML class and sequence diagrams using IBM RSA. Both diagrams were 
elaborated regarding the specifications of use cases and following the best modeling 
practices. Thus, the participants composed MA and MB taking into account the use 
case specifications. Note that MB (delta model) represented the changes to be submit-
ted to the repository. The measure of application effort (time in minutes) was col-
lected during this activity. In addition, the composed model, video and audio records 
represent the outputs of this activity. The video and audio records were later used 
during the qualitative analyses (Section 4). It is important to point out that a partici-
pant (subject x) that produced an MCM was discouraged from detecting inconsistencies 
in it to avoid bias; thus, another participant (subject n-x) was responsible for detecting 
and resolving the inconsistencies in MCM in order to produce MAB.   

 

Fig. 2. The experimental process 



 Analyzing the Effort of Composing Design Models of Large-Scale Software 645 

Detect Inconsistencies. Subjects reviewed MCM for detecting inconsistencies. To this 
end, they checked if MCM had the changes described in the use case specification. 
They used the IBM RSA’s model validation mechanism to identify syntactic inconsis-
tencies. As a result of this activity, we have the measure of detection effort (time in 
minutes), and video and audio records. 

Resolve Inconsistencies. The subjects resolved the inconsistencies localized in order 
to produce MAB. In practical terms, they added, removed, or modified some existing 
model elements to solve them. The resolution effort was also measured (time in mi-
nutes) and the video and audios were recorded. After addressing the model inconsis-
tencies, the developers submitted the intended model to the repository. Thus, the 
compositions were executed in two moments: after the original creation of the models 
and after resolving the inconsistencies. All model versions were registered using a 
version control system, thereby allowing a systematic historical analysis of the com-
positions, MCM. 

Make Interview and Answer Questionnaire. Some interviews were conducted with the 
purpose of collecting qualitative data.  The subjects also filled out a questionnaire. 
These procedures allowed us to collect information about their background (i.e., their 
academic background and work experience) and apply some inquisitive questions. 

Table 2. The collected measures of the design models used 

Metrics SysAL SysBand SysGR SysMar SysPR 

#classes 316 892 1394 2828 1173 

#attributes 1732 3349 8424 9689 3808 

#operations 3479 7590 10608 23722 9111 

#interfaces 18 83 143 223 93 

#packages 34 166 175 345 187 

#afferent coupling of the packages 278 1147 1632 4044 2329 

#efferent coupling of the packages 235 996 1278 2723 1451 

#abstractness of the packages. 9.58 50.45 36.9 66.5 51.9 

#weeks 6 15 8 17 10 

#developers 3 7 2 7 4 

#evolutions scenarios 6 95 55 64 77 

   #: the number of or degree of all, Sys: system 

4 Study Results  

This section presents the study results about the composition effort variables (RQ1) and 
explains the factors that we found to influence the composition effort in our study (RQ2). 

4.1 RQ1: Composition Effort Analysis 

Application Effort. Table 3 shows a descriptive statistics about the application effort. 
The results indicate that effort to compose models was, on average, 3.17 minutes and 
4.43 minutes in SysBand and SysMar projects, respectively. Given the complexity and 



646 K. Farias et al. 

the size of the design models in question, these central tendency measures are in fact low 
values. For example, a developer spent just around 4 minutes to submit the most complex 
evolving changes to the repository in the SysMar project. In addition, the median meas-
ures follow these trends: 3 minutes and 3.12 minutes into the SysBand and Marlin 
project, respectively. Thus, these measures imply that the required effort to apply the 
semi-automated composition technique is low even for large-scale models. Consequently, 
it is possible to advocate model composition as appropriate to support collaborative soft-
ware modeling in which resources and time are usually tight. 

In general, we observed that there was no significant variation on developers’ applica-
tion effort. Developers’ effort tends to be similar rather than spreading out over a large 
range of values. There were a few exceptions as we are going to discuss below. With 
1.55 and 1.58 minutes, the standard deviation measures indicate that in the majority of 
the model composition sessions the developers spent an effort near 3.17 minutes or 4.43 
minutes. These results can help developers to better estimate the effort by establishing 
thresholds, and check if the effort spent by developers is an expected value (or not). 

Table 3. Descriptive statistics for application effort 

Cases N Mean SD Min 25th Med 75th Max 
SysMar 40 4.73 4.52 0.25 2 3.2 6.79 22 

SysBand 69 3.29 1.93 0.83 2 3 4 14.2 
N = number of compositions, SD = standard deviation, Min = minimum, 

 25th = first quartile; Med = median, 75th: third quartile, Max: maximum. 

Fig. 3 distributes the collected sample in six effort ranges. These ranges in the his-
togram systematically group the cases of application effort. The axis-y of the histo-
gram represents the number of compositions, while the axis-x captures the ranges of 
effort. The main feature is that: the presence of a distribution pattern of the applica-
tion effort through the ranges of effort. The three low-effort categories (i.e., t < 2, 2 ≤ 
t < 4, and 4 ≤ t < 6) represent the most likely ranges of effort that developers invest to 
compose the input models. The number of cases falling into these categories is equal 
to 29 (in SysMar) and 64 (in SysBand), representing 72.5% and 92.75% of the com-
position cases, respectively. 

 

Fig. 3. Histogram of the application effort measures 



 Analyzing the Effort of Composing Design Models of Large-Scale Software 647 

On the other hand, the number of cases in the high-effort categories (i.e., 6 ≤ t < 8, 
8 ≤ t < 10 and 10 ≤ t) is equal to 12 (in Marlin)  and 5 (in SysBand), comprising 
17.39 % and 12.5% of the cases respectively. The number of composition cases in the 
low-effort categories outnumbers the amount of cases in the high-effort categories, 
comprising more than 70% and 90% of the cases in the SysMar and SysBand projects, 
respectively. On the other hand, the number of cases in the high-effort categories was 
by around 30% (in Marlin) and 7.25 % (in SysBand). In practice, these results mean 
that developers spent less than 6 minutes in 85.32% of the full set of composition 
cases, and only 14.68% of the cases required more than 6 minutes.  

Detection Effort. Table 4 shows a descriptive statistics about the effort spent to detect 
inconsistencies. A careful analysis indicated that some interesting features were ob-
served. First, the most experienced developers spent 23.2% less effort to detect incon-
sistencies than less experienced developers. This observation was derived from the 
comparison of the medians in the SysMar and SysBand cases. This observation is also 
confirmed by the means’ values. In this case, the most experienced developers in-
vested 38.57% less effort to detect inconsistencies than less experienced developers. 

Second, we also found that the higher the number of teamwork members, the high-
er the effort to localize inconsistencies. Comparing the number of teamwork members 
of the projects, we could observe that the developers of the SysMar and SysBand 
projects, both with 7 developers, invested a higher amount of effort to detect inconsis-
tencies than the developers of the SysGR and SysPR systems (with 2 and 4 develop-
ers, respectively). For example, the developers spent 49.46% more effort (by about 
3.45) to detect inconsistencies in the SysMar project than in SysGR project, by taking 
the medians 6.55 and 3.31 into account. This observation was also reinforced when 
we compare the SysMar and SysPR projects. That is, SysMar’s developers spent 
64.27% more effort (by about 4.21) to localize the inconsistencies; this difference is 
observed by comparing the medians 6.55 and 2.34, respectively. Therefore, the 
projects with a higher number of developers had to invest the double of effort to local-
ize the inconsistencies. 

Third, the higher the number of inconsistencies in behavioral models, the higher 
the effort to detect inconsistencies. Even though certain projects (e.g., System A) had 
a lower number of developers, a number of inconsistencies were concentrated on 
behavioral models, i.e. sequence diagrams in our case. The key problem highlighted 
by developers was that the behavioral models require an additional effort to go 
through the execution flows. An association in a structural model (e.g., class diagram) 
represents essentially one relationship between two classes. On the other hand, in a 
sequence diagram, which represents the interaction between the instances of these 
classes, the counterpart of the simple association is represented by n interactions (i.e. 
several messages exchanged between the objects). The problem is that developers 
must check each interaction.  

Another finding is that the higher the distribution of inconsistencies in different 
models, the higher the effort to identify them. In the case studies, the systems were 
strongly decomposed in different concerns. These concerns were called “conceptual 
areas” by the developers. This unit of modularization brings together application do-
main concerns in a same package. The biggest problem arises when the inconsisten-
cies in a conceptual area give rise to several inconsistencies, and hence affecting 
many other model elements located in other conceptual areas, thereby leading to  



648 K. Farias et al. 

ripple effects. This propagation is inevitable as there are usually some relationships 
between these units of modularization. Hence, developers often had to identify incon-
sistencies in the model elements of the conceptual areas they have from limited to 
none knowledge. Note that during the case studies the developers created diagrams 
related to a specific concern of the system (specified in use cases), and these diagrams 
were grouped in a conceptual area (similar to a package). Thus, the lack of knowledge 
about the model elements in the unknown conceptual area led developers to invest an 
extra effort to detect and resolve the inconsistencies. 

Table 4. Descriptive statistics for detection effort 

Cases N Mean SD Min 25th Med 75th Max
SysMar 63 7.57 5.1 0.54 2.45 6.55 12.49 16.54
SysBand 86 4.65 2.39 0.36 2.37 5.03 6.38 9.21 
SysGR 24 3.66 1.52 1.32 2.67 3.31 4.16 7.39 
SysPR 44 2.91 1.75 1.04 1.39 2.34 4.12 7.15 

System A 6 12.37 4.2 5.26 8.25 13.15 16.36 17.37
N = number of compositions, SD = standard deviation, Min = minimum,  
25th = first quartile; Med = median, 75th: third quartile, Max: maximum. 

 
Resolution Effort (g). Table 5 shows a descriptive statistics of the inconsistency  
resolution effort. A key finding is that the developers invest more effort to resolve 
inconsistencies than to both apply the model composition technique and detect the 
inconsistencies. This can be explained based on several observations. First, in the 
SysMar project, for example, the teamwork members spent 64.91% more effort  
resolving inconsistencies than applying the model composition technique. This differ-
ence comprises the comparison between the medians 3.2 (application) and 9.12 (reso-
lution). This difference becomes more explicit when we consider the values of the 
mean. This evidence is reinforced by the SysBand project. The resolution of inconsis-
tencies consumes almost three times more effort than the application of the composi-
tion technique, if we compare the medians 3.2 (application) and 9.12 (resolution). The 
difference between the application and resolution effort becomes higher when we 
consider the value of the mean, i.e. jumping significantly their values from 64.91% to 
88.40% (in SysMar) and from 80.31% to 88.35% (in SysBand). 

Second, in SysMar project, the inconsistency resolution consumed 28.17%  more 
effort than the inconsistency detection. This comprises the difference between the 
medians 6.55 and 9.12. The results in the SysBand project followed the same trend. 
Developers spent 66.99 percent more effort with inconsistency resolution than with 
inconsistency detection, when compared with the medians 5.03 and 15.24. Consider-
ing the mean, this difference of effort becomes more evident, leaping abruptly from 
28.17 percent to 81.44 percent (in SysMar) and from 66.99 percent to 83.42 percent 
(in SysBand). Analyzing the collected data from the SysGR and SysAL projects, this 
observation is also confirmed. For example, the resolution effort is 82.98 percent and 
54.96 percent higher than the detection effort in SysGR and SysAL, respectively. On 
the other hand, in SysAL project, the resolution and detection effort were practically 
equal. Therefore, the collected data suggest that teamwork members tend to spend 
more effort resolving inconsistency rather than applying the model composition tech-
nique and detecting inconsistencies. 



 Analyzing the Effort of Composing Design Models of Large-Scale Software 649 

Table 5. Descriptive statistics for resolution effort 

Cases N Mean SD Min 25th Med 75th Max 
SysMar 31 40.79 74.79 3.09 4.13 9.12 11.33 246.25
SysBand 8 28.06 28.04 5.55 8.17 15.24 41.44 95.44 
SysGR 16 25.86 13.75 5.12 17.70 19.45 42.5 53.33 
SysPR 44 2.86 1.92 1.2 2.03 2.33 2.52 10.41 
SysAL 5 31.04 12.75 16.21 16.21 29.20 46.8 55.4 

N = number of compositions, SD = standard deviation, Min = minimum,  
25th = first quartile; Med = median, 75th: third quartile, Max: maximum. 

Another finding is that the experience acquired by the developers did not help to 
significantly reduce the inconsistency resolution effort. Although more experienced 
developers have invested less effort to compose the input models and detect  
inconsistencies, their additional experience did not help significantly to reduce the 
inconsistency resolution effort. For example, in SysBand project, more experienced 
developers spent 40.15 percent more effort to resolve inconsistency than less expe-
rienced developers from SysMar project, compared the medians 9.12 and 15.24. The 
main reason is that most experienced developers tend to be more cautious than less 
experienced ones, and hence they tend to invest more time analyzing the impact of the 
resolution of each inconsistency. 

4.2 RQ2: Influential Factors on Composition Effort 

Some factors influence the effort of composing large-scale design models in real-
world settings. This section analyzes the side effects of these factors on the composi-
tion effort variables.  

The Effects of Conflicting Changes. A careful analysis of the results has pointed out 
that the production of the intended model is strictly affected by the presence of differ-
ent types of change categories in the delta model. These changes would be: addition, 
model elements are inserted into base model; removal, a model element in the base 
model is removed; modification, a model element has some properties modified; deri-
vation: model elements are refined for accommodating new changes and/or moved to 
other ones, commonly seen as a 1:N modification. We have also observed that the 
current composition algorithms are not able to effectively accommodate these 
changes in the base model, in particular when they occur simultaneously.  

Developers and researchers recognize that software should adhere to the Open-
Closed principle [31] as the evolutions become more straightforward. This principle 
states “software should be open for extensions, but closed for modifications.” Howev-
er, this observation did not occur in all the cases as modifications and derivations of 
model elements happened as well. In our study, the open-closed principle was more 
closely adhered by the evolutions dominated by additions rather than any other one. 
In this case, developers invested low effort compared to other cases. This suggests 
that the closer to the Open-Closed principle the change, the lower the composition 
effort. 

On the other hand, evolution scenarios that do not follow the Open-Closed prin-
ciple required more effort to produce the intended model, MAB. This finding was iden-
tified when the change categories simultaneously occur in the delta model; hence, 



650 K. Farias et al. 

compromising the composition for some extent. This extra effort was due to the inca-
pability of the matching algorithm to identify the similarities between the input model 
elements given the presence of widely scoped changes. In the SysMar project, for 
example, the composition techniques were not able to execute the compositions by 
about 17 percent (11/64) of the evolution scenarios. This required developers to 
recreate the models manually. In the SysBand project, by about 10 percent (10/95) of 
the composition cases did not produce an output model as well; or the composed 
model produced had to be thrown away due to the high amount of inconsistencies. 

In particular, we also observed that the refinement (1:N) of model elements in the 
delta model caused more severe problems. This problematic scenario was noticed 
during the refinement of some classes belonging to the MVC (Model-View-
Controller) architecture style into a set of more specialized ones. In both cases, the 
name-based, structural model comparison was unable to recognize the 1:N composi-
tion relations between the input model elements. However, we have observed these 
conflicts do not only happen when developers perform modifications, removals, or 
refinements in parallel, but  also when developers insert new model elements. This 
finding was noted from the fact that although evolutions following the Open-Closed 
principle had reduced the developers’ effort, they still caused too frequent undetected 
inconsistencies.  

Conflict Management. The detection of all possible semantic conflicts between two 
versions of a model is an undecidable problem [10]; as many false positive conflicts 
can appear. To alleviate this problem, some previous works recommend to reduce the 
size of the delta model to minimize the number of conflicts [11]. However, this ap-
proach does not ameliorate in fact the complexity of the changes. The problem is not 
the number of conflicts that the size of the delta can cause, but the complexity of the 
conflicts. To alleviate the effort to tame the conflicts, we narrowed down the scope of 
the conflicts. For this, the delta model now represented one or two functionalities of a 
particular use case. Hence, the conflicts became more manageable and reasonable. 
The compositions had a smaller scope.   

On the other hand, sometimes the presence of more widely scope changes was in-
evitable in the delta model. This was, for example, the case when the models (e.g., 
class and sequence diagrams) were reviewed and meliorated for assuring quality is-
sues. Unfortunately, this led to decrease the precision of the compositions due to the 
presence of non-trivial compositions. It is known that the domain independent com-
position algorithms cannot rely on the detailed semantics of the models being com-
posed or on the meaning of changes. Instead of being able to identify all possible 
conflicts, the algorithms detect as many conflicts as possible, assuming an approx-
imate approach. Consequently, developers need to deal with many false positive con-
flicts.  

In practice, we noted that if the composition generates many conflicts, developers 
prefer throwing the models away (and investing more effort to recreate it after) to 
resolving all conflicts. Although the composition algorithm detects the conflicting 
changes created by developers in parallel, developers are unable to understand and 
proactively resolve these conflicts generated from non-trivial compositions. This can 
be explained by two reasons. First, the complexity of the conflicts affected the model 
elements. Second, the difficulty of understanding the meaning of the changes per-
formed by other developers. More importantly, developers were unable to foresee the 



 Analyzing the Effort of Composing Design Models of Large-Scale Software 651 

ripple effects of their actions. This is linked to two very interesting findings. First, 
developers have a tacit assumption that the models to-be-composed will not conflict 
with each other, and a common expectation is that little effort must be spent to inte-
grate models. Hence, the developer tends to invest low effort to check whether the 
composition produced inconsistencies or not. Therefore, we can conclude that the 
need to throw the model away in order to recreate it after demonstrates the complexity 
of the problem. 

Conflict Resolution and Developer Reputation. We have observed that when two 
changes in the input models (MA and MB) contradict each other, the one created by 
the more experienced developer tends to remain in the output composed model. In 
other words, the reputation of the developers influences the resolution of conflicting 
changes. It is important to recall that a developer can accept and reject the conflicting 
change of another developer. We observed this finding during the observational study, 
interviews, and analyzing the change history in the repository. This was particularly 
observed when novice developers reject the changes performed by them, and accept 
the ones carried out by senior developers. That is, if a novice developer modifies a 
design model, and this change conflicts with another one performed by a more expe-
rienced developer, the novice tends to consider the change carried out by the latter.   

An additional interesting finding was that the effort of taming the conflicting 
changes tended to be less when the reputations of the developers were particularly 
opposite, one much high and another one too low. A careful analysis of the changes in 
the model elements reveals some interesting insights. We have noted that the imple-
mentation of the new changes (via MA) by more experienced developers for encapsu-
lating new evolutions are more oblivious to the modifications being implemented in 
the delta model. This observation holds for both structural and behavioral models i.e., 
class and sequence diagrams, respectively. As a consequence, the modifications rea-
lized by more experienced developers tended to help novice developers find an an-
swer for the conflicts more quickly, thereby reducing the composition effort. Still, 
these modifications usually stay unchanged for a longer time, when compared with 
those realized by novice developers.  

Reputation can be seen as the opinion (or a social evaluation) of a member of the 
development team toward other developer. We have identified two types of reputa-
tion: technical and social. The technical reputation refers to the level of knowledge 
considering issues related to the technology and tools used in the company such as the 
composition tool, IDEs, CASE tools, and version control systems. This type of repu-
tation is acquired mainly solving daily problems. On the other hand, the social reputa-
tion refers to the position assumed by a member of the development team e.g., senior 
developer. After interviewing 8 developers, the data collected suggests that the tech-
nical reputation caused more influence for resolving conflicts than the social reputa-
tion. That is, 75 percent of the developers (6/8) reported that the technical reputation 
has a higher influence than the social one. We have concluded that the developer rep-
utation indeed affects the way that conflicts are resolved. In particular, the changes 
performed by the subjects with high reputation tend to remain in the output composed 
model when ones conflict with other changes implemented by less experienced  
developers. 



652 K. Farias et al. 

5 Related Work 

Model composition is a very active research field in many research areas [34][35] 
such as synthesis of state charts [13][18], weaving of aspect-oriented models 
[19][20][21], governance and management of enterprise design models [9], software 
configuration management [30], and composition of software product lines [25][28]. 
For this reason, several academic and industrial composition techniques have been 
proposed such as MATA [19], Kompose [23], Epsilon [22], IBM RSA [16], and so 
on. With this in mind, some observations can be done.  

First, these initiatives focus only on proposing the techniques instead of also dem-
onstrate their effectiveness. Consequently, qualitative and quantitative indicators con-
sidering these techniques are still incipient. In addition, the situation is accentuated 
considering effort indicators. This lack hinders mainly the understanding of their side 
effects. Second, their chief motivation is to provide programming languages to ex-
press composition logic. Unfortunately, these approaches do not offer any insights or 
empirical evidences whether developers might reach the potential benefits claimed by 
using composition techniques in practice. Although some techniques are interesting 
approaches, sometimes they are used in practice because of the large number of false 
positives that they can produce in real-world settings. Nevertheless, the effort required 
for the user to under-stand and correct composition inconsistencies will ultimately 
prove to be too great. The current article takes a different approach. It aims to provide 
a precise assessment of composition effort in real life context, quantifying effort and 
identifying the influential effort.  

Moreover, current works tend to investigate on the proactive detection and earlier 
resolution of conflicts. Most recently, Brun et al. [33] proposes an approach, namely 
Crystal, to help developers identify and resolve conflicts early. The key contributions 
are that conflicts are very common than would be expected, appearing over-lapping 
textual edits but also as subsequent build and test failures. In a similar way, Sarma et 
al. [32] proposes a new approach, named Palantír, based on the precept of workspace 
awareness, to detection and earlier resolution of a larger number of conflicts. Based 
on two laboratory experiments, the authors confirmed that the use of the Palantír re-
duced of the number of unresolved conflicts. Although these two approaches are in-
teresting studies, the earlier detection does alleviate the problem of model composi-
tion. The problem is the same, but is only reported more quickly. In addition, they 
appear to be overly restrictive to the code, not leading to broader generalizations at 
the modeling level. Lastly, they neither make consideration about the effort to com-
pose of the artefacts used nor investigate the research questions in five case studies.  

6 Concluding Remarks and Future Work 

This paper represented the first in vivo exploratory study to evaluate the effort that 
developers invest to compose design models (RQ1) and to analyze the factors that 
affect developers’ effort (RQ2). In our study, a best-of-breed model composition 
technique was applied to evolve industrial design models along 297 evolution scena-
rios. The works were conducted during 56 weeks producing more than 2 million of 
compositions of model elements. We investigated the composition effort in this  



 Analyzing the Effort of Composing Design Models of Large-Scale Software 653 

sample, and analyzed the side effects of key factors that affected the effort of applying 
the composition technique as well as detecting and resolving inconsistencies.  

We summarize the findings related to RQ1 as follows: (1) the application effort 
measures do not follow an ad hoc distribution and, rather, it assumed a distribution 
pattern; (2) the application effort tends to reduce as developers become more familiar 
with technical issues rather than application domain issues; (3) the more experienced 
developers spend 23.2 percent less effort to detect inconsistencies than less expe-
rienced developers; and (4) the more the number of inconsistencies in behavioral 
models, the higher the effort to detect inconsistencies. Additionally, we also present 
four findings with respect to RQ2 as follows: (1) the production of the intended model 
is strictly affected by the presence of different types of change categories in the delta 
model; (2) the closer to the Open-Closed principle the change, the lower the composi-
tion effort. That is, evolutions dominated by additions reduce the composition effort. 
On the other hand, the refinement (1:N) of model elements in the delta model caused 
severe composition problems and hence increased the composition effort.  

Although we gathered quantitative and qualitative evidence to supporting the 
aforementioned findings, further empirical studies are still required to check whether 
they are observed in other contexts and with different subjects. Future investigation 
points would be to answer some questions such as: (1) Do developers invest much 
more effort to compose behavioral models (e.g. sequence diagrams) than structural 
models (e.g. component diagrams)? Are the influential factors in composition effort 
similar in these two contexts? (2) How different are the findings similar or different 
with respect to code merge (i.e. implementation-level composition)? (3) Do develop-
ers invest more effort to resolve semantic inconsistencies than syntactic ones? It is by 
no means obvious that, for example, developers invest less effort to resolve inconsis-
tencies related to the well-formedness rules of the language metamodel than to re-
solve inconsistencies considering the meaning of the model elements. Finally, we 
hope that the issues outlined throughout the paper encourage other researchers to 
replicate our study in the future under different circumstances. Moreover, we also 
hope that this work represents a first step in a more ambitious agenda on better sup-
porting model composition tasks. 

References 

1. Runeson, P., Höst, M.: Guidelines for Conducting and Reporting Case Study Research in 
Software Engineering. Empirical Software Engineering 14, 131–164 (2009) 

2. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimenta-
tion Software Engineering - An Introduction. Kluwer Academic Publishers (2000) 

3. Kitchenham, B., Al-Khilidar, H., Babar, M., Berry, M., Cox, K., Keung, J., Kurniawati, F., 
Staples, M., Zhang, H., Zhu, L.: Evaluating Guidelines for Reporting Empirical Software 
Engineering Studies. Empirical Software Engineering 13(1), 97–12 (2008) 

4. Boisvert, R., Tang, P. (eds.): The Architecture of Scientific Software. Kluwer Academic 
(2001) 

5. Kelly, D.: A Study of Design Characteristics in Evolving Software Using Stability as a 
Criterion. IEEE Transactions on Software Engineering 32(5), 315–329 (2006) 

6. Camtasia Studio Pro. (2011), http://www.techsmith.com/camtasia/ 



654 K. Farias et al. 

7. Farias, K.: Analyzing the Effort on Composing Design Models in Industrial Case Studies. 
In: 10th International Conference on Aspect-Oriented Software Development Companion, 
Porto de Galinhas, Brazil, pp. 79–80 (2011) 

8. Farias, K., Garcia, A., Whittle, J.: Assessing the Impact of Aspects on Model Composition 
Effort. In: 9th International Conference on Aspect-Oriented Software Development Com-
panion, Saint Malo, France, pp. 73–84 (2010) 

9. Norris, N., Letkeman, K.: Governing and Managing Enterprise Models: Part 1. Introduc-
tion and Concepts. IBM Developer Works (2011), http://www.ibm.com/ 
developerworks/rational/library/09/0113_letkeman-norris 

10. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software 
Engineering 28(5), 449–462 (2002) 

11. Perry, D., Siy, H., Votta, L.: Parallel Changes in Large-Scale Software Development: an 
Observational Case Study. Journal ACM Transactions on Software Engineering and Me-
thodology (TOSEM) 10(3), 308–337 (2001) 

12. Keith, E.: Flexible Conflict Detection and Management in Collaborative Applications. In: 
10th Annual ACM Symposium on User Interface Software and Technology, pp. 139–148 
(1997) 

13. Ellis, C., Gibbs, S.: Concurrency Control in Groupware Systems. ACM SIGMOD, 399–
407 (1989) 

14. Berzins, V.: Software Merge: Semantics of Combining Changes to Programs. Journal 
ACM Transactions on Programming Languages and Systems 16(6), 1875–1903 (1994) 

15. Berzins, V., Dampier, D.: Software merge: Combining Changes to Decompositions. Jour-
nal of Systems Integration 6(1-2), 135–150 (1996) 

16. IBM Rational Software Architecture (2011), http://www.ibm.com/ 
developerworks/rational/products/rsa/  

17. Berzins, V.: On Merging Software Extensions. Acta Informatica 23, 607–619 (1986) 
18. Gerth, C., Küster, J.M., Luckey, M., Engels, G.: Precise Detection of Conflicting Change 

Operations Using Process Model Terms. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) 
MODELS 2010, Part II. LNCS, vol. 6395, pp. 93–107. Springer, Heidelberg (2010) 

19. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo, J.: MATA: A unified ap-
proach for composing UML aspect models based on graph transformation. In: Katz, S., 
Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions on AOSD VI. LNCS, vol. 5560, 
pp. 191–237. Springer, Heidelberg (2009) 

20. Whittle, J., Jayaraman, P.: Synthesizing Hierarchical State Machines from Expressive Sce-
nario Descriptions. ACM TOSEM 19(3) (January 2010) 

21. Klein, J., Hélouët, L., Jézéquel, J.: Semantic-based Weaving of Scenarios. In: 5th AOSD 
2006, Bonn, Germany (March 2006) 

22. Epsilon Project (2011), http://www.eclipse.org/gmt/epsilon/ 
23. Kompose: A generic model composition tool (2011),  

http://www.kermeta.org/kompose  
24. Sabetzadeh, M., Nejati, S., Chechik, M., Easterbrook, S.: Reasoning about Consistency in 

Model Merging. In: 3rd Workshop on Living With Inconsistency in Software Develop-
ment (September 2010) 

25. Jayaraman, P., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model Composition in Product 
Lines and Feature Interaction Detection Using Critical Pair Analysis. In: Engels, G., Op-
dyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 151–165. 
Springer, Heidelberg (2007) 



 Analyzing the Effort of Composing Design Models of Large-Scale Software 655 

26. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying Overlaps of Heterogeneous Models for 
Global Consistency Checking. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, 
vol. 6627, pp. 165–179. Springer, Heidelberg (2011) 

27. Egyed, A.: Fixing Inconsistencies in UML Design Models. In: 29th International Confe-
rence on Software Engineering, pp. 292–301 (2007) 

28. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe Composition of Product Lines. In: 6th 
GPCE 2007, Salzburg, Austria, pp. 95–104 (2007) 

29. Egyed, A.: Automatically Detecting and Tracking Inconsistencies in Software Design 
Models. IEEE Transactions on Software Engineering 37(2), 188–204 (2010) 

30. Whitehead, J.: Collaboration in Software Engineering: A Roadmap. In: Future of Software 
Engineering at ICSE, pp. 214–225 (2007) 

31. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Meyer, Hall, Engle-
wood Cliffs (1988) 

32. Sarma, A., Redmiles, D., van Der Hoek, A.: Palantír: Early Detection of Development 
Conflicts Arising from Parallel Code Changes. IEEE TSE 99(6) (2011) 

33. Brun, Y., Holmes, R., Ernst, M., Notkin, D.: Proactive Detection of Collaboration Con-
flicts. In: 8th SIGSOFT ESEC/FSE, Szeged, Hungary, pp. 168–178 (2011) 

34. France, R., Rumpe, B.: Model-Driven Development of Complex Software: A Research 
Roadmap. In: FuSE at ICSE 2007, 37–54 (2007) 

35. Apel, S., Liebig, J., Brandl, B., Lengauer, C., Kästner, C.: Semistructured Merge: Rethink-
ing Merge in Revision Control Systems. In: 8th SIGSOFT ESEC/FSE, pp. 190–200 (2011) 

36. OMG, Unified Modeling Language: Infrastructure, version 2.2, Object Management 
Group (February 2011) 

37. JIRA, http://www.atlassian.com/software/jira/overview 


	Analyzing the Effort of Composing Design Models of Large-Scale Software in Industrial Case Studies
	1 Introduction
	2 Background
	2.1 Model Composition Tasks and Effort
	2.2 Composition Conflict and Inconsistency

	3 Study Methodology
	3.1 Objective and Research Questions
	3.2 Context and Case Studies
	3.3 Subjects
	3.4 Study Design

	4 Study Results
	4.1 RQ1: Composition Effort Analysis
	4.2 RQ2: Influential Factors on Composition Effort

	5 Related Work
	6 Concluding Remarks and Future Work
	References




