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Abstract. Design models represent modular realizations of stakeholders’ con-
cerns and communicate the design decisions to be implemented by developers. 
Unfortunately, they often suffer from inconsistency problems. Aspect-oriented 
modeling (AOM) aims at promoting better modularity. However, there is no 
empirical knowledge about its impact on the inconsistency detection effort. To 
address this gap, this work investigates the effects of AOM on: (1) the develop-
ers’ effort to detect inconsistencies; (2) the inconsistency detection rate; and (3) 
the interpretation of design models in the presence of inconsistencies. A con-
trolled experiment was conducted with 26 subjects and involved the analysis of 
520 models. The results, supported by statistical tests, show that the effort of 
detecting inconsistencies is 20 percent lower in AO models than in their OO 
counterparts. On the other hand, the inconsistency detection rate and the num-
ber of misinterpretations are 43 and 37 percent higher in AO models than in OO 
models, respectively. 
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1 Introduction 

Modeling languages (e.g., UML [11] and its extensions) provide different types of 
models, such as class and sequence diagrams, to represent the structure and behavior 
of software systems. These complementary models represent the design decisions that 
developers will implement later. In practice, these models often suffer from the incon-
sistency problems [16]. These inconsistencies are mainly caused by the mismatch 
between the overlapping parts of complementary models and the lack of formal se-
mantics to prevent these contradictions [2][3]. Consequently, developers must invest 
some effort to detect and properly deal with these inconsistencies [6]; otherwise, 
emerging misinterpretations of the design models can compromise the resulting 
implementation. 

Different modeling languages support different forms of modular decomposition 
and may influence how developers detect or even neglect inconsistencies [3]. This 
might be particularly the case with aspect-oriented modeling (AOM) [7][17] as it in-
tends to improve design modularity of otherwise crosscutting concerns. Current 
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research in AOM varies from UML extensions [7][17][19][20] to alternative strategies 
for model weaving. Unfortunately, nothing has been done to investigate whether as-
pect-oriented models can alleviate the burden of dealing with model inconsistencies. 
Someone might hypothesize that they might help developers to understand the design 
before implementing it. Others could also postulate that the improved modularization 
would reduce the effort to detect inconsistencies or even reduce misinterpretations 
arising between complementary design models. 

Unfortunately, it is by no means obvious whether these assumptions hold (or not). 
First, it may be the case that additional constructs in AO models lead to detrimental 
effects on design understanding. Second, it is still not clear if an aspect affecting mul-
tiple join points may increase the inconsistency detection and improve the model 
interpretation. Third, developers might get “distracted” by the global reasoning moti-
vated by the presence of crosscutting relations [10] between classes and aspects. At 
last, developers might even invest more effort using AO models while examining all 
points that are crosscut by the aspects [6].  

In this context, this paper reports a controlled experiment (Section 3) aimed at in-
vestigating the impact of AOM on: (1) the rate of inconsistency detection; (2) the 
developers’ effort to detect these inconsistencies; and (3) developers’ misinterpreta-
tion rate. We compare the use of AO models to OO models in a particular context: the 
use and understanding of design models by developers needed to produce the corres-
ponding implementation. The results (Section 4) supported by statistical tests and 
qualitative analysis, show that AO models alleviate the effort to detect inconsisten-
cies. But, it neither reduces inconsistency detection rate nor misinterpretation rate.  

Moreover, we also discuss some additional findings (Section 4.4). For instance, we 
observed that the downsides of AOM were, to a large extent, caused by the degree of 
quantification [10] of the aspects. That is, the higher the number of modules affected 
by an aspect, the lower the inconsistency detection rate and the higher the misinter-
pretation rate. Moreover, we observed that developers tended to detect inconsistencies 
more quickly in AO models when the scope of aspect pointcuts was narrow. Equally 
relevant was the finding that the required mental model is directly influenced by the 
number of crosscut relationships.  

To the best of our knowledge, our results are the first to pinpoint the potential 
(dis)advantages of AOM in imprecise multi-view modeling. After presenting how we 
tried to mitigate the possible threats to validity (Section 5), we make it clear the con-
tributions of our experiment in the light of the related work (Section 6) and present 
final remarks (Section 7). 

2 Background 

2.1 Aspect-Oriented Modeling 

Aspect-oriented modeling (AOM) languages aim at improving the modularity of de-
sign models by supporting the modular representation of concerns that cut across 
multiple software modules. This superior modularization of crosscutting concerns is 
achieved by the definition of a new model element, called aspect. An aspect can 
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crosscut several modules within a system. These relations between aspects and other 
modules are called crosscut relationships. These basic concepts and other aspect-
oriented modeling elements are usually represented as classic UML stereotypes in 
AOM languages [7][17]. The AOM language used throughout our study is a UML 
profile [17][19][20]. The choice of the UML profile for AOM is based on some rea-
sons. First, the Unified Modeling Language [11] is the standard for designing soft-
ware systems. Second, the use of stereotypes reduces the gap between subjects with 
low skill (or experience) and highly skilled (or experienced) subjects. Third, the mod-
el reading technique used by the subjects would not be influenced by new notation 
issues; therefore, the interpretation of the models is exclusively influenced by the use 
of the concepts in object-oriented and aspect-oriented modeling. Finally, UML profile 
for AO programming is the approach more common for structural and behavioral 
diagrams [11]. 

Fig. 1 presents an illustrative example of the models used in our study: a class and 
a sequence diagram of the AOM language used in our study. The notation supports 
the visual representation of aspects, crosscutting relationships and other AOM con-
cepts. The stereotype <<aspect>> represents an aspect, while the dashed arrow deco-
rated with the stereotype <<crosscut>> represents a crosscutting relationship. Inner 
elements of an aspect are also represented, such as pointcut (<<pointcut>>) and ad-
vice. An advice adds behavior before, after, or around the selected join points [7]. The 
stereotype associated with an advice indicates when (<<before>>, <<after>> or 
<<around>>) a join point is affected by the aspect. The join point is a point in the 
base element where the advice specified in a specific pointcut is applied. 

 

Fig. 1. An illustrative example of aspect-oriented models used in our study. (A) and (B) 
represent the conflicting structural diagrams. (C) and (D) represent the structural and sequence 
diagrams without inconsistencies. 
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2.2 Model Inconsistency and Detection Effort 

The multiple views of a software system inevitably have conflicting information [2]. If 
software developers do not detect and properly deal with these inconsistencies the 
potential benefits of the use of the models (e.g., gain in productivity) can be compro-
mised. Developers must invest some considerable effort (time) to detect these inconsis-
tencies; otherwise, the potential benefits of the use of models such as specification of 
the implementation of a system can be compromised. Two broad categories of incon-
sistencies were used in this study: (1) syntactic inconsistencies, which arise when the 
models not conforming to the modeling language’s metamodel; and (2) semantic in-
consistencies, where the meaning of the model element does not match that of the ac-
tual design model. We have particularly selected semantic inconsistencies that are: (i) 
detectable by developers [2], and (ii) difficult or impossible to detect automatically. 
We focused on inconsistencies that have been documented elsewhere [3] and used in a 
previous empirical study [2]. A complete description is also available at our comple-
mentary website [9], and two representative examples are presented below: 

1) Conflicting relationships: the nature of a relationship diverges in structural and 
behavioral models. For instance, according to the sequence diagram, the advice of an 
aspect A crosscuts the behavior of class B; however, the semantics of the advice in A 
dictates when the class diagram should have either a <<crosscut>> or a <<use>> rela-
tionship between A and B. For example, Fig. 1 presents this kind of inconsistency. 
The aspect t:TraceAspect crosscuts the c:CheckingAccount objects (Fig. 1.B). In this 
case, the relationship between TraceAspect and CheckingAccount should be <<cross-
cut>> instead of <<use>> (see Fig. 1.C) given the logging semantics of the advice 
logOperations(). In the structural diagram (Fig. 1.A), the aspect TraceAspect has a 
<<use>> relationship with the class CheckingAccount instead of <<crosscut>> rela-
tionship. 

2) Messages with different return types: the return type of a message m from an 
object A to an object B does not match with the return type of the method M in the 
corresponding class B in the class diagram. For instance, the method CheckingAc-
count.getBalance has conflicting return types: string in the class diagram and double in 
the sequence diagram. A similar conflict can occur with the return type of a around 
advice [17] and the return type from a method execution being advised by the latter.  

Developers detect inconsistencies when they identify conflicting information in the 
models and, then, report that the models cannot be implemented. This decision often 
relies on “guessing” the semantics of the model elements. To reach this conclusion, 
developers need to invest some effort: the time (in minutes) to go through the model 
and infer that the models suffer from inconsistencies.  

3 Study Methodology 

3.1 Goal, Research Questions, and Context 

We formulate the goal of this study using the GQM template [5] as follows: 

Analyze AO and OO modeling techniques for the purpose of investigating the im-
pact with respect to detection effort and misinterpretation from the perspective of 

developers in the context of multi-view design models. 
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Based on this, we focus on the three research questions: 

RQ1: Does AOM affect the efficiency of developers to detect multi-view model 
inconsistencies? 
RQ2: Does AOM influence effort invested by developers to detect model incon-
sistencies? 
RQ3: Do AO models lead to a different misinterpretation rate as compared to OO 
models? 

The context selection is representative of situations where developers implement 
classes (or aspects) based on design models. The experiment was conducted within 
two postgraduate courses at the Pontifical Catholic University of Rio de Janeiro 
(PUC-Rio) and the Federal University of Bahia (UFBA). Both courses are taught in 
the first year of Master and Doctoral programs in Computer Science. Therefore, all 
the subjects (18) hold a Master’s or Bachelor’s degree, or equivalent. In addition, 
eight (8) professionals from three companies also participated in the experiment. Most 
of the professionals held a Master’s or Bachelor’s degree. 

3.2 Hypothesis Formulation 

First Hypothesis (H1). The first research question investigates whether developers by 
using AO models produce a lower (or higher) inconsistency detection rate than by 
using OO models. Usually developers do not indicate the presence of existing incon-
sistencies in multi-view models [3]. The main reason is that they can make implicit 
assumptions about the correct design decisions based on previous experience. Moreo-
ver, they might feel forced to produce an implementation even in the presence of in-
consistency. Thus, our intuition is that developers identify fewer inconsistencies in 
AO models than OO models because they might get distracted by the global reasoning 
motivated by the presence of additional crosscutting relations in the models. Conse-
quently, they may have a higher number of implicit assumptions to assemble the “big 
picture” of a system. However, it is by no means obvious that this hypothesis hold. 
Perhaps, the increased modularity of AOM models may help developers to switch 
more quickly between the behavioral and structural views while implementing their 
aspects. Consequently, the software developer may localize more inconsistencies than 
in OO models. These hypotheses are summarized as follows: 

Null Hypothesis 1, H1-0: The inconsistency detection rate in AO models is 
equal or higher than in OO models. 
H1-0: DetectionRate (AO) ≥ DetectionRate (OO) 
Alternative Hypothesis 1, H1-1: The inconsistency detection rate in AO mod-
els is lower than in OO models. 
H1-1: DetectionRate (AO) < DetectionRate (OO) 

Second hypothesis (H2). The second research question investigates whether develop-
ers invest less (or more) effort to detect inconsistencies in AO models than OO mod-
els. The superior modularity of AO models may help developers to better match and 
contrast the structural and behavioral information about the crosscutting relations. In 
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this case, developers may switch more quickly between the behavioral and structural 
views while systematically implementing their aspects. Thus, our expectation is that 
the higher the number of crosscutting relationships (an aspect crosscutting a wider 
scope) in the model, the lower the effort to detect inconsistencies. This assumption is 
based on the superior ripple effects of inconsistencies observed in AO models when 
model composition techniques are applied [6]. This propagation can directly affect the 
effort in detecting inconsistencies, since developers, facing the complexity of the 
propagations, avoid doing any implementation. That is, by using AOM developers 
tend to get more quickly convinced about the severity of multi-view inconsistencies. 
This means that they are more likely to report them and not going forward on the 
design implementation. However, it is not clear whether this intuition holds because, 
at first, developers may examine all model elements affected (or not) by the inconsis-
tencies, or even the inconsistencies, to some extent, may even be confined in the 
aspectual elements. This leads to the second null hypothesis and an alternative hypo-
thesis as follows: 

Null Hypothesis 2, H2-0: The effort to detect inconsistencies in AO models is 
equal or higher than in OO models. 
H2-0: EffortToDetect (AO) ≥ EffortToDetect (OO) 
Alternative Hypothesis 2, H2-1: The effort to detect inconsistencies in AO 
models is lower than in OO models. 
H2-1: EffortToDetect (AO) < EffortToDetect (OO) 

Third hypothesis (H3). The third research question investigates whether the misinter-
pretation rate (MisR) of the developers is higher (or lower) in AO models than in OO 
models. The chief reason of the disagreement between developers’ interpretation is 
the contradicting understanding of the design models. They are often caused by in-
consistencies emerging from the mismatches between the diagrams specifying the 
multiple, complementary views of the software system [3]. Contradicting design 
models make it difficult for developers to think alike and, hence, producing code with 
the same semantics. The key reason is that software implementation widely depends 
on cognitive factors. Someone could consider that additional AOM concepts, such as 
crosscutting relationships or aspects, may negatively interfere in a common under-
standing of design models by different developers. For instance, developers need to 
precisely grasp the actual meaning of the crosscutting relations (in addition to all oth-
er relations), and when they are actually established during the system execution. 
Then, as developers have to examine all join points affected by the aspects, their extra 
analyses can increase the opportunities of diverging interpretations. However, this 
expectation might not hold because the crosscutting modularity may improve the 
overall understanding of the design a when compared to pure OO models. This would 
lead to the following null and alternative hypotheses: 

Null Hypothesis 3, H3-0: The misinterpretation rate (MisR) in AO models is 
equal or higher in AO models than in OO models. 
H3-0: MisR(AO) ≥ MisR(OO) 
Alternative Hypothesis 3, H3-1: The misinterpretation rate in AO models is 
lower than in OO models. 
H3-1: MisR(AO) < MisR(OO) 
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3.3 Experiment Design 

Selection of subjects. Subjects (18 students and 8 professionals) were selected based on 
two key criteria: the level of theoretical knowledge and practical experience related to 
software modeling and programming. The subjects studied in educational systems that 
place a high value on key principles of software modeling and programming. In addi-
tion, the subjects were exposed to more than 120 hours of courses (lectures and labora-
tory) exclusively dedicated to software design, software modeling, OO programming, 
and AO software development. It can be considered they underwent an intensive mod-
eling-specific and programming training. As far as practical knowledge is concerned, 
the main selection criterion was that subjects had, at least, 2 years of experience with 
software modeling and programming acquired from real-world project settings. 

Paired comparison design. All subjects were submitted to two treatments (AO and 
OO modeling) to allow us to compare the matched pairs of experimental material. 
Each treatment had a questionnaire with five multiple-choice questions. The first 
treatment had only questions with AO models while the second one had only ques-
tions with OO models. The subjects were assigned randomly and equally distributed 
to these treatments so that the effects of the order could be discarded. Therefore, the 
experimental design of this study is by definition a balanced design.  

As the subjects were submitted to two treatments, an ever-present concern was the 
information that the subject could gain from the first treatment to perform the experi-
ment with the second treatment. To minimize the “gain in information,” some expe-
rimental strategies [4][5] were followed. First, the models used in the study were 
fragments of class and sequence diagrams from realistic, industrial design models of 
different application domains. Hence, the subjects had no prior information and no 
accumulated knowledge about the semantics of the model elements. Second, each 
question had a class and sequence diagram representing different functionalities of a 
software system. Third, each pair of structural and behavioral models had different 
kinds of inconsistencies (Section 2.2), and the meanings of their elements were com-
pletely different. Therefore, we can assume that the performance of subjects was not 
influenced by the treatments of previous questions.  

Tasks. In both treatments, the subjects received a pair of corresponding class (structural) 
and sequence (behavioral) diagrams. They were asked how they would implement par-
ticular classes (or aspects) based on these diagrams. That is, rather than stimulated to 
review or inspect the diagrams, the subjects were encouraged to implement particular 
model elements (classes or aspects). The goal is to identify how developers would deal 
with inconsistencies in the context of concrete software engineering tasks. The subjects 
should choose, then, the most appropriated implementations between the five possible 
answer options. In each question, the subjects were required to register the time invested 
to answer the question (“start time” and “end time”). They were also stimulated to justi-
fy their answers on the answer sheet. In total, ten questions were answered. After the 
experiment, the subjects were also interviewed to clarify the results. 

Objects. In the questions of the first treatment, the OO class diagram had, on average, 
7 classes and 8 relationships, while in the second treatment the questions had an AO 
class diagram with, on average, 5 classes and 2 aspects, and 8 relationships. The cor-
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responding AO and OO sequence diagrams had, on average, 5 objects and 15 messag-
es between the objects (and/or aspects). Each pair of OO or AO diagrams had two 
kinds of inconsistencies. The inconsistencies were always related to contradictions 
between the class and sequence diagrams. That is, there was conflicting information 
between those diagrams, as the examples given in Section 2.2. Considering the an-
swer options in each question, they were planned according to the following schema. 
The first answer option is according to the class diagram while the second one is just 
according to the sequence diagram. The third answer option is based on the combina-
tion of the information presented in both diagrams. The fourth one is incorrect consi-
dering all two diagrams. All questions had a fifth answer option where the subjects 
could indicate that an inconsistency was detected in the models. The subjects were 
encouraged to carefully explain their answers. Further details of the experimental 
design can be found in [9]. 

3.4 Variables and Quantification Method 

The independent variable of this study is the choice of the modeling language. It is 
nominal and two values can be assumed: AO modeling and OO modeling. These 
variables describe the treatments, and we investigate their impacts on following de-
pendent variables.  

Inconsistency detection rate (Rate) and Inconsistency detection effort (Effort). The 
Rate variable is intended to measure the overall rate of inconsistencies detected by all 
subjects (RQ1). It represents the ratio of the number of subjects that detect inconsisten-
cies in a question divided by the number of subjects that answer the question without 
notifying the presence of inconsistency. The Effort variable represents the mean of 
time (minutes) spent by the subjects to detect inconsistencies in a question (RQ2). Note 
that subjects detect inconsistencies when they explicitly indicate that they are unable to 
achieve a suitable implementation from the contracting diagrams. 

Misinterpretation rate (MisR). This variable represents the degree of variation of the 
answers (RQ3). That is, it measures the concentration of the answers over the four 
possible alternatives (the fifth alternative represents the detection of inconsistency). 
Our concern is if the differences in (un)detected inconsistency affects the design inter-
pretation of the subjects. An undetected inconsistency is not necessarily problematic 
[3] if all subjects have the same interpretation. For example, if the 26 subjects have the 
same answer (e.g., the alternative “A”) for a question, then the inconsistencies in the 
diagrams did not lead to misinterpretations (MisR = 1). On the other hand, if the devel-
opers’ answers spread equally over the four alternatives, then the inconsistencies cause 
serious misinterpretations (MisR = 0). That is, the misinterpretation rate is 0 if answers 
are distributed equally over all options, and 1 if the answers are concentrated only one 
answer option. According to [3], this variable can be measured as follows. ܴݏ݅ܯሺ݇, … , ݇ିଵሻ ൌ 1 െ 2 ∑ ݇݅ஸழܰሺܭ െ 1ሻ  

Where: 
K: The number of alternatives for a question 



 Evaluating the Impact of Aspects on Inconsistency Detection Effort 227 

ki: The number of times alternative i was selected, where 0 ≤ i < K and  
(for all i : 0 ≤ i < K − 1 : ki ≥ ki+1) 

N: The sum of answers over all alternatives: N = ∑ ݇ஸழ  

3.5 Operation 

Preparation phase. The subjects (students and professionals) were not aware of the 
research questions (and hypotheses) of our study in order to avoid biased results. The 
motivation of the students was to gain extra points for their grade. The results ob-
tained by the students had no effect on their grade; instead, their dedication and quali-
ty of the justifications of the sheet and interviews. The professionals received the 
same questions as a printable questionnaire. All subjects received a refresher training 
to be sure of their familiarity with the modeling concepts used in the study. 

Execution phase. The experiment tasks were run within two courses at two different 
Brazilian universities (PUC-Rio and UFBA). Both runs were carried out in a class-
room following typical exam-like settings. However, because of time constraints and 
location, the professionals run the experiment in their work environment. However, 
the experiment was carefully controlled. All subjects received 10 questions and the 
answer sheets. It is important to point out that there was no time pressure for the sub-
jects, but they were rigorously supervised to correctly register the time. Therefore, we 
are confident that the time was recorded properly. For clarification reasons, the sub-
jects were encouraged to justify their answers. After finishing the experiment, the 
subjects filled out a questionnaire to collect their background, i.e. their academic 
background and work experience. Observational studies were conducted to improve 
understanding how the tasks in the experiment were performed,. This allowed a more 
effective observation and monitoring of the tasks of the subjects. To obtain an addi-
tional feedback from the subjects, they were also encouraged to write down the ratio-
nale used to answer the questions. 

Interview phase. Additionally, a semi-structured interview approach [5] was per-
formed, which followed a funnel model, i.e. one initial open question was presented 
and followed by more specific ones. It was organized in topics with open and close 
questions in such a way that qualitative evidence on the research questions could be 
gathered. An interview guide was created based on the authors’ experience and the 
study design. The interviews were recorded and transcribed into text. All subjects 
were selected for interviews. Each interview lasted from 30 to 55 minutes, depending 
on how talkative the subjects were. 

4 Experimental Results 

4.1 RQ1: Detection Rate in AO and OO Models  

Descriptive Statistics. The first research question investigates if developers detect more 
(or less) inconsistencies in AO models or OO models. Developers detected more in-
consistencies in OO models than AO models. The superior detection rate in OO mod-
els can be explained comparing means and medians (Table 1). Developers detect, on 
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average, by about 43.24 percent more inconsistencies in OO models than AO models, 
i.e. a mean of 0.37 (AO) compared with a mean of 0.53 (OO). The difference observed 
between the medians also favors the OO models. This comprises a superiority of 42.85 
percent in the number of the cases in which developers reported to be unable to provide 
an implementation. The results suggest that OO models enable developers to identify 
more inconsistencies than AO models. This contradicts somehow the intuition that the 
improved modularity of AOM helps developers to localize inconsistencies.  

Hypothesis Testing. Since the Shapiro-Wilk and Kolmogorov-Smirnov normality tests 
[1] indicates that the data are normally distributed, the paired t-test is applied to test 
H1. The collected t-statistic is 4.03 with the p-value = 0.01 (Table 1). This small p-
value (< 0.05) indicates the first null hypothesis (H1-0) can be rejected. This implies 
that the average difference of the detection rate in AO and OO models is not zero. 
Therefore, there is strong evidence (at the 0.05 level significant) that developers 
detect more inconsistencies in OO models than in AO models. The mean differences 
between the pairs of AO and OO models indicate the direction in which the result is 
significant. For example, considering the varying detection rate for AO and OO mod-
els, the mean difference is negative (-0.16). This implies that the detection rate in AO 
models was statistically lower than in OO models. Moreover, the non-parametric 
Wilcoxon test is applied to eliminate any threat related to statistical conclusion validi-
ty. The low value of the p-value = 0.031 collected (< 0.05) also confirmed the afore-
mentioned conclusion. Therefore, we can reject the null hypothesis H1-0. 

Table 1. Descriptive statistics and Stastical tests for measures 

Variables Treat. Mean 
St 

Dev 
Min. 25th Med. 75th Max %diff

Wilcoxon Paired t-test 

p-value t p MD 

Detection 
AO 0.37 0.09 0.23 0.29 0.35 0.46 0.54

43.24 0.031 4.03 0.01 -0.16 
OO 0.53 0.11 0.38 0.42 0.5 0.67 0.69

Effort 
AO 5.28 1.67 4 4.08 4.22 7 7.8 

19.69 0.033 3.1 0.03 -1.48 
OO 6.32 1.57 4.33 5.06 6.08 7.71 8.65

MisR 
AO 0.51 0.07 0.38 0.45 0.52 0.57 0.58

37.25 0.029 2.94 0.04 -0.19 
OO 0.7 0.07 0.62 0.64 0.69 0.77 0.81

*with 4 degree of freedom, a significance level of α = 0.05, MD: mean difference, p: p-value, 

St Dev: standard deviation 

 

4.2 RQ2: Detection Effort in AO and OO Models 

Descriptive Statistics. The second research question investigates the effort that devel-
opers should invest to detect inconsistencies in AO and OO models. Developers spend 
more effort to detect inconsistencies in OO models than AO models. The mean of 
detection effort is 5.28 (minutes) in AO models and 6.32 in OO models. This com-
prises a representative increase of 19.69 percent against plain UML models. This 
lower effort in the use of AOM is also observed comparing the medians. The detec-
tion effort ranges from 4.22 (minutes) in AO models to 6.08 in OO models, which 
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represents an increase of 44.07 percent in the latter case. This phenomenon confirmed 
our initial intuition that the superior modularity of AO models would accelerate the 
inconsistency detection. In fact, during the interviews, the subjects (18) reported that 
the manifestation of inconsistencies in crosscutting relations made the implementation 
to be prohibitive. Hence, the subjects reported more quickly in the AO model than in 
OO models. We noticed they were keener to match and contrast the structural and 
behavioral information governing the crosscut relations. Therefore, developers often 
report conflicting crosscutting relations as the reason for not progressing towards the 
implementation. This implies that although developers detect fewer inconsistencies in 
AO models, they spend less effort to localize them.  

Hypothesis Testing. Since the Shapiro-Wilk and Kolmogorov-Smirnov normality tests 
[1] indicate that the data are normally distributed, the paired t-test is applied to test 
H2. The collected t-statistic is 3.1 with the p-value = 0.03 (Table 1). This small p-
value (< 0.05) indicates the second null hypothesis (H2-0) can be rejected. This sug-
gests that the average difference of the inconsistency detection effort in AO and OO 
models is not zero. Thus, there is strong evidence (at the 0.05 level significant) that 
developers invest more effort to detect inconsistencies in OO models than in AO 
models. The detection effort in AO and OO groups assumes a negative value for the 
mean difference (-1.48), while the p-value (0.03) is less than 0.05. This implies that 
detection effort in OO models is statistically higher than in AO models. Moreover, the 
non-parametric Wilcoxon test is applied to eliminate any threat related to statistical 
conclusion validity. The low value of the p-value collected (0.033) also confirmed the 
previous conclusion. Therefore, we can reject the null hypothesis H2-0. 

4.3 RQ3: Misinterpretation Rate in AO and OO Models 

Descriptive Statistics. The third research question investigates whether AO models 
lead to a higher or lower misinterpretation rate than OO models. Table 1 shows the 
descriptive statistics to the misinterpretation measures of AO and OO models. Recall 
that MisR varies between 0 and 1, and that MisR = 1 indicates that developers do not 
have misinterpretation. On the other hand, MisR = 0 indicates that the developers’ 
answers spread equally over the four different alternatives, which represent the most 
serious misinterpretations. OO models cause less misinterpretation (higher MisR val-
ue) than AO models. The misinterpretation rate is 37.25 percent lower in OO models; 
the mean is 0.51 in AO groups against 0.7 in OO groups. This upward trend is also 
observed in the medians: 0.52 in AO models against 0.68 in OO models, comprising 
an increase of 32.69 percent. The results suggest that the presence of inconsistencies 
in AO models entails a higher detrimental impact on model interpretation by develop-
ers than in OO models. Our initial expectation that by using contradicting AO design 
models would increase the number of diverging interpretations was confirmed. Dur-
ing the interviews and examining the answer sheets, the subjects (22) reported that the 
need to scan all join points affected by the aspects increased the likelihood of differ-
ent interpretations.  

Hypothesis Testing. We analyze the strength of the aforementioned result testing H3 
as follows. As in the previous analysis, the paired t-test is applied to test H3 as the 
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measures assume a normal distribution. Table 1 shows the pairwise p-values and 
mean differences across pairs for each measure. As the mean difference is negative (-
0.19) and p-value (0.04) is less than 0.05, we can conjecture that there is significant 
evidence that the number of diverging interpretations in AO models is statistically 
higher than in OO models. We also applied the non-parametric Wilcoxon test to 
check this conclusion. The p-value (0.029) also assumed a low value (p < 0.05). 
Therefore, as the p-value is less than 0.05, and the mean difference is negative, we 
can conclude that: there is evidence that the MisR in AO models is significantly lower 
than in OO models. Therefore, we reject the null hypothesis H3-0. 

4.4 Discussion 

We have identified five outstanding findings from the answer sheets, interviews, and 
observational study.  

1) Higher Aspect Quantification and Inconsistency Detection. First, aspects with 
higher quantification [10] harmed inconsistency detection (RQ1) and the model inter-
pretation (RQ3) by developers. We observed that when an aspect had six crosscutting 
relationships and, therefore, affected multiple join points (11, in this case), the sub-
jects spend more time on performing global reasoning. The analysis of several aspect 
effects in the structural diagrams made developers often to neglect the analysis of 
behavioral interactions at each specific join point in the behavioral diagrams. Accord-
ing to the interviewees, this effect distracts away developers from observing possible 
inconsistencies between the structural and behavioral views. We observed, for exam-
ple, that the inconsistency detection rate in OO models was 71 percent higher than in 
AO models when the latter were composed of aspects with high quantification; in 
these circumstances, the mean in OO models was 0.65 compared to 0.38 in AO mod-
els. We noticed that 20 subjects explicitly reported that they felt distracted by the 
presence of high density of crosscutting relationships among the model elements. 

2) Overlapping Information about Crosscutting Relationships. Conversely, we ob-
served that the subjects tended to detect more quickly inconsistencies in AO models 
when the scope of aspect pointcuts was narrow. In these cases, developers invested 
effort in only confronting structural and behavioral information about the crosscutting 
relations. According to the subjects, they could observe inconsistencies more quickly 
in AO models because structural diagrams often express the type of an advice (i.e. 
before, after or around), which is also a behavioral information that is present in the 
sequence diagram. Then, they could easily identify inconsistencies between: (i) the 
types of advices in the class diagram, and (ii) when a particular message was being 
advised by the aspect in the sequence diagram. 

3) Crosscutting Relationships and Diverging Mental Models of the “Big Picture.” 
Data analysis suggests that uniform interpretation of AO models by different develop-
ers is harder to achieve than in OO models. The subjects had difficulties to create a 
“big picture” view from the conflicting class and sequence diagrams. This view 
represents a “mental model” reflecting how software developers perceive the prob-
lem, think about it, and solve it by producing the expected code from the diagrams. 
This understanding shapes the actions of the developers and defines the approach to 
guide the design realization in the code. In particular, the developers apparently had 
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diverging mental models when the model inconsistencies were sourced in the cross-
cutting relationships. In these cases, developers came up with very different solutions 
for realizing crosscutting relationships in the code. They provided different answers 
on which and when the advice should affect the base model elements. Consequently, 
the communication from designers to programmers seems to be more sensitive to 
inconsistencies in aspect-oriented models.  

4) The Level of Model Detail Matters. Developers usually consider the sequence 
diagrams as the basis for the design implementation. Note that in this case, the devel-
opers do not report the presence of inconsistency. This can be explained for some 
reasons. First, sequence diagrams are less abstract than class diagrams. This leads 
developers to rely on the behavioral diagrams than structural diagrams. Second, se-
quence diagrams are closer to the final implementation; hence, developers become 
confident that the information present on it is the correct one compared with the class 
diagram. As a result, it means that when models are used to guide the implementation 
of design decisions, inconsistencies in behavioral diagrams have a superior detrimen-
tal effect than those in class diagrams.  

5) Identifying Fewer Inconsistencies in Less Time. Developers identify fewer in-
consistencies in AO models than in OO models. However, they spend less effort to 
detect it in AO models. During the interviews, it was possible to observe that the main 
reason why developers stop in AOM and go ahead in OOM is that inconsistencies in 
AOM cause more severe doubts than in OOM. Hence, developers do not feel com-
fortable with using their experience to overcome the inconsistency problems given the 
problem at hand. Note that the subjects identify fewer inconsistencies in AOM not 
because they spent less time, but because it is seen as a “wicked problem.” Thus, the 
developers may be more afraid of dealing with problems in AO models rather than 
OO models. Finally, the results suggest that developers might insert more defects into 
code by using AO models. This can be motivated for two reasons: (1) low inconsis-
tency detection, and (2) high disagreement on design interpretations.  

5 Threats to Validity 

Internal Validity. Inferences between our independent variable and the dependent 
variables are internally valid if a causal relation involving these two variables is dem-
onstrated [5]. Our study met the internal validity because: (1) the temporal precedence 
criterion was met; (2) the covariation was observed, i.e. the dependent variables 
varied accordingly when the independent changed; and (3) there is no clear extra 
cause for the detected covariation. Our study satisfied all these three requirements for 
internal validity. 

External Validity. It refers to the validity of the obtained results in other broader con-
texts [5]. Thus, we analyzed whether the causal relationships investigated during this 
study could be held over variations in people, treatments, and other settings. Some 
characteristics that strongly contributed to this were identified. First, the subjects 
used: (1) a practical AOM technique to perform the tasks; and (2) the design models 
were fragments of real-world models. Second, the reported controlled experiment was 
rigorously performed, in particular, when compared with controlled experiments pre-
viously reported [3]. 
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Construct Validity. It concerns the degree to which inferences are warranted from the 
observed cause and effect operations included in our study to the constructs that these 
instances might represent. All variables of this study were quantified using a suite of 
effort metrics or indicators that were previously defined and independently validated 
in experiments of inconsistency detection [2][3]. Moreover, the concept of effort used 
throughout our study is well known in the literature [8] and its quantification method 
was reused from previous work [2][3]. Therefore, we are confident that the quantifi-
cation method used is correct, and the quantification was accurately performed. 

Statistical Conclusion Validity. Experimental guidelines were followed to eliminate 
this threat [5]: (1) the assumptions of the statistical tests (paired t-test and Wilcoxon) 
were not violated; (2) collected datasets were normally distributed; (3) the homogenei-
ty of the subjects’ background was assured; (4) the quantification method was properly 
applied; and (5) statistic methods were used. The Kolmogorov-Smirnov and Shapiro-
Wilk tests [1] were used to check how likely the collected sample was normally 
distributed. 

6 Related Work 

Aspect-oriented modeling is a very active research field [7][17]. However, there is 
little related work focusing on the quantitative and qualitative assessment of AOM. 
The current AOM literature does highlight the importance of performing empirical 
studies [8]. However, none of them empirically investigate the research topics ad-
dressed in our research questions. Research has been mainly carried out in two areas: 
(1) defining new AOM techniques [7][17], and (2) proposing new weaving mechan-
isms [13]. Several authors have proposed new modeling languages, focusing on the 
definition of constructs, such as <<aspect>> and <<crosscut>>. These constructs 
represent concepts of aspect-orientation as UML-based extensions [7][17][18][19][20]. 
For example, Clarke and Baniassad [7] make use of UML templates to specify aspect 
models. On the other hand, the chief motivation of some works is to provide a syste-
matic method for weaving aspect and base models (e.g. [12][13]). For example, Klein 
and colleagues [13] present a semantic-based aspect weaving algorithm for hierarchical 
message sequence charts (HMSC). They use a set of transformations to weave an ini-
tial HMSC and a behavioral aspect expressed with scenarios. Moreover, the algorithm 
takes into account the compositional semantics of HMSCs.  

Empirical studies of AOM (such as [6]) have not been conducted, in particular, in the 
context of modeling inconsistencies (or defects). Only the literature on OO modeling 
does highlight that empirical studies have been done on identifying defects in design 
models [2][3]. Lange and Chadron [3] investigate the effects of defects in UML models. 
The two central contributions were: (1) the description of the effects of undetected de-
fects in the interpretation of UML models, and (2) the finding that developers usually 
detect more certain kinds of defects than others. In conclusion, there are two critical 
gaps in the current understanding about AOM: (1) the lack of practical knowledge about 
the developers’ effort to localize inconsistencies, and (2) the lack of empirical evidence 
about the detection rate and misinterpretations when understanding AO models. 



 Evaluating the Impact of Aspects on Inconsistency Detection Effort 233 

7 Concluding Remarks 

This paper reports an empirical investigation about the impact of AOM on the incon-
sistency detection rate, the effort to detect inconsistencies, and the misinterpretation 
rate. We observed that developers detected fewer inconsistencies in AO models than 
OO models. The reason is that they got more distracted by the global reasoning moti-
vated by the presence of crosscut relations and overlooked the negative effects of 
existing model inconsistencies. According to the subjects, a complex crosscutting 
collaboration between modules led developers to unconsciously make more implicit 
assumptions about the correct design decisions. As a consequence, aspects with high-
er quantification were the cause of a lower detection rate of inconsistencies. 

Second, developers spent less effort using AO models to detect each inconsistency 
than in OO models. This was mainly due to a higher degree of overlapping information 
in structural and behavioral views of AOM. Third, the software developers presented a 
superior rate of misinterpretation in AO models, mostly thanks to the additional num-
ber of modeling concepts (e.g., crosscut relationships and aspects). They also had to 
examine all join points affected by the aspects. This extra analysis increased the degree 
of disagreement by developers while interpreting AO models and producing the code. 
It is important to highlight that all the aforementioned findings were independent of 
inconsistencies being assessed.  
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