
R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 219–234, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Evaluating the Impact of Aspects on Inconsistency
Detection Effort: A Controlled Experiment

Kleinner Farias, Alessandro Garcia, and Carlos Lucena

OPUS Research Group/LES, Informatics Department, PUC-Rio
Rio de Janeiro - RJ - Brazil

{kfarias,afgarcia,lucena}@inf.puc-rio.br

Abstract. Design models represent modular realizations of stakeholders’ con-
cerns and communicate the design decisions to be implemented by developers.
Unfortunately, they often suffer from inconsistency problems. Aspect-oriented
modeling (AOM) aims at promoting better modularity. However, there is no
empirical knowledge about its impact on the inconsistency detection effort. To
address this gap, this work investigates the effects of AOM on: (1) the develop-
ers’ effort to detect inconsistencies; (2) the inconsistency detection rate; and (3)
the interpretation of design models in the presence of inconsistencies. A con-
trolled experiment was conducted with 26 subjects and involved the analysis of
520 models. The results, supported by statistical tests, show that the effort of
detecting inconsistencies is 20 percent lower in AO models than in their OO
counterparts. On the other hand, the inconsistency detection rate and the num-
ber of misinterpretations are 43 and 37 percent higher in AO models than in OO
models, respectively.

Keywords: Aspect-Oriented Modeling, Model Composition, Inconsistency,
Developer Effort, Empirical Studies.

1 Introduction

Modeling languages (e.g., UML [11] and its extensions) provide different types of
models, such as class and sequence diagrams, to represent the structure and behavior
of software systems. These complementary models represent the design decisions that
developers will implement later. In practice, these models often suffer from the incon-
sistency problems [16]. These inconsistencies are mainly caused by the mismatch
between the overlapping parts of complementary models and the lack of formal se-
mantics to prevent these contradictions [2][3]. Consequently, developers must invest
some effort to detect and properly deal with these inconsistencies [6]; otherwise,
emerging misinterpretations of the design models can compromise the resulting
implementation.

Different modeling languages support different forms of modular decomposition
and may influence how developers detect or even neglect inconsistencies [3]. This
might be particularly the case with aspect-oriented modeling (AOM) [7][17] as it in-
tends to improve design modularity of otherwise crosscutting concerns. Current

220 K. Farias, A. Garcia, and C. Lucena

research in AOM varies from UML extensions [7][17][19][20] to alternative strategies
for model weaving. Unfortunately, nothing has been done to investigate whether as-
pect-oriented models can alleviate the burden of dealing with model inconsistencies.
Someone might hypothesize that they might help developers to understand the design
before implementing it. Others could also postulate that the improved modularization
would reduce the effort to detect inconsistencies or even reduce misinterpretations
arising between complementary design models.

Unfortunately, it is by no means obvious whether these assumptions hold (or not).
First, it may be the case that additional constructs in AO models lead to detrimental
effects on design understanding. Second, it is still not clear if an aspect affecting mul-
tiple join points may increase the inconsistency detection and improve the model
interpretation. Third, developers might get “distracted” by the global reasoning moti-
vated by the presence of crosscutting relations [10] between classes and aspects. At
last, developers might even invest more effort using AO models while examining all
points that are crosscut by the aspects [6].

In this context, this paper reports a controlled experiment (Section 3) aimed at in-
vestigating the impact of AOM on: (1) the rate of inconsistency detection; (2) the
developers’ effort to detect these inconsistencies; and (3) developers’ misinterpreta-
tion rate. We compare the use of AO models to OO models in a particular context: the
use and understanding of design models by developers needed to produce the corres-
ponding implementation. The results (Section 4) supported by statistical tests and
qualitative analysis, show that AO models alleviate the effort to detect inconsisten-
cies. But, it neither reduces inconsistency detection rate nor misinterpretation rate.

Moreover, we also discuss some additional findings (Section 4.4). For instance, we
observed that the downsides of AOM were, to a large extent, caused by the degree of
quantification [10] of the aspects. That is, the higher the number of modules affected
by an aspect, the lower the inconsistency detection rate and the higher the misinter-
pretation rate. Moreover, we observed that developers tended to detect inconsistencies
more quickly in AO models when the scope of aspect pointcuts was narrow. Equally
relevant was the finding that the required mental model is directly influenced by the
number of crosscut relationships.

To the best of our knowledge, our results are the first to pinpoint the potential
(dis)advantages of AOM in imprecise multi-view modeling. After presenting how we
tried to mitigate the possible threats to validity (Section 5), we make it clear the con-
tributions of our experiment in the light of the related work (Section 6) and present
final remarks (Section 7).

2 Background

2.1 Aspect-Oriented Modeling

Aspect-oriented modeling (AOM) languages aim at improving the modularity of de-
sign models by supporting the modular representation of concerns that cut across
multiple software modules. This superior modularization of crosscutting concerns is
achieved by the definition of a new model element, called aspect. An aspect can

 Evaluating the Impact of Aspects on Inconsistency Detection Effort 221

crosscut several modules within a system. These relations between aspects and other
modules are called crosscut relationships. These basic concepts and other aspect-
oriented modeling elements are usually represented as classic UML stereotypes in
AOM languages [7][17]. The AOM language used throughout our study is a UML
profile [17][19][20]. The choice of the UML profile for AOM is based on some rea-
sons. First, the Unified Modeling Language [11] is the standard for designing soft-
ware systems. Second, the use of stereotypes reduces the gap between subjects with
low skill (or experience) and highly skilled (or experienced) subjects. Third, the mod-
el reading technique used by the subjects would not be influenced by new notation
issues; therefore, the interpretation of the models is exclusively influenced by the use
of the concepts in object-oriented and aspect-oriented modeling. Finally, UML profile
for AO programming is the approach more common for structural and behavioral
diagrams [11].

Fig. 1 presents an illustrative example of the models used in our study: a class and
a sequence diagram of the AOM language used in our study. The notation supports
the visual representation of aspects, crosscutting relationships and other AOM con-
cepts. The stereotype <<aspect>> represents an aspect, while the dashed arrow deco-
rated with the stereotype <<crosscut>> represents a crosscutting relationship. Inner
elements of an aspect are also represented, such as pointcut (<<pointcut>>) and ad-
vice. An advice adds behavior before, after, or around the selected join points [7]. The
stereotype associated with an advice indicates when (<<before>>, <<after>> or
<<around>>) a join point is affected by the aspect. The join point is a point in the
base element where the advice specified in a specific pointcut is applied.

Fig. 1. An illustrative example of aspect-oriented models used in our study. (A) and (B)
represent the conflicting structural diagrams. (C) and (D) represent the structural and sequence
diagrams without inconsistencies.

222 K. Farias, A. Garcia, and C. Lucena

2.2 Model Inconsistency and Detection Effort

The multiple views of a software system inevitably have conflicting information [2]. If
software developers do not detect and properly deal with these inconsistencies the
potential benefits of the use of the models (e.g., gain in productivity) can be compro-
mised. Developers must invest some considerable effort (time) to detect these inconsis-
tencies; otherwise, the potential benefits of the use of models such as specification of
the implementation of a system can be compromised. Two broad categories of incon-
sistencies were used in this study: (1) syntactic inconsistencies, which arise when the
models not conforming to the modeling language’s metamodel; and (2) semantic in-
consistencies, where the meaning of the model element does not match that of the ac-
tual design model. We have particularly selected semantic inconsistencies that are: (i)
detectable by developers [2], and (ii) difficult or impossible to detect automatically.
We focused on inconsistencies that have been documented elsewhere [3] and used in a
previous empirical study [2]. A complete description is also available at our comple-
mentary website [9], and two representative examples are presented below:

1) Conflicting relationships: the nature of a relationship diverges in structural and
behavioral models. For instance, according to the sequence diagram, the advice of an
aspect A crosscuts the behavior of class B; however, the semantics of the advice in A
dictates when the class diagram should have either a <<crosscut>> or a <<use>> rela-
tionship between A and B. For example, Fig. 1 presents this kind of inconsistency.
The aspect t:TraceAspect crosscuts the c:CheckingAccount objects (Fig. 1.B). In this
case, the relationship between TraceAspect and CheckingAccount should be <<cross-
cut>> instead of <<use>> (see Fig. 1.C) given the logging semantics of the advice
logOperations(). In the structural diagram (Fig. 1.A), the aspect TraceAspect has a
<<use>> relationship with the class CheckingAccount instead of <<crosscut>> rela-
tionship.

2) Messages with different return types: the return type of a message m from an
object A to an object B does not match with the return type of the method M in the
corresponding class B in the class diagram. For instance, the method CheckingAc-
count.getBalance has conflicting return types: string in the class diagram and double in
the sequence diagram. A similar conflict can occur with the return type of a around
advice [17] and the return type from a method execution being advised by the latter.

Developers detect inconsistencies when they identify conflicting information in the
models and, then, report that the models cannot be implemented. This decision often
relies on “guessing” the semantics of the model elements. To reach this conclusion,
developers need to invest some effort: the time (in minutes) to go through the model
and infer that the models suffer from inconsistencies.

3 Study Methodology

3.1 Goal, Research Questions, and Context

We formulate the goal of this study using the GQM template [5] as follows:

Analyze AO and OO modeling techniques for the purpose of investigating the im-
pact with respect to detection effort and misinterpretation from the perspective of

developers in the context of multi-view design models.

 Evaluating the Impact of Aspects on Inconsistency Detection Effort 223

Based on this, we focus on the three research questions:

RQ1: Does AOM affect the efficiency of developers to detect multi-view model
inconsistencies?
RQ2: Does AOM influence effort invested by developers to detect model incon-
sistencies?
RQ3: Do AO models lead to a different misinterpretation rate as compared to OO
models?

The context selection is representative of situations where developers implement
classes (or aspects) based on design models. The experiment was conducted within
two postgraduate courses at the Pontifical Catholic University of Rio de Janeiro
(PUC-Rio) and the Federal University of Bahia (UFBA). Both courses are taught in
the first year of Master and Doctoral programs in Computer Science. Therefore, all
the subjects (18) hold a Master’s or Bachelor’s degree, or equivalent. In addition,
eight (8) professionals from three companies also participated in the experiment. Most
of the professionals held a Master’s or Bachelor’s degree.

3.2 Hypothesis Formulation

First Hypothesis (H1). The first research question investigates whether developers by
using AO models produce a lower (or higher) inconsistency detection rate than by
using OO models. Usually developers do not indicate the presence of existing incon-
sistencies in multi-view models [3]. The main reason is that they can make implicit
assumptions about the correct design decisions based on previous experience. Moreo-
ver, they might feel forced to produce an implementation even in the presence of in-
consistency. Thus, our intuition is that developers identify fewer inconsistencies in
AO models than OO models because they might get distracted by the global reasoning
motivated by the presence of additional crosscutting relations in the models. Conse-
quently, they may have a higher number of implicit assumptions to assemble the “big
picture” of a system. However, it is by no means obvious that this hypothesis hold.
Perhaps, the increased modularity of AOM models may help developers to switch
more quickly between the behavioral and structural views while implementing their
aspects. Consequently, the software developer may localize more inconsistencies than
in OO models. These hypotheses are summarized as follows:

Null Hypothesis 1, H1-0: The inconsistency detection rate in AO models is
equal or higher than in OO models.
H1-0: DetectionRate (AO) ≥ DetectionRate (OO)
Alternative Hypothesis 1, H1-1: The inconsistency detection rate in AO mod-
els is lower than in OO models.
H1-1: DetectionRate (AO) < DetectionRate (OO)

Second hypothesis (H2). The second research question investigates whether develop-
ers invest less (or more) effort to detect inconsistencies in AO models than OO mod-
els. The superior modularity of AO models may help developers to better match and
contrast the structural and behavioral information about the crosscutting relations. In

224 K. Farias, A. Garcia, and C. Lucena

this case, developers may switch more quickly between the behavioral and structural
views while systematically implementing their aspects. Thus, our expectation is that
the higher the number of crosscutting relationships (an aspect crosscutting a wider
scope) in the model, the lower the effort to detect inconsistencies. This assumption is
based on the superior ripple effects of inconsistencies observed in AO models when
model composition techniques are applied [6]. This propagation can directly affect the
effort in detecting inconsistencies, since developers, facing the complexity of the
propagations, avoid doing any implementation. That is, by using AOM developers
tend to get more quickly convinced about the severity of multi-view inconsistencies.
This means that they are more likely to report them and not going forward on the
design implementation. However, it is not clear whether this intuition holds because,
at first, developers may examine all model elements affected (or not) by the inconsis-
tencies, or even the inconsistencies, to some extent, may even be confined in the
aspectual elements. This leads to the second null hypothesis and an alternative hypo-
thesis as follows:

Null Hypothesis 2, H2-0: The effort to detect inconsistencies in AO models is
equal or higher than in OO models.
H2-0: EffortToDetect (AO) ≥ EffortToDetect (OO)
Alternative Hypothesis 2, H2-1: The effort to detect inconsistencies in AO
models is lower than in OO models.
H2-1: EffortToDetect (AO) < EffortToDetect (OO)

Third hypothesis (H3). The third research question investigates whether the misinter-
pretation rate (MisR) of the developers is higher (or lower) in AO models than in OO
models. The chief reason of the disagreement between developers’ interpretation is
the contradicting understanding of the design models. They are often caused by in-
consistencies emerging from the mismatches between the diagrams specifying the
multiple, complementary views of the software system [3]. Contradicting design
models make it difficult for developers to think alike and, hence, producing code with
the same semantics. The key reason is that software implementation widely depends
on cognitive factors. Someone could consider that additional AOM concepts, such as
crosscutting relationships or aspects, may negatively interfere in a common under-
standing of design models by different developers. For instance, developers need to
precisely grasp the actual meaning of the crosscutting relations (in addition to all oth-
er relations), and when they are actually established during the system execution.
Then, as developers have to examine all join points affected by the aspects, their extra
analyses can increase the opportunities of diverging interpretations. However, this
expectation might not hold because the crosscutting modularity may improve the
overall understanding of the design a when compared to pure OO models. This would
lead to the following null and alternative hypotheses:

Null Hypothesis 3, H3-0: The misinterpretation rate (MisR) in AO models is
equal or higher in AO models than in OO models.
H3-0: MisR(AO) ≥ MisR(OO)
Alternative Hypothesis 3, H3-1: The misinterpretation rate in AO models is
lower than in OO models.
H3-1: MisR(AO) < MisR(OO)

 Evaluating the Impact of Aspects on Inconsistency Detection Effort 225

3.3 Experiment Design

Selection of subjects. Subjects (18 students and 8 professionals) were selected based on
two key criteria: the level of theoretical knowledge and practical experience related to
software modeling and programming. The subjects studied in educational systems that
place a high value on key principles of software modeling and programming. In addi-
tion, the subjects were exposed to more than 120 hours of courses (lectures and labora-
tory) exclusively dedicated to software design, software modeling, OO programming,
and AO software development. It can be considered they underwent an intensive mod-
eling-specific and programming training. As far as practical knowledge is concerned,
the main selection criterion was that subjects had, at least, 2 years of experience with
software modeling and programming acquired from real-world project settings.

Paired comparison design. All subjects were submitted to two treatments (AO and
OO modeling) to allow us to compare the matched pairs of experimental material.
Each treatment had a questionnaire with five multiple-choice questions. The first
treatment had only questions with AO models while the second one had only ques-
tions with OO models. The subjects were assigned randomly and equally distributed
to these treatments so that the effects of the order could be discarded. Therefore, the
experimental design of this study is by definition a balanced design.

As the subjects were submitted to two treatments, an ever-present concern was the
information that the subject could gain from the first treatment to perform the experi-
ment with the second treatment. To minimize the “gain in information,” some expe-
rimental strategies [4][5] were followed. First, the models used in the study were
fragments of class and sequence diagrams from realistic, industrial design models of
different application domains. Hence, the subjects had no prior information and no
accumulated knowledge about the semantics of the model elements. Second, each
question had a class and sequence diagram representing different functionalities of a
software system. Third, each pair of structural and behavioral models had different
kinds of inconsistencies (Section 2.2), and the meanings of their elements were com-
pletely different. Therefore, we can assume that the performance of subjects was not
influenced by the treatments of previous questions.

Tasks. In both treatments, the subjects received a pair of corresponding class (structural)
and sequence (behavioral) diagrams. They were asked how they would implement par-
ticular classes (or aspects) based on these diagrams. That is, rather than stimulated to
review or inspect the diagrams, the subjects were encouraged to implement particular
model elements (classes or aspects). The goal is to identify how developers would deal
with inconsistencies in the context of concrete software engineering tasks. The subjects
should choose, then, the most appropriated implementations between the five possible
answer options. In each question, the subjects were required to register the time invested
to answer the question (“start time” and “end time”). They were also stimulated to justi-
fy their answers on the answer sheet. In total, ten questions were answered. After the
experiment, the subjects were also interviewed to clarify the results.

Objects. In the questions of the first treatment, the OO class diagram had, on average,
7 classes and 8 relationships, while in the second treatment the questions had an AO
class diagram with, on average, 5 classes and 2 aspects, and 8 relationships. The cor-

226 K. Farias, A. Garcia, and C. Lucena

responding AO and OO sequence diagrams had, on average, 5 objects and 15 messag-
es between the objects (and/or aspects). Each pair of OO or AO diagrams had two
kinds of inconsistencies. The inconsistencies were always related to contradictions
between the class and sequence diagrams. That is, there was conflicting information
between those diagrams, as the examples given in Section 2.2. Considering the an-
swer options in each question, they were planned according to the following schema.
The first answer option is according to the class diagram while the second one is just
according to the sequence diagram. The third answer option is based on the combina-
tion of the information presented in both diagrams. The fourth one is incorrect consi-
dering all two diagrams. All questions had a fifth answer option where the subjects
could indicate that an inconsistency was detected in the models. The subjects were
encouraged to carefully explain their answers. Further details of the experimental
design can be found in [9].

3.4 Variables and Quantification Method

The independent variable of this study is the choice of the modeling language. It is
nominal and two values can be assumed: AO modeling and OO modeling. These
variables describe the treatments, and we investigate their impacts on following de-
pendent variables.

Inconsistency detection rate (Rate) and Inconsistency detection effort (Effort). The
Rate variable is intended to measure the overall rate of inconsistencies detected by all
subjects (RQ1). It represents the ratio of the number of subjects that detect inconsisten-
cies in a question divided by the number of subjects that answer the question without
notifying the presence of inconsistency. The Effort variable represents the mean of
time (minutes) spent by the subjects to detect inconsistencies in a question (RQ2). Note
that subjects detect inconsistencies when they explicitly indicate that they are unable to
achieve a suitable implementation from the contracting diagrams.

Misinterpretation rate (MisR). This variable represents the degree of variation of the
answers (RQ3). That is, it measures the concentration of the answers over the four
possible alternatives (the fifth alternative represents the detection of inconsistency).
Our concern is if the differences in (un)detected inconsistency affects the design inter-
pretation of the subjects. An undetected inconsistency is not necessarily problematic
[3] if all subjects have the same interpretation. For example, if the 26 subjects have the
same answer (e.g., the alternative “A”) for a question, then the inconsistencies in the
diagrams did not lead to misinterpretations (MisR = 1). On the other hand, if the devel-
opers’ answers spread equally over the four alternatives, then the inconsistencies cause
serious misinterpretations (MisR = 0). That is, the misinterpretation rate is 0 if answers
are distributed equally over all options, and 1 if the answers are concentrated only one
answer option. According to [3], this variable can be measured as follows. ܴݏ݅ܯሺ݇, … , ݇ିଵሻ ൌ 1 െ 2 ∑ ݇݅ஸழܰሺܭ െ 1ሻ

Where:
K: The number of alternatives for a question

 Evaluating the Impact of Aspects on Inconsistency Detection Effort 227

ki: The number of times alternative i was selected, where 0 ≤ i < K and
(for all i : 0 ≤ i < K − 1 : ki ≥ ki+1)

N: The sum of answers over all alternatives: N = ∑ ݇ஸழ

3.5 Operation

Preparation phase. The subjects (students and professionals) were not aware of the
research questions (and hypotheses) of our study in order to avoid biased results. The
motivation of the students was to gain extra points for their grade. The results ob-
tained by the students had no effect on their grade; instead, their dedication and quali-
ty of the justifications of the sheet and interviews. The professionals received the
same questions as a printable questionnaire. All subjects received a refresher training
to be sure of their familiarity with the modeling concepts used in the study.

Execution phase. The experiment tasks were run within two courses at two different
Brazilian universities (PUC-Rio and UFBA). Both runs were carried out in a class-
room following typical exam-like settings. However, because of time constraints and
location, the professionals run the experiment in their work environment. However,
the experiment was carefully controlled. All subjects received 10 questions and the
answer sheets. It is important to point out that there was no time pressure for the sub-
jects, but they were rigorously supervised to correctly register the time. Therefore, we
are confident that the time was recorded properly. For clarification reasons, the sub-
jects were encouraged to justify their answers. After finishing the experiment, the
subjects filled out a questionnaire to collect their background, i.e. their academic
background and work experience. Observational studies were conducted to improve
understanding how the tasks in the experiment were performed,. This allowed a more
effective observation and monitoring of the tasks of the subjects. To obtain an addi-
tional feedback from the subjects, they were also encouraged to write down the ratio-
nale used to answer the questions.

Interview phase. Additionally, a semi-structured interview approach [5] was per-
formed, which followed a funnel model, i.e. one initial open question was presented
and followed by more specific ones. It was organized in topics with open and close
questions in such a way that qualitative evidence on the research questions could be
gathered. An interview guide was created based on the authors’ experience and the
study design. The interviews were recorded and transcribed into text. All subjects
were selected for interviews. Each interview lasted from 30 to 55 minutes, depending
on how talkative the subjects were.

4 Experimental Results

4.1 RQ1: Detection Rate in AO and OO Models

Descriptive Statistics. The first research question investigates if developers detect more
(or less) inconsistencies in AO models or OO models. Developers detected more in-
consistencies in OO models than AO models. The superior detection rate in OO mod-
els can be explained comparing means and medians (Table 1). Developers detect, on

228 K. Farias, A. Garcia, and C. Lucena

average, by about 43.24 percent more inconsistencies in OO models than AO models,
i.e. a mean of 0.37 (AO) compared with a mean of 0.53 (OO). The difference observed
between the medians also favors the OO models. This comprises a superiority of 42.85
percent in the number of the cases in which developers reported to be unable to provide
an implementation. The results suggest that OO models enable developers to identify
more inconsistencies than AO models. This contradicts somehow the intuition that the
improved modularity of AOM helps developers to localize inconsistencies.

Hypothesis Testing. Since the Shapiro-Wilk and Kolmogorov-Smirnov normality tests
[1] indicates that the data are normally distributed, the paired t-test is applied to test
H1. The collected t-statistic is 4.03 with the p-value = 0.01 (Table 1). This small p-
value (< 0.05) indicates the first null hypothesis (H1-0) can be rejected. This implies
that the average difference of the detection rate in AO and OO models is not zero.
Therefore, there is strong evidence (at the 0.05 level significant) that developers
detect more inconsistencies in OO models than in AO models. The mean differences
between the pairs of AO and OO models indicate the direction in which the result is
significant. For example, considering the varying detection rate for AO and OO mod-
els, the mean difference is negative (-0.16). This implies that the detection rate in AO
models was statistically lower than in OO models. Moreover, the non-parametric
Wilcoxon test is applied to eliminate any threat related to statistical conclusion validi-
ty. The low value of the p-value = 0.031 collected (< 0.05) also confirmed the afore-
mentioned conclusion. Therefore, we can reject the null hypothesis H1-0.

Table 1. Descriptive statistics and Stastical tests for measures

Variables Treat. Mean
St

Dev
Min. 25th Med. 75th Max %diff

Wilcoxon Paired t-test

p-value t p MD

Detection
AO 0.37 0.09 0.23 0.29 0.35 0.46 0.54

43.24 0.031 4.03 0.01 -0.16
OO 0.53 0.11 0.38 0.42 0.5 0.67 0.69

Effort
AO 5.28 1.67 4 4.08 4.22 7 7.8

19.69 0.033 3.1 0.03 -1.48
OO 6.32 1.57 4.33 5.06 6.08 7.71 8.65

MisR
AO 0.51 0.07 0.38 0.45 0.52 0.57 0.58

37.25 0.029 2.94 0.04 -0.19
OO 0.7 0.07 0.62 0.64 0.69 0.77 0.81

*with 4 degree of freedom, a significance level of α = 0.05, MD: mean difference, p: p-value,

St Dev: standard deviation

4.2 RQ2: Detection Effort in AO and OO Models

Descriptive Statistics. The second research question investigates the effort that devel-
opers should invest to detect inconsistencies in AO and OO models. Developers spend
more effort to detect inconsistencies in OO models than AO models. The mean of
detection effort is 5.28 (minutes) in AO models and 6.32 in OO models. This com-
prises a representative increase of 19.69 percent against plain UML models. This
lower effort in the use of AOM is also observed comparing the medians. The detec-
tion effort ranges from 4.22 (minutes) in AO models to 6.08 in OO models, which

 Evaluating the Impact of Aspects on Inconsistency Detection Effort 229

represents an increase of 44.07 percent in the latter case. This phenomenon confirmed
our initial intuition that the superior modularity of AO models would accelerate the
inconsistency detection. In fact, during the interviews, the subjects (18) reported that
the manifestation of inconsistencies in crosscutting relations made the implementation
to be prohibitive. Hence, the subjects reported more quickly in the AO model than in
OO models. We noticed they were keener to match and contrast the structural and
behavioral information governing the crosscut relations. Therefore, developers often
report conflicting crosscutting relations as the reason for not progressing towards the
implementation. This implies that although developers detect fewer inconsistencies in
AO models, they spend less effort to localize them.

Hypothesis Testing. Since the Shapiro-Wilk and Kolmogorov-Smirnov normality tests
[1] indicate that the data are normally distributed, the paired t-test is applied to test
H2. The collected t-statistic is 3.1 with the p-value = 0.03 (Table 1). This small p-
value (< 0.05) indicates the second null hypothesis (H2-0) can be rejected. This sug-
gests that the average difference of the inconsistency detection effort in AO and OO
models is not zero. Thus, there is strong evidence (at the 0.05 level significant) that
developers invest more effort to detect inconsistencies in OO models than in AO
models. The detection effort in AO and OO groups assumes a negative value for the
mean difference (-1.48), while the p-value (0.03) is less than 0.05. This implies that
detection effort in OO models is statistically higher than in AO models. Moreover, the
non-parametric Wilcoxon test is applied to eliminate any threat related to statistical
conclusion validity. The low value of the p-value collected (0.033) also confirmed the
previous conclusion. Therefore, we can reject the null hypothesis H2-0.

4.3 RQ3: Misinterpretation Rate in AO and OO Models

Descriptive Statistics. The third research question investigates whether AO models
lead to a higher or lower misinterpretation rate than OO models. Table 1 shows the
descriptive statistics to the misinterpretation measures of AO and OO models. Recall
that MisR varies between 0 and 1, and that MisR = 1 indicates that developers do not
have misinterpretation. On the other hand, MisR = 0 indicates that the developers’
answers spread equally over the four different alternatives, which represent the most
serious misinterpretations. OO models cause less misinterpretation (higher MisR val-
ue) than AO models. The misinterpretation rate is 37.25 percent lower in OO models;
the mean is 0.51 in AO groups against 0.7 in OO groups. This upward trend is also
observed in the medians: 0.52 in AO models against 0.68 in OO models, comprising
an increase of 32.69 percent. The results suggest that the presence of inconsistencies
in AO models entails a higher detrimental impact on model interpretation by develop-
ers than in OO models. Our initial expectation that by using contradicting AO design
models would increase the number of diverging interpretations was confirmed. Dur-
ing the interviews and examining the answer sheets, the subjects (22) reported that the
need to scan all join points affected by the aspects increased the likelihood of differ-
ent interpretations.

Hypothesis Testing. We analyze the strength of the aforementioned result testing H3
as follows. As in the previous analysis, the paired t-test is applied to test H3 as the

230 K. Farias, A. Garcia, and C. Lucena

measures assume a normal distribution. Table 1 shows the pairwise p-values and
mean differences across pairs for each measure. As the mean difference is negative (-
0.19) and p-value (0.04) is less than 0.05, we can conjecture that there is significant
evidence that the number of diverging interpretations in AO models is statistically
higher than in OO models. We also applied the non-parametric Wilcoxon test to
check this conclusion. The p-value (0.029) also assumed a low value (p < 0.05).
Therefore, as the p-value is less than 0.05, and the mean difference is negative, we
can conclude that: there is evidence that the MisR in AO models is significantly lower
than in OO models. Therefore, we reject the null hypothesis H3-0.

4.4 Discussion

We have identified five outstanding findings from the answer sheets, interviews, and
observational study.

1) Higher Aspect Quantification and Inconsistency Detection. First, aspects with
higher quantification [10] harmed inconsistency detection (RQ1) and the model inter-
pretation (RQ3) by developers. We observed that when an aspect had six crosscutting
relationships and, therefore, affected multiple join points (11, in this case), the sub-
jects spend more time on performing global reasoning. The analysis of several aspect
effects in the structural diagrams made developers often to neglect the analysis of
behavioral interactions at each specific join point in the behavioral diagrams. Accord-
ing to the interviewees, this effect distracts away developers from observing possible
inconsistencies between the structural and behavioral views. We observed, for exam-
ple, that the inconsistency detection rate in OO models was 71 percent higher than in
AO models when the latter were composed of aspects with high quantification; in
these circumstances, the mean in OO models was 0.65 compared to 0.38 in AO mod-
els. We noticed that 20 subjects explicitly reported that they felt distracted by the
presence of high density of crosscutting relationships among the model elements.

2) Overlapping Information about Crosscutting Relationships. Conversely, we ob-
served that the subjects tended to detect more quickly inconsistencies in AO models
when the scope of aspect pointcuts was narrow. In these cases, developers invested
effort in only confronting structural and behavioral information about the crosscutting
relations. According to the subjects, they could observe inconsistencies more quickly
in AO models because structural diagrams often express the type of an advice (i.e.
before, after or around), which is also a behavioral information that is present in the
sequence diagram. Then, they could easily identify inconsistencies between: (i) the
types of advices in the class diagram, and (ii) when a particular message was being
advised by the aspect in the sequence diagram.

3) Crosscutting Relationships and Diverging Mental Models of the “Big Picture.”
Data analysis suggests that uniform interpretation of AO models by different develop-
ers is harder to achieve than in OO models. The subjects had difficulties to create a
“big picture” view from the conflicting class and sequence diagrams. This view
represents a “mental model” reflecting how software developers perceive the prob-
lem, think about it, and solve it by producing the expected code from the diagrams.
This understanding shapes the actions of the developers and defines the approach to
guide the design realization in the code. In particular, the developers apparently had

 Evaluating the Impact of Aspects on Inconsistency Detection Effort 231

diverging mental models when the model inconsistencies were sourced in the cross-
cutting relationships. In these cases, developers came up with very different solutions
for realizing crosscutting relationships in the code. They provided different answers
on which and when the advice should affect the base model elements. Consequently,
the communication from designers to programmers seems to be more sensitive to
inconsistencies in aspect-oriented models.

4) The Level of Model Detail Matters. Developers usually consider the sequence
diagrams as the basis for the design implementation. Note that in this case, the devel-
opers do not report the presence of inconsistency. This can be explained for some
reasons. First, sequence diagrams are less abstract than class diagrams. This leads
developers to rely on the behavioral diagrams than structural diagrams. Second, se-
quence diagrams are closer to the final implementation; hence, developers become
confident that the information present on it is the correct one compared with the class
diagram. As a result, it means that when models are used to guide the implementation
of design decisions, inconsistencies in behavioral diagrams have a superior detrimen-
tal effect than those in class diagrams.

5) Identifying Fewer Inconsistencies in Less Time. Developers identify fewer in-
consistencies in AO models than in OO models. However, they spend less effort to
detect it in AO models. During the interviews, it was possible to observe that the main
reason why developers stop in AOM and go ahead in OOM is that inconsistencies in
AOM cause more severe doubts than in OOM. Hence, developers do not feel com-
fortable with using their experience to overcome the inconsistency problems given the
problem at hand. Note that the subjects identify fewer inconsistencies in AOM not
because they spent less time, but because it is seen as a “wicked problem.” Thus, the
developers may be more afraid of dealing with problems in AO models rather than
OO models. Finally, the results suggest that developers might insert more defects into
code by using AO models. This can be motivated for two reasons: (1) low inconsis-
tency detection, and (2) high disagreement on design interpretations.

5 Threats to Validity

Internal Validity. Inferences between our independent variable and the dependent
variables are internally valid if a causal relation involving these two variables is dem-
onstrated [5]. Our study met the internal validity because: (1) the temporal precedence
criterion was met; (2) the covariation was observed, i.e. the dependent variables
varied accordingly when the independent changed; and (3) there is no clear extra
cause for the detected covariation. Our study satisfied all these three requirements for
internal validity.

External Validity. It refers to the validity of the obtained results in other broader con-
texts [5]. Thus, we analyzed whether the causal relationships investigated during this
study could be held over variations in people, treatments, and other settings. Some
characteristics that strongly contributed to this were identified. First, the subjects
used: (1) a practical AOM technique to perform the tasks; and (2) the design models
were fragments of real-world models. Second, the reported controlled experiment was
rigorously performed, in particular, when compared with controlled experiments pre-
viously reported [3].

232 K. Farias, A. Garcia, and C. Lucena

Construct Validity. It concerns the degree to which inferences are warranted from the
observed cause and effect operations included in our study to the constructs that these
instances might represent. All variables of this study were quantified using a suite of
effort metrics or indicators that were previously defined and independently validated
in experiments of inconsistency detection [2][3]. Moreover, the concept of effort used
throughout our study is well known in the literature [8] and its quantification method
was reused from previous work [2][3]. Therefore, we are confident that the quantifi-
cation method used is correct, and the quantification was accurately performed.

Statistical Conclusion Validity. Experimental guidelines were followed to eliminate
this threat [5]: (1) the assumptions of the statistical tests (paired t-test and Wilcoxon)
were not violated; (2) collected datasets were normally distributed; (3) the homogenei-
ty of the subjects’ background was assured; (4) the quantification method was properly
applied; and (5) statistic methods were used. The Kolmogorov-Smirnov and Shapiro-
Wilk tests [1] were used to check how likely the collected sample was normally
distributed.

6 Related Work

Aspect-oriented modeling is a very active research field [7][17]. However, there is
little related work focusing on the quantitative and qualitative assessment of AOM.
The current AOM literature does highlight the importance of performing empirical
studies [8]. However, none of them empirically investigate the research topics ad-
dressed in our research questions. Research has been mainly carried out in two areas:
(1) defining new AOM techniques [7][17], and (2) proposing new weaving mechan-
isms [13]. Several authors have proposed new modeling languages, focusing on the
definition of constructs, such as <<aspect>> and <<crosscut>>. These constructs
represent concepts of aspect-orientation as UML-based extensions [7][17][18][19][20].
For example, Clarke and Baniassad [7] make use of UML templates to specify aspect
models. On the other hand, the chief motivation of some works is to provide a syste-
matic method for weaving aspect and base models (e.g. [12][13]). For example, Klein
and colleagues [13] present a semantic-based aspect weaving algorithm for hierarchical
message sequence charts (HMSC). They use a set of transformations to weave an ini-
tial HMSC and a behavioral aspect expressed with scenarios. Moreover, the algorithm
takes into account the compositional semantics of HMSCs.

Empirical studies of AOM (such as [6]) have not been conducted, in particular, in the
context of modeling inconsistencies (or defects). Only the literature on OO modeling
does highlight that empirical studies have been done on identifying defects in design
models [2][3]. Lange and Chadron [3] investigate the effects of defects in UML models.
The two central contributions were: (1) the description of the effects of undetected de-
fects in the interpretation of UML models, and (2) the finding that developers usually
detect more certain kinds of defects than others. In conclusion, there are two critical
gaps in the current understanding about AOM: (1) the lack of practical knowledge about
the developers’ effort to localize inconsistencies, and (2) the lack of empirical evidence
about the detection rate and misinterpretations when understanding AO models.

 Evaluating the Impact of Aspects on Inconsistency Detection Effort 233

7 Concluding Remarks

This paper reports an empirical investigation about the impact of AOM on the incon-
sistency detection rate, the effort to detect inconsistencies, and the misinterpretation
rate. We observed that developers detected fewer inconsistencies in AO models than
OO models. The reason is that they got more distracted by the global reasoning moti-
vated by the presence of crosscut relations and overlooked the negative effects of
existing model inconsistencies. According to the subjects, a complex crosscutting
collaboration between modules led developers to unconsciously make more implicit
assumptions about the correct design decisions. As a consequence, aspects with high-
er quantification were the cause of a lower detection rate of inconsistencies.

Second, developers spent less effort using AO models to detect each inconsistency
than in OO models. This was mainly due to a higher degree of overlapping information
in structural and behavioral views of AOM. Third, the software developers presented a
superior rate of misinterpretation in AO models, mostly thanks to the additional num-
ber of modeling concepts (e.g., crosscut relationships and aspects). They also had to
examine all join points affected by the aspects. This extra analysis increased the degree
of disagreement by developers while interpreting AO models and producing the code.
It is important to highlight that all the aforementioned findings were independent of
inconsistencies being assessed.

References

1. Levine, D., Ramsey, P., Smidt, R.: Applied Statistics for Engineers and Scientists. Dux-
bury (1999)

2. Lange, C., Chaudron, M.: An Empirical Assessment of Completeness in UML Designs. In:
8th Empirical Assessment in Software Engineering 2004, pp. 111–121 (2004)

3. Lange, C., Chaudron, M.: Effects of Defects in UML Models – An Experimental Investi-
gation. In: International Conference on Software Engineering 2006, Shangai, China, pp.
401–410 (May 2006)

4. Kitchenham, B., et al.: Evaluating Guidelines for Reporting Empirical Software Engineer-
ing Studies. Empirical Software Engineering 13(1), 97–112 (2008)

5. Wohlin, et al.: Experimentation in Software Engineering: an Introduction. Kluwer Aca-
demic Publishers, Norwell (2000)

6. Farias, K., Garcia, A., Whittle, J.: Assessing the Impact of Aspects on Model Composition
Effort. In: Aspect-Oriented Software Development 2010, Saint Malo, France, pp. 73–84
(2010)

7. Clarke, S., Banaissad, E.: Aspect-Oriented Analysis and Design the Theme Approach. Ad-
dison-Wesley, Upper Saddle River (2005)

8. France, R., Rumpe, B.: Model-Driven Development of Complex Software: A Research
Roadmap. In: Future of Software Engineering at ICSE 2007, pp. 37–54 (2007)

9. Evaluating the Impact of Aspects on Inconsistency Detection Effort: a Controlled Experi-
ment (2012), http://www.les.inf.puc-rio.br/opus/models2012-aom

10. Filman, R., Friedman, D.: Aspect-Oriented Programming is Quantification and Oblivious-
ness. In: RIACS (2000)

234 K. Farias, A. Garcia, and C. Lucena

11. OMG, Unified Modeling Language: Infrastructure, v2.2, Object Management Group
(February 2010)

12. Whittle, J., Jayaraman, P.: Synthesizing Hierarchical State Machines from Expressive Sce-
nario Descriptions. ACM TOSEM 19(3) (January 2010)

13. Klein, J., Hélouët, L., Jézéquel, J.: Semantic-based Weaving of Scenarios. In: 5th Aspect-
Oriented Software Development, Bonn, Germany (March 2006)

14. AspectJ (2011), http://www.eclipse.org/aspectj
15. Dobing, B., Parsons, J.: How UML is Used. Communications of the ACM 49(5), 109–113

(2006)
16. Brun, Y., Holmes, R., Ernst, M., Notkin, D.: Proactive Detection of Collaboration Con-

flicts. In: 8th SIGSOFT ESEC/FSE, Szeged, Hungary, pp. 168–178 (2011)
17. Losavio, F., Matteo, A., Morantes, P.: UML Extensions for Aspect Oriented Software De-

velopment. Journal of Object Technology 8(5), 85–104 (2009)
18. Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W., Schwinger, W., Kap-

sammer, E.: A survey on UML-based aspect-oriented design modeling. ACM Computing
Survey 43(4), 1–33 (2012)

19. Aldawud, O., Elrad, T., Bader, A.: A UML Profile for Aspect- Oriented Software Devel-
opment. In: Workshop on Aspect-Oriented Modeling at AOSD (2003)

20. Chavez, C., Lucena, C.: A Metamodel for Aspect-Oriented Modeling. In: Workshop on
Aspect-Oriented Modeling with the UML, at AOSD 2002, Netherlands (April 2002)

