Evaluating the Effort of Composing Design Models:
A Controlled Experiment

Kleinner Farias', Alessandro Garcia', Jon Whittle?, Christina Chavez’,
and Carlos Lucena'

' OPUS Research Group/LES, Informatics Department, PUC-Rio, Brazil
{kfarias,afgarcia, lucena}t@inf.puc-rio.br
2 School of Computing and Communications, Lancaster University, UK
whittle@comp.lancs.ac.uk
3 Department of Computer Science, Federal University of Bahia, Brazil
flach@dcc.ufba.br

Abstract. The lack of empirical knowledge about the effects of model composi-
tion techniques on developers’ effort is the key impairment for their widespread
adoption in practice. This problem applies to both existing categories of model
composition techniques, i.e. specification-based (e.g. Epsilon) and heuristic-
based (e.g. IBM RSA) techniques. This paper reports on a controlled experiment
that investigates the effort to: (1) apply both categories of model composition
techniques, and (2) detect and resolve inconsistencies in the output composed
models. The techniques are investigated in 144 evolution scenarios, where 2304
compositions of elements of class diagrams were produced. The results suggest
that: (1) the employed heuristic-based techniques require less effort to produce
the intended model than the chosen specification-based technique, (2) the cor-
rectness of the output composed models generated by the techniques is not sig-
nificantly different, and (3) the use of manual heuristics for model composition
outperforms their automated counterparts.

Keywords: Model composition effort, empirical studies, effort measurement.

1 Introduction

Model composition plays a central role in many software engineering activities,
including the evolution of design models [5,8]. Developers may spend some consider-
able effort applying model composition techniques to compose M, and Mg. As a
consequence, both academia and industry are increasingly concerned with developing
effective techniques for composing design models (e.g. [5,10][14-19]). Model compo-
sition can be defined as a set of tasks that should be performed over two (or more)
input models, M, and Mg, in order to produce an output intended model, Mag.
Existing techniques that support model composition can be classified as specifica-
tion-based techniques (e.g. Epsilon [15]), and heuristic-based techniques (e.g. the
heuristics supported by the IBM Rational Software Architect (RSA) [16]). In the first
case, developers explicitly specify the correspondence and composition relations

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 676-691, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Evaluating the Effort of Composing Design Models: A Controlled Experiment 677

between the elements of the input models (M, and Mg) to give rise to Mug. In the
second case, developers use a set of predefined heuristics, which “guess” the relations
between the elements of M and Mg before producing M ag.

However, instead of producing the output intended model, Mg, as would be ex-
pected, the technoiques may produce an output composed model, M¢y;, with inconsist-
encies. These inconsistencies often result from the incorrect resolution of conflicting
changes between the model element from M, and Mg. If Mcy and Mag do not match
(Mcm # Mag) due to inconsistencies in My, developers will need to invest some extra
effort to detect and resolve the inconsistencies in Mgy so that it can be transformed
into Mg. Note that the key motivation for applying composition techniques is to re-
duce the effort of the developers to produce the output intended model [17, 18]. The
proponents of specification-based techniques claim that explicit composition specifica-
tions entail a more systematic way to compose M, and Mg [8, 17]; hence, developers
expect to save effort by using them. That is, the conventional wisdom [5, 8, 17, 18] is
that a precise composition specification favors the production of correctly composed
models (i.e. where My = Myg), thereby minimizing the developers’ effort.

To date, however, there is little evidence to confirm (or not) this expectation. As a
result, developers use model composition techniques without any support of empirical
knowledge regarding their effects on the effort to apply them as well as to detect and
resolve inconsistencies in Mcy. If a particular composition technique reduces effort,
but has a detrimental effect on the model correctness (or vice-versa), it is quite argua-
ble whether developers may use it in mainstream software projects, where time and
cost are tight. Having empirical knowledge at hand, developers can choose and adopt
composition techniques in a rational way. Today, the adoption of the techniques is
based on evangelists (often divergent) opinions.

This paper reports empirical findings on the use of specification-based and heuris-
tic-based composition techniques (Section 2.3) to evolve design models. We have
conducted a controlled experiment to evaluate and compare such techniques with
respect to the developer’s effort and model correctness in the context of evolving
design models (Section 3). A total of 24 subjects carried out 144 compositions of
UML class diagrams with the support of such techniques. The comparative analysis
(Section 4) embodied the effort of applying alternative composition techniques, de-
tecting inconsistencies and resolving them in the output composed model. The main
surprising results, supported by statistical analysis, suggest that: (1) the specification-
based technique required more effort to produce the intended model than the selected
heuristic-based techniques; and (2) there was no significant difference in the correct-
ness of the output composed models generated by the assessed techniques.

The contributions of this paper are (a) empirical findings on the impact of heuristic
and specification-based composition techniques on developers' effort to apply tech-
niques, detect inconsistencies and resolve inconsistencies; (b) insights about how to
evaluate the developers’ effort, reduce error proneness in model composition, and min-
imize side effects of composition techniques in practice; and finally, (c) to serve as an
in-depth example of how controlled experiments can be conducted to evaluate and
compare model composition techniques. We also discuss the threats to validity (Sec-
tion 5), the limitations of related work (Section 6), and concluding remarks (Section 7).
Although we cannot generalize our empirical findings to other model composition

678 K. Farias et al.

techniques, our exploratory experiment stands for a trailblazing contribution to
improve understanding of the potential effects of model composition techniques on
developers’ effort.

2 Background

2.1 Model Composition Effort

In this study, model composition effort is described by an effort equation (Fig. 1).
Developers often invest effort to realize three activities to compose the base model,
M,, (the model to-be changed) and the delta model, Mg (i.e. the changes), to produce
Mcy. The first activity, the application of the model composition technique, is repre-
sented by f(M,,Mp) in the equation. The additional effort is usually invested to detect
inconsistencies in Mcy — represented by, diff(Mcy,Mag) — and to resolve these incon-
sistencies — represented by g(Mcy). If Mcy perfectly matches the intended model,
Mg, then diff(Mcy, Mag) = 0 and g(Mcy) = 0. Otherwise, additional effort is re-
quired to deal with inconsistencies, meaning that diff(Mcy,Mag) > 0 and g(Mcy) > 0.

Composition Effort: f(My,Mg) + diff(Mcpy,Mag) + 9(Mcp)

A Model £ g
Composition > >
Tecr?ni ue " Mew Mas
Vg I i L
B i diff !
Legend:
f: effort to apply composition technique M,g: intended model
diff: effort to detect inconsistencies Mg composed model
g: effort to resolve inconsistencies My, Mg: input models

Fig. 1. Overview of model composition effort: an equation.

2.2 Composition Conflicts and Inconsistencies

It is well known that the properties of the model elements of M, and Mg may conflict
with each other. Fig. 2 shows a simple example of composition conflict. In the base
model, the Researcher is defined as a concrete UML class (i.e. Researcher.isAbstract
= false) whereas in the delta model, Researcher is an abstract class (i.e. Research-
er.isAbstract = true). Before composing, the developers need to properly answer the
question: should class Researcher be an abstract class (or not)? In this particular case,
the correct answer is that the Researcher must be abstract (see the intended model in
Fig. 2). However, conflicts may be converted into inconsistencies in Mcy when
unexpected values are set to the properties of the model elements. Fig. 2 shows that
the class Researcher produced by the override and merge algorithms (Section 2.3) is a
concrete class (isAbstract = false) instead of an abstract one (isAbstract = true), as
would be expected. Because of this inconsistency, the output composed model is not
compliant with the intended model. Two categories of inconsistencies can emerge,
including:

Evaluating the Effort of Composing Design Models: A Controlled Experiment 679

e Syntactic inconsistency emerges when a composed model element does not con-
form to the rules defined in the modeling language’s metamodel. For example, a
class must have attributes with different names.

e Semantic inconsistency arises when the meaning of the elements of the com-
posed model does not match with the meaning of the intended model elements.
For instance, a class in Mcy has an unexpected method, or it requires functional-
ity from other classes that no longer exist after the composition.

Base Model Delta Model Intended Model Epsilon
h Researcher Researcher Match Rule Merge Rule
Researcher -name: String -name: String rule MatchClass rule MergeClass
- salary: int v . matchb : baselClass Merge b: baselClass
y + salary: float +salary: float el withd: deltaiCinss
compare { into ¢ : composed!Class{
b.name =d.name c.name := d.name;
Assistant Professor Assistant Professor) })

+getSalary() : int + getSalary() : float | [+ getSal : float | |+ getSal : float . .
g v0 g Y0 getSalary() - floa getSalary() - floa Rational Software Architect

75 conferdnethese G| % 4~

Override Algorithm . Merge Algorithm 4 ® Conflicts -
|ncon5|slency a @ Conflicts related to Question 04<Package>
R h
Researcher)(/ esearcner < 4+ # Conflicting changas
-name: String % Add(<class> ATM)
i . a[# Exclusf—c-im—s
-salary: int X +salary: float #y B Resolve with the right contributer
#: Ex{ G Resolve with the left contributer
4 & Modif| & Ignore
Mg
R _ & M Desfazer
Assistant Professor Assistant Professor 2 o]

Refazer

+getSalary() : int >4 |+ getSalary() : floaty< |+ getSalary():int >4+ getSalary(): float < B v
& Conflits (25 A left changes (15 | & right changes {5

Fig. 2. Illustrative example.

In our study, we focus on semantic inconsistencies because they cannot be automatical-
ly identified using model composition techniques. They often require some interven-
tion from software developers. In addition, they are mainly responsible for non-trivial
composition problems during the model evolution [8]. As a consequence, they often
require more effort and are more detrimental to the correctness of the output model
than syntactic inconsistencies [9]. The categories of semantic inconsistencies consid-
ered are: (1) a model element in Mcy is not compliant with the corresponding one in
Myg; (2) model elements are missing from Mcy, or should nor be defined in Mcy; (3)
model elements are unexpectedly duplicated according to Mag; and (4) there are dan-
gling relationships between classes, i.e. a model element makes reference to other
model elements that do not exist. These categories are the most common types of prob-
lems faced by developers dealing with model inconsistencies [4,8]. In our study, we
explicitly discriminate each contradicting change (i.e. the conflict) from its conse-
quence in the output model (i.e. the inconsistency).

2.3 Model Composition Techniques

The composition techniques used in our study were Epsilon [15], the representative of
specification-based techniques, and two representatives of heuristic-based techniques,
namely the IBM RSA [16] and traditional composition algorithms (TRA) [9]. These
three techniques were selected as they provide different degrees of automation sup-
port. The selected heuristic-based techniques include both an automated technique

680 K. Farias et al.

(RSA) and a manual technique (TCA) to support model composition. Specification-
based techniques cannot be applied manually. Epsilon and IBM RSA are supported by
robust, usable tools, an essential prerequisite for a controlled experiment like ours.
IBM RSA is an industry-leading tool and it is the most widely used tool in the indus-
try [16]. Epsilon is stable, easy-to-use tool for specification-based composition that
was available for our study. Traditional algorithms, such as merge and override, are
well explored in the academic literature and have been used to support and guide
manual model composition [10, 19]. These techniques are described as follows.

Epsilon (EPS). It provides a hybrid, rule-based language for merging design models
[15]. Developers invest effort to edit a set of match and merge rules before producing
M,g. Fig. 2 shows an example of these rules. The merge rule specifies that all classes
to be composed will have the names of classes from the delta model (i.e., c.name :=
d.name). Based on these specifications, developers define how composition relations
should be identified.

IBM RSA (RSA). It is one of the most robust modeling tools used in industry [16].
IBM RSA is characterized as a semi-automated model composition technique. Like
the Epsilon technique, its use does not ensure that Mg will be always produced. By
using the IBM RSA developers should interactively resolve conflicts before produc-
ing Mg. Fig. 2 depicts an example of a conflict report. When conflicting changes
emerge, developers should decide which changes will be inserted into the output
composed model — from the base model (Researcher.isAbstract = false) or from the
delta model (Researcher.isAbstract = true).

Traditional Algorithms (TRA). These algorithms fall in the category of manual, heu-
ristic-based composition techniques. In particular, we focus on three well-established
composition algorithms: override, merge and union [9]. These algorithms were cho-
sen for several reasons. First, model evolution scenarios can be decomposed into one
or more operations supported by a combination of these algorithms. Second, these
algorithms are often used as guidelines for the developers composing OO models
manually [10, 19]. Third, we wanted to investigate to what extent the aforementioned
automated techniques outperform the use of a classical manual technique for model
composition. In the following, we provide a brief definition for override and merge
algorithms to be applied to two hypothetical input models, M, and Mg. We say that
two elements from M, and Mg are corresponding if they have been identified as
equivalent in the matching process. Matching can be achieved using any number of
standard heuristics, such as match-by-name.

1. Override (direction: M, to Mp). For all pairs of corresponding elements in My
and Mg, M,’s elements should override Mg’s similar elements. Elements not involved
in the correspondence remain unchanged and are inserted into the output model.

2. Merge. For all corresponding elements in M and Mg, the elements should be
combined. The combination depends on the element type. In this paper, we only con-
sider classes and interfaces — in this case, the combination adds the operations of
M,’s elements to those of Mg. Elements in M, and Mg that are not involved in a cor-
respondence matching remain unchanged and are directly copied to the output model.
In Fig. 2, the override and merge algorithms are applied and two composed models
are produced with inconsistencies.

Evaluating the Effort of Composing Design Models: A Controlled Experiment 681

3 Experiment Planning

3.1 Experiment Definition

The objective of this study is stated based on the GQM template 2 as follows:

Analyze model composition techniques for the purpose of investigating

their effects with respect to the effort and correctness from the perspective

of developers in the context of evolving design models.
Based on this, we focus on the two research questions:
RQ1: What is the relative effort of composing two input models by using specifica-
tion-based composition techniques with respect to heuristic-based composition tech-
niques?
RQ2: Is the number of correctly composed models higher when using specification-
based techniques than heuristic-based techniques?

3.2 Hypothesis Formulation

Hypothesis 1. We conjecture that although specification-based composition tech-
niques provide a more systematic way to compose the input models, they do not re-
duce the overall composition effort in practice. We suspect that developers have to
invest too much effort to specify the compositions; but, this additional effort is not
converted into a higher number of correctly composed models than that produced
with heuristic techniques. However, it is by no means obvious that this hypothesis
holds. It may be, for example, that specification-based techniques help developers to
match and then compose the input models more quickly.

Null Hypothesis 1, H;y: The specification-based composition technique requires
less (or equal) effort than the heuristic-based ones to produce Mg from M, and Mg.
Hj.o: Effort(Ma,Mg)specification < Effort(Ma,Mg)euristic

Alternative Hypothesis 1, H;_;: The specification-based technique requires more
effort than the heuristic-based ones to produce Mg from M, and Mg.

HI-I: EffOft(MA,MB) Specification > Effort(MA,MB) Heuristic

We refine this hypothesis in other three subhypotheses (H1,, H1;, and H1,). A formu-
lation for these hypotheses is presented in Table 1.

Hypothesis 2. The specification-based technique is expected to produce a higher
number of correctly composed models as developers can precisely express the com-
position relations between the input models. However, it is not clear whether this
composition technique can, in fact, help developers to improve the correctness (Cor)
of the output model when compared to the use of heuristic approaches. These hypoth-
eses are presented as follows:

Null Hypothesis 2, H, : The specification-based technique produces a lower (or
equal) number of correctly composed models than the heuristic-based techniques.

H2-0: Cor(MCM)Spcciﬁcation < Cor(MCM)christic

682 K. Farias et al.

Alternative Hypothesis 2, H,.;: The specification-based technique produces a
higher number of correctly composed models than the heuristic-based technique.

H2-1: Cor(MCM)Specification > Cor(MCM)Heuristics
The composition correctness is influenced by the presence (or not) of inconsistencies
in the output composed model. Thus, we investigate if the specification-based tech-
nique entails (or not) a lower inconsistency rate than the use of the heuristic-based
techniques. This new elaborated hypothesis is stated in Table 1.

Table 1. Tested hypotheses

| Null Hypothesis | Alternative Hypothesis
Hl,: Effort(Ma,Mg)s < Effort(Ma,Mg)u HI,.: Effort(Ma,Mg)s > Effort(Ma,Mg)u
Hls: f{(Ma,Mp)s < f(Ma,Mp)y Hl,.: f{Ma,Mg)s > f(Ma,Mpg)y
Hls,0. diffMcm,Map)s < diff(Mem,Mag)u Hls.,. diffMcym,Mag)s > diff(Meym,Mag)u
Hli0.gMcem)s < g(Memu Hly: gMcem)s > g(Mem)u
H2,4: Cor(Mcm)s < Cor(Mem)u H2,.,: Cor(Mcm)s > Cor(Mem)u
H2,,: Rate(Mcm)s = Rate(Mcm)u H2,.,: Rate(Mcm)s < Rate(Mcm)u

Effort: Effort to compose the input models (RQ1), S: Specification-based composition technique.

f: Effort to apply the composition techniques (RQ1), H: Heuristic-based.

diff: Effort to detect inconsistencies (RQ1), g: Effort to resolve the inconsistencies (RQ1).

Cor: Correctness of the composition (RQ2), Rate: Inconsistency rate of the composed model (RQ2).

3.3 Context and Subject Selection

The subjects used the Epsilon, IBM RSA and the traditional algorithms to produce
model compositions for six software evolution scenarios (Table 2). None of the sub-
jects were familiar beforehand with either the design models or the required changes.
The selected evolution scenarios were tasks where developers are not the initial de-
signers of the models. The design models used were fragments of industrial models
captured from different application domains, such as financial and simulation of pet-
rol extraction. The experiment was conducted with 16 subjects were professionals
from Brazilian companies and 8 subjects were students with professional experience
[19]. All professionals held a Master’s degree, Bachelor’s degree or equivalent, and
had a considerable knowledge of software modeling and programming to participate
in the experiment [19]. The students were also invited to participate in the experiment,
so that we could have subjects with different backgrounds and levels of expertise [1].
They were from two Master and Doctoral programs in Computer Science at two Bra-
zilian universities: Pontifical Catholic University of Rio de Janeiro (PUC-Rio0) and the
Federal University of Bahia (UFBA). These students attended either a course on
“empirical studies in software engineering” at PUC-Rio or a course on ‘“‘software
evolution” at UFBA. The experiments were part of the courses and were performed as
practical laboratory exercises. The participant was exposed to the same level of
training on the model composition techniques under assessment [19].

Evaluating the Effort of Composing Design Models: A Controlled Experiment 683

Table 2. The tasks of the evolution scenarios

Task Models Required Changes to the Base Model

Add one class, one method, and one relationship. Modify one
class from concrete to abstract.

Remove two methods and modify the direction of a relation-
ship.

Add two classes and refine two classes from one.

Remove this last class.

4 Supply Chain | Add two classes and one relationship.

Remove one class and add two methods to a particular class.
5 Financial Refine two classes from one and remove the last one. Remove
one relationship.

Simulation of | Modify the direction of five relationships.

extraction Modify the name of two methods.

1 Oil Extraction

2 Car System

3 ATM

3.4 Experimental Design

The experimental design of this study is characterized as a randomized complete block
one with three treatments, i.e. the use of the three composition techniques. The study
had a set of activities that were organized into three phases (see Fig. 3). The subjects
were randomly assigned and equally distributed to the treatments, following a within-
subjects design in which all subjects serve in the three treatments [1]. In each treat-
ment, the subjects used a model composition technique to carry out two experimental
tasks (Table 2), totaling six tasks performed. Therefore, the experiment design was, by
definition, a balanced design. Fig. 3 shows through an experimental process how the
three phases were organized. The subjects individually performed all activities to avoid
any threat to the experimental process. The activities are further described as follows.

Training. All subjects received training to ensure they acquired the needed familiarity
with each model composition technique.

Apply the techniques. The participants were encouraged to compose M, and Mg based
upon a description of changes (Table 2) that defines how the model elements of My
were changed. Note that Mg, the delta model, was pre-prepared. The measure of appli-
cation effort (time in minutes) was collected during this activity. In addition, the com-
posed model, video and audio records represent the outputs of this activity. Each sub-
ject performed this task six times. The video and audio records were later used during
the qualitative analyses (Section 4.3). It is important to point out that a participant (sub-
ject x) produced Mcy in the first phase; in the second phase, other participant (subject
n-x) detected and resolved the inconsistencies in Mcy in order to produce Mg.

Detect inconsistencies. Subjects reviewed Mcy to detect inconsistencies. To this end,
they checked if Mcy had the changes described in the evolution descriptions and if
the contradicting changes between M, and Mg were correctly addressed. As a result
of this activity, we have the measure of detection effort (time in minutes), video and
audio records, and a list of inconsistencies identified.

684 K. Farias et al.

Phase 1 ?

| Evolution descriptions |

Training

] oufpur £) ﬂ

AR &
Subject x - _____ i Applythetechmques] _________ N MCM
Mg
Phase?2 v ; ;j/
I_} i[Detectlnconmstenues} .
' d.'ff |

| Evolution descriptions } -------

¥ Identidified

M Inconsistencies
M ''''''''')[Resol\.re|r1(:0r1s'|ster1c'|es]< ____________ H
Q e
."

_/\ M g |
Subjectn - x AB

Phase3 \)
.-y &
| List of questions | --------)[Make Interview l i

[
% @< oplyauestionnaric |-

Legend: C] Experimental activity ‘ Effort measure n: #subjects
#:7) Video and audio records |:| Artifacts used or generated

Subject n

Fig. 3. The experimental process

Resolve inconsistencies. The subjects resolved the inconsistencies previously local-
ized in order to produce Myug. The resolution effort was also measured (time in
minutes) and the video and audios were recorded.

Make interview and Answer questionnaire. Subjects reflected on their experience on
model composition during the experiment through semi-structured interviews. These
interviews helped us to enrich the body of qualitative data collected. The subjects
also filled out a questionnaire. This allowed us to collect their academic background
and work experience and apply some inquisitive questions.

Material. The models used in our study were UML class diagrams with about 8 clas-
ses and 7 relationships. This medium size of the models was essential to perform a
controlled study like this and to be in compliance with recommendations from previ-
ous work [20]. For example, Asklund et al. [18] recommends that software changes
should be as small as possible so that the number of conflicts remains small. In addi-
tion, given the time constraints of controlled experiments, the subjects could not be
exposed to very large models.

Evaluating the Effort of Composing Design Models: A Controlled Experiment 685

Variables. The independent variable of this study is the choice of composition
techniques. We investigate the impact of this independent variable in the following
dependent variables:

e Effort. This variable measures the overall time (in minutes) invested by sub-
jects to compose the input models (H;_). It is elaborated in three other varia-
bles: effort to apply model compositions (H;.,), effort to detect inconsistencies
(H.3), and effort to resolve inconsistency (H;_).

e Correctness. The full correctness of a composition (H,_;) is ensured when the
output composed model produced is correct with respect to the description of
the intended change request (i.e. Mcy = Mag). We have compared the produced
models with the intended models (our ‘reference intended models’), produced
by the actual developers of those systems from where the input models were ex-
tracted. The composed model produced may be rated as either correct or incor-
rect. Note that a composed model with one of the previously described incon-
sistencies (Section 2.2) would be deemed as incorrect. We also investigate the
inconsistency rate of the incorrectly composed model. It represents the ratio of
the number of inconsistencies of a composed model divided by its number of
model elements (H,.,). The actual developers were consulted when we were un-
sure about particular inconsistencies in the composed models produced by the
subjects.

4 Experimental Results

4.1 RQI1: Effort and Composition Techniques

Descriptive Statistics. The developers invest less effort to produce Mg by using heu-
ristic-based techniques rather than the specification-based technique. In fact, they
spent less effort to apply the composition techniques (f), detect inconsistencies (diff),
and resolve inconsistencies (g) (Table 3). The traditional algorithms required less
effort than the IBM RSA, which in turn required less than the Epsilon. This is a very
interesting finding because the common sense would be otherwise i.e., developers
would invest less effort by using the Epsilon and IBM RSA. Table 3 shows the de-
scriptive statistics of the collected data. Regarding the median of the general effort, it
grew significantly from 11 to 14 and 21 by using RSA and Epsilon, respectively. This
superior effort represents an increase by about 27.27 and 90.90 percent. This upward
trend was also observed in f, diff, and g. This evidence, therefore, demonstrates that
the developers, in fact, tend to invest less effort with heuristic-based techniques than
specification-based one.

Hypothesis Testing. Since the Shapiro-Wilk test [1] indicated deviations from normal-
ity, the Wilcoxon signed-rank test and Friedman test were applied. While the Wilcox-
on test allowed us to realize a pairwise comparison of the distributions, Friedman test
allowed checking if there exist significant differences among the three techniques
under investigation. We test H1 (and its subhypotheses) to evaluate the RQ1 in the six
experimental tasks (Table 2). Table 4 shows the p-values for the pairwise comparison.
Bold p-values highlight statistically significant results (i.e. p-value < 0.05).

686 K. Farias et al.

They indicate the rejection of the respective null hypothesis. The main feature is
that the general composition effort (and f, diff and g) using heuristic-based techniques
were significantly lower than using automated techniques in all cases. Still by using
the traditional algorithms this significance is higher. Thus, we can reject the H1 null
hypotheses (and its H1,y, H1,,, Hl59 e Hl4,). For example, in row 1 of Table 4, for
measure Effort, between RSA and EPS, the W is negative (-544) and p-value is less
than 0.05 (p = 0.001). This means that the composition effort by using the IBM RSA
is significantly lower than one using Epsilon. From row 1 it is also possible to notice
that only one null hypothesis was not rejected, and in just one case: the effort to detect
inconsistencies considering the IBM RSA and Epsilon (p-value = 0.0891). This means
that the subjects did not spend substantially different effort to detect inconsistencies in
IBM RSA and Epsilon. Therefore, our initial intuition that the specification-based
technique would not reduce the composition effort is confirmed.

Table 3. Descriptive statistic for the composition effort

Effort f diff g

[”RA 1 RsA | EPS | TRA | RSA | EPS | TRA | RSA | EPS | TRA | RSA | EPS

N 46 46 46 46 46 46 46 46 46 46 46 46
Min 5 5 9 2 3 4 1 1 1 0 0 0
25th 7 11 14 4 6 8.7 2 2 3 0 0 0.5
Med 11 14 21 6 8 12 3 4 4.5 0.5 2 3

75th 18 24 34 9 11 17 5.2 8 8.7 4 7 9
Max 31 66 114 25 22 39 11 22 38 9 22 38
Mean | 13.3 | 18.2 | 29.1 7.2 9.0 14.8 3.9 5.3 7.7 2.1 3.8 6.6
StD. | 6.9 11.0 | 23.3 4.4 4.2 8.8 2.4 4.4 8.2 2.9 5.1 9.1
N: #compositions, Min: minimum, Med: median, Max: maximum, StD: Standard Deviation, TRA:
traditional, RSA: Rational Software Architect, EPS: Epsilon.

Table 4. Wilcoxon test results for the composition effort

General Effort f(Ma,M5) diff(Mcnv, Mag) g(Mcwm)
task | S A B C A B C A B C A B C
All p 0.005 0.0001 0.001 0.02 0.0001 0.0003 0.03 0.0003 0.08 0.01 0.0003 0.04
W 420 900 -544 277 -834 -588 233 -533 -186 -261 423 -248
1 p 033 0.5 05 042 040 0.3628 0.14 05 039 046 039 0.30
w 6 0 0 -4 5 6 16 -1 4 -2 -4 -7
) p 001 0.003 0.14 023 0.007 0.0342 001 022 023 008 0.05 022
w32 -36 -16 -12 -34 -27 -21 -8 8 -14 -24 -10
3 p 028 0.01 0.13 037 0.01 0.1548 0.27 005 0.12 023 0.06 0.12
W -8 21 -14 -4 -26 -16 -8 -20 8 -8 -10 12
4) 0.5 0.01 0.01 029 0.01 0.0171 0.29 0.06 0.03 0.5 0.01 0.04
w -1 -28 -26 -3 -28 -26 3 -19 22 0 =21 -17
5 p 001 0.007 097 0.07 0.003 0.0177 0.02 .08 0.19 027 043 0.5
W 26 -36 20 -18 -36 -31 -11 -25 -11 -8 -3 -1
6 p 0.04 0.03 042 021 0.07 0.1094 006 0.01 0.11 0.04 0.12 042
w21 -23 3 -9 -18 -13 -12 -28 15 -17 -28 28

W: sum of signed ranks, RSA: IBM rational software architect, EPS: Epsilon, TRA: traditional algorithm,
A: TRA vs RSA, B: TRA vs EPS, C:RSA vs EPS, p: p-value, S: statistics.

Evaluating the Effort of Composing Design Models: A Controlled Experiment 687

4.2 RQ2: Correctness and Composition Techniques

Descriptive Statistics. Fig. 4 shows the correctness of the compositions generated by
using the three techniques: traditional algorithms, Epsilon, and IBM RSA in six exper-
imental tasks. The y-axis represents the proportions of the number of Mg achieved by
the number of compositions realized in each task using each composition technique,
while the x-axis consists of the experiment tasks. Thus, the histogram shows how the
correctly composed model happened throughout the experimental tasks.

The main outstanding feature is the lack of a distribution pattern of the proportions
of correctly composed models in the tasks. For example, in task 1, TRA produced a
lower proportion of correctly composed models than RSA and EPS. That is, the in-
tended model was generated in 42.86 percent of the cases in TRA, whereas 57.14
percent of the cases in RSA and EPS. On the other hand, in task 2, TRA outnumbers
RSA and EPS. It produced the intended model in 71.43 percent of the cases, while
EPS and RSA produced 28.57 and 57.14 percent of the cases, respectively.

Although TRA has obtained low measures in task 3 in comparison to task 2 (a de-
crease from 71.43 to 42.86 percent), it still got a superior value compared to EPS and
RSA, i.e. value by about three times higher than the measure of EPS and RSA, com-
paring 42.86 and 14.29 percent. On the other hand, in task 6, this superiority was
reversed. RSA got double the value than TRA and EPS, comparing 28.57 and 57.14
percent. Still subjects obtained the intended model by using TRA and RSA in all
composition cases, while less than half of the cases in EPS. We have observed that
TRA got a higher number of intended models than RSA and EPS. The subjects pro-
duced the intended model in 61.90 percent of the compositions using TRA against
59.52 and 42.86 percent using the RSA and Epsilon technique, respectively.

Table 4 shows the descriptive statistics of the inconsistency rate of the composed
models. Our initial expectation was that the specification-based technique would min-
imize the inconsistence rate whereas also get lower measures than the heuristic-based
techniques. However, this expectation was not confirmed. We have observed that
the inconsistency rate was similar in specification-based and heuristic-based tech-
nique in most cases. This means that developers will not produce correctly composed
model by using a technique based on composition specifications. Rather, the output
models will have equal (or even more) inconsistency rate.

100 100

100% Table 5. The descriptive statistics for

Correctness O Manual . :
- 87 .87 mepsiion the inconsistancy rate
o n 5 W RSA
60% 5757 | 57 57 St
N [Med | 75th | Max | Mean
42 2 42 D.
40% I
28 28 28 TRA |46| O 031 | 1.63| 0.26 |0.45
20% I 14 14 ‘ RSA[46] 0 [0425]1.22] 021 [0.29
0% : .. EPS (461047 0.78 |5.22| 0.58 |0.88
1 2 3 4 5 6

Evolution Scenarios

Fig. 4. The correctness of the output composed
model

688 K. Farias et al.

For example, on average, EPS produced a higher inconsistency rate than TRA and
RSA. In general, the mean of the inconsistency rate in Epsilon is two times higher
than one TRA and RSA, increasing by about 123 and 176 percent, respectively. Still
note that the inconsistence rate in RSA is also higher than in TRA. In short, the incon-
sistency rate in EPS is higher than RSA, which outnumber TRA. This suggests that
the inconsistency rate have favored TRA in comparison with RSA and EPS in most
cases. This implies that, to some extent, the number of inconsistencies is decreased
whenever the composed model is produced by TRA and RSA.

Hypothesis Testing. We apply the McNemar test to test H2,. Table 6 shows the chi-
square statistic and p-values for the pairwise comparisons. In all cases, the p-value
was large (p > 0.05), so the null hypothesis of H2,, cannot be rejected. Although the
p-value to the six tasks is not shown in the table, the p-value took values greater than
0.05 in the six tasks. This implies that there is no significant difference between the
proportions of the correctly composed models of the composition techniques.

We test H2, by applying the Wilcoxon test. Table 7 depicts the pairwise p-values
for each measure. Bold p-values point out statistically significant results. They also
indicate the rejection of the null hypothesis. Note that the sum of signed ranks (W)
shows the direction in which the result is significant. For example, in row 2, W is
negative (-250) and the p-value is lower than 0.05 (p = 0.0301) for the measure be-
tween TRA vs EPS. This means that the inconsistency rate for TRA is significantly
lower than in EPS. RSA also obtained an inconsistence rate significantly lower (p =
0.001) than EPS. For instance, in row 1, the W is negative (-5) and p-value is higher
than 0.05 for the inconsistency rate between TRA vs RSA. This means that the incon-
sistency rate for TRA is lower, but no significantly lower than RSA.

Table 6. The descriptive statistic for the Table 7. The descriptive statistic for the

inconsistancy rate inconsistancy rate
Task | Comparison r p-value rasks | Statisi Inconsistency Rate
TRA vs RSA |0.27 0.606 s fatistie tr:;:s t';;:S 6’1'7;;]
all TRA vs EPS |0.75 0.387
RSA vsEPS 10 1 All p-value | 0.4851 0.0301 | 0.0011
w -5 250 344

W: sum of signed ranks.

4.3 Additional Observations

We have analyzed the qualitative data (i.e. interviews, video and audio records) to try
explaining the results previously mentioned. First, the subjects mentioned that they
often had some additional difficulties to match and compose the input model elements
by using the specification-based composition techniques. Since they had difficulties to
express the semantics of the changes required in each evolution scenario, given the
problem at hand. This problem was observed in compositions dominated by relations
between the input model elements of the type one-to-many (1:N) or many-to-many
(N:N). The following extract from the interview also illustrates, for example, the
difficulty related to the understanding of the scope of elements involved to specify a

Evaluating the Effort of Composing Design Models: A Controlled Experiment 689

composition: “...express the changes in match and merge rules is boring...because all
overlapping parts of the two input models should be analyzed...this is not a trivial
task.” Second, the IBM RSA tool shows the commonalities and differences between
the input models in multiple, partial views. This strategy jeopardizes the creation of a
“big picture view” of the output intended model. The following extract confirms this
observation: “I have to check more than three views to complete something...it is very
complicated when more complex changes happen... because I have to mentally
“infer” a complete, unique view. On the other hand, the “strict” uses of the
traditional algorithms are much more intuitive and allow me to freely work closer to
the manner that I think that about model composition is.”

Finally, we have observed that: (1) the model composition techniques should be
more intuitive and flexible to express different types of changes such as addition,
removal, modification, and refinement of the model elements; (2) the techniques
should represent the conflicts between the input models in more innovative views;
and (3) new composition techniques should be a mixture of specification-based and
heuristic-based techniques. As a possible follow-up work, we would suggest to design
intelligent recommendation systems that help developers to indicate what the best
model composition strategy to-be applied, or even recommending how the input
models should be restructured to save effort, whereas preventing inconsistencies.
Moreover, the future techniques might provide “richer” visualization means to help
developers to prevent inconsistencies before model compositions happen. Instead of
merely reporting conflicting changes and inconsistencies, the techniques might
provide layers and visualization filters of both conflicting changes and
inconsistencies. Thus, developers could intuitively identify how the input model
elements conflict with each other and how the inconsistencies propagate through the
elements of the output composed model.

5 Threats to Validity

Statistical Conclusion Validity. Experimental guidelines were followed to eliminate
this threat [2]: (1) the assumptions of the statistical tests (paired t-test and Wilcoxon)
were not violated; (2) collected datasets were normally distributed; (3) the
homogeneity of the subjects’ background was assured; (4) the method of quantification
was properly applied; and (5) statistical methods were used. The Kolmogorov-Smirnov
and Shapiro-Wilk tests [2] were used to check how likely the collected sample was
normally distributed. Construct Validity. It concerns the degree to which inferences
are warranted from the observed cause and effect operations included in our study to
the constructs that these instances might represent. That is, it answers the question:
"Are we actually measuring what we think we are measuring?" All variables of this
study were quantified based on a previous study [4]. Thus, they were defined and
independently validated. Moreover, the concept of effort used in our study is well
known in the literature [10]. Therefore, we are sure that the quantification method used
is correct, and the quantification was accurately done. External Validity. We analyzed
whether the causal relationships investigated during this study could be held over
variations in people, treatments, composition techniques and the design models. There

690 K. Farias et al.

are reasons to believe the results generalize beyond the three techniques used, but leave
it to further work to fully test this.

6 Related Work

Model composition is a very active research field in many research areas such as
merging of state charts [7], composition of software product lines [11], aspect-
oriented models [12] and mainly UML models. Research initiatives tend to focus on
proposing model composition techniques or even creating innovative modeling
languages. However, the evaluation of the developers’ effort on composing design
models using the proposed techniques is still incipient. The lack of quantitative and
qualitative indicators on composition effort hinders mainly the understanding of side
effects peculiar to certain composition techniques.

Current work has notably aimed at evaluating modeling languages such as UML in
terms of some quality attributes such as comprehensibility [14], completeness.
Although UML has been adopted, in fact, as the industry standard modeling language,
it is just a point of investigation in empirical studies considering model composition.
In general, most of the research on the interplay of effort and composition techniques
rest on subjective assessment criteria [S]. Even worse, this leads to dependence on
experts who have built up an arsenal of mentally-held indicators to analyze the
growing complexity of models and then evaluate the effort on composing them [4].
Consequently, the truth is that developers ultimately rely on feedback from experts to
determine “how good” the input models and their compositions are. There are many
examples in the literature of composition techniques such as MATA [7], Epsilon [15],
and IBM RSA [16]. But, they will only be useful if the quality of the output
composed models (e.g. correctness) is assured, and the composition effort required is
low. Unfortunately, these approaches do not offer any insight or empirical evidence
about the effort required to compose design models. As a matter of fact, the current
literature about the composition technique points out the absence of empirical studies
and does highlight the importance of empirical evidence [5,7,8,12].

According to [5], the state of the practice in assessing model quality provides
evidence that modeling is still in the craftsmanship era and when we assess model
composition, this problem is accentuated. More specifically, to the best of our
knowledge, our results are the first to empirically investigate the topics of the research
questions in a controlled way and systematic by using specification-based and
heuristic-based techniques.

7 Concluding Remarks and Future Work

This paper can be seen as a first step to systematically assess the trade-off between the
specification-based and heuristic-based techniques in terms of effort and correctness.
The results of this first controlled experiment suggested that the specification-based
techniques neither reduce the developers’ effort nor guarantee the higher number of

Evaluating the Effort of Composing Design Models: A Controlled Experiment 691

correctly composed models. Even worse, the traditional composition algorithms out-
numbered the specification-based technique, to some extent.

However, further empirical studies are still required to investigate if our results can
be confirmed (or not) in other contexts, considering other design models, encompass-
ing different evolution scenarios and evaluating other composition techniques. Alt-
hough the techniques investigated are robust and representative, and there are reasons
to believe the results will possibly generalize to other similar scenarios, we do not
claim this generalization beyond these techniques, and their use applied to the design
models, in particular, class diagrams. Finally, we expect that our findings can be used
to motivate other studies.

References

1. Wohlin, et al.: Experimentation in Software Engineering: an Introduction. Kluwer Aca-
demic Publishers, Norwell (2000)
2. Devore, J., et al.: Applied Statistics for Engineers and Scientists. Duxbury (1999)
3. Basili, V., Caldiera, G., Rombach, H.: The Goal Question Metric Paradigm. In: Encyclo-
pedia of Software Engineering, vol. 2, pp. 528-532. John Wiley and Sons (1994)
4. Farias, K., Garcia, A., Whittle, J.: Assessing the Impact of Aspects on Model Composition
Effort. In: AOSD 2012, Saint Malo, France, pp. 73-84 (2010)
5. France, R., Rumpe, B.: Model-Driven Development of Complex Software: A Research
Roadmap. In: Future of Software Engineering at ICSE 2007, pp. 37-54 (2007)
6. Unified Modeling Language: Infrastructure, Object Management Group (February 2010)
7. Whittle, J., Jayaraman, P.: Synthesizing Hierarchical State Machines from Expressive Sce-
nario Descriptions. ACM TOSEM 19(3) (January 2010)
8. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Trans. on Soft. Engineer-
ing 28(5), 449-462 (2002)
9. Clarke, S.: Composition of Object-Oriented Software Design Models, PhD thesis, Dublin
City University (2001)
10. Jgrgensen, M.: Practical Guidelines for Expert-Judgment-Based Software Effort Estima-
tion. IEEE Software, 57-63 (May 2005)
11. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe Composition of Product Lines. In: 6th
GPCE, Salzburg, Austria, pp. 95-104 (2007)
12. Klein, J., Hélouét, L., Jézéquel, J.: Semantic-based Weaving of Scenarios. In: 5th AOSD
2006, Bonn, Germany, pp. 27-38 (March 2006)
13. Dingel, J., Diskin, Z., Zito, A.: Understanding and Improving UML Package Merge. Jour-
nal of Soft. and Syst. Modeling 7(4), 443—467 (2008)
14. Lange, C., Chaudron, M.: Effects of Defects in UML Models — An Experimental Investi-
gation. In: ICSE 2006, China, pp. 401410 (2006)
15. Epsilon (2011), http://www.eclipse.org/gmt/epsilon/
16. IBM RSA (2011),
http://www.ibm.com/developerworks/rational/products/rsa/
17. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Approach.
Addison-Wesley, Upper Saddle River (2005)
18. Asklund, U.: Identifying Conflicts during Structural Merge. In: Proc. Nordic Workshop
Programming Environment Research, pp. 231-242 (1994)
19. Evaluating the Effort of Composing Design Models: A Controlled Experiment (2012),
http://www.les.inf.puc-rio.br/opus/modelsl2-app

