
The Journal of Systems and Software 159 (2020) 110443

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Effects of contextual information on maintenance effort: A controlled

experiment

Leandro Ferreira D’Avila

∗, Kleinner Farias, Jorge Luis Victria Barbosa

Applied Computing Graduate Program (PPGCA) University of Vale do Rio dos Sinos (UNISINOS) São Leopoldo, 93.022-0 0 0, Brazil

a r t i c l e i n f o

Article history:

Received 18 November 2018

Revised 30 August 2019

Accepted 10 October 2019

Available online 11 October 2019

Keywords:

Maintenance effort

Empirical study

Contextual information

Qualitative dashboard

a b s t r a c t

There has been an increased focus on context-aware tools in software engineering. Within this area, an

important challenge is to define and model the context for software-development projects and software

development in general. This article reports a controlled experiment that compares the effort to imple-

ment changes, the correctness and the maintainability of an existing application between two projects;

one that uses qualitative dashboards depicting contextual information, and one that does not. The results

of this controlled experiment suggest that the usage of qualitative dashboards improves the correctness

during the software maintenance activities and reduces the effort to implement these activities.

© 2019 Elsevier Inc. All rights reserved.

1

e

n

l

i

i

t

S

t

a

i

m

w

s

t

o

s

i

f

p

k

o

b

a

a

t

e

c

a

a

f

t

p

a

g

a

a

h

0

. Introduction

Developers need to deal often with maintenance activities on

xisting applications in order to adapt them to new scenarios and

eeds, for example, new features, bug fixing and conformance to

egal requirements. Software maintenance is defined as the mod-

fication of a software product after delivery to correct faults, to

mprove performance or other attributes, or to adapt the product

o a modified environment (Rajlich, 2001). According to Lientz and

wanson (1980) , maintenance activities are categorized as adap-

ive, perfective, corrective and preventive. To perform maintenance

ctivities, developers must consider a lot of information regard-

ng the code under maintenance to guarantee the software quality,

aintainability and continuous integration.

Besides that, developers often deal with organization factors

hich may have a potential impact on the success or failure of

oftware development projects. Some of these organization fac-

ors, observed by Lavallée and Robillard (2015) , are: large amount

f poorly documented software, lots of interdependencies between

oftware modules and conflicts between projects on the schedul-

ng of deployment. According to the authors, these organizational

actors cause the following impacts on the software-development

rojects:

• Some requirements are discovered late in the development

process;
∗ Corresponding author.

E-mail addresses: leandro.davila@gmail.com (L.F. D’Avila),

leinnerfarias@unisinos.br (K. Farias), jbarbosa@unisinos.br (J.L.V. Barbosa).

h

2

M

M

f

ttps://doi.org/10.1016/j.jss.2019.110443

164-1212/© 2019 Elsevier Inc. All rights reserved.
• Compatibility between modules is patched quickly and hap-

hazardly;
• Frontiers between processes hinder information exchanges

and developers must work with missing details.

According to Baysal et al. (2013) , a way to mitigate the impact

f these factors on software correctness and maintainability can

e providing useful information regarding the context of code or

pplication under development using the analytics approach. The

vailability of this information provides a better understanding of

he developer in relation to issues surrounding the software and its

nvironment. Zhang et al. (2013) showed that analytics techniques

an be used to better understand software quality. According to the

uthors, the main objective of the analytic techniques is to provide

ctionable, real-time insights with quantitative and qualitative in-

ormation.

The qualitative data provided through dashboards can improve

he developers situational awareness during software development

rocess, more specifically on code maintenance, providing action-

ble information. This allows developers to anticipate possible

aps, be aware about diverse aspects regarding the source code,

nd finally implement a suitable solution in terms of correctness

nd maintainability.

The definition and use of context in software development

ave received special attention in recent years (Antunes et al.,

011; Leano et al., 2014; Latoza et al., 2014; Haron and Syed-

ohamad, 2015; Briand et al., 2017; Cazzola and Shaqiri, 2017;

urphy, 2018). In this scenario, this study aims to discuss what in-

ormation should comprise the context of a software product and

https://doi.org/10.1016/j.jss.2019.110443
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.110443&domain=pdf
mailto:leandro.davila@gmail.com
mailto:kleinnerfarias@unisinos.br
mailto:jbarbosa@unisinos.br
https://doi.org/10.1016/j.jss.2019.110443

2 L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443

p

p

w

w

(

s

a

(

2

i

m

2

t

t

w

D

t

t

a

r

u

o

f

t

s

d

d

i

2

t

d

2

o

l

t

t

C

2

t

g

a

t

W

o

s

t

v

t

2

2

s

i

t

(

l

t

s

n
project, its history, and how this data can help software developers

to implement change requests.

This paper reports empirical findings on the usage of contextual

information through a dashboard, while software developers per-

form maintenance tasks. We have conducted a controlled experi-

ment with 30 subjects to evaluate and compare software mainte-

nance activities using contextual information with respect to cor-

rectness, effort and maint ainability. The subject s were organized in

two groups and performed two maintenance activities where only

one group used the contextual information represented by a dash-

board. The main results, supported by statistical analysis, suggest

that: (1) the usage of dashboard produced a code with a higher

correctness score; (2) significantly less effort spent on implement-

ing changes in the group using the dashboard; and (3) the changes

performed by the group using dashboard produced a better code,

in terms of architecture. Even though we cannot generalize the re-

sults of the experiment to other software maintenance activities,

this exploratory study represents a contribution to better under-

stand the potential effects of contextual information on software

maintenance.

The remainder of the paper is organized as follows.

Section 2 outlines the main concepts used throughout the paper.

Section 3 describes the study methodology. Section 4 discusses

the study results. Section 5 describes how threats to validity were

minimized. Section 6 compares this work with others, presenting

the main differences and commonalities. Finally, Section 7 presents

concluding remarks and future work.

2. Background

This section presents the main concepts related to relevant soft-

ware data, their relation to context definition and its visualization.

Section 2.1 describes the concepts of context and context history .

Section 2.2 details the interplay between context and software in-

formation. Section 2.3 introduces the concepts regarding software

analytics, because this topic was considered strategic for the next

steps in this research.

2.1. Context and context history

The term context has an intuitive meaning for humans, but its

definition remains vague and an ill defined construct. Furthermore,

the roles of context come from different fields, such as litera-

ture, philosophy, linguistics and computer science, with each field

proposing its own view of context (Mostefaoui et al., 2004). It gen-

erally refers to what surrounds the center of interest. Additionally,

contexts provide additional sources of information related to “who,

where, when and what” (Morse et al., 20 0 0) and increase under-

standing.

Dey et al. (2001a) provided a classical categorization for con-

text data, which is used by many works. The authors argued that

context-aware applications must understand the situation of users

and their surroundings, and adapt the application behavior ac-

cording to this information. Thus, they proposed four basic cate-

gories to model context, which are: (1) identity; (2) location; (3)

time; and (4) activity. These context types do not only answer

the questions of who, where, when, and what, but also act as

pointers to other sources of contextual information. According to

Satyanarayanan (2001) , a user’s context can be quite rich, consist-

ing of attributes such as physical location, physiological state (such

as body temperature and heart rate), emotional state (such as an-

gry, distraught, or calm), personal history, daily behavioral pat-

terns, and so on. In general, this means information such as the

status, identity and spatiotemporal localization of persons, groups

and physical and computational objects.
Dyb et al. (2012) suggested an omnibus context description ap-

roach, putting a phenomenon into context. It means, they pro-

osed to ask what (e.g. a particular architectural style) works for

hom (e.g. professional system architects) where (e.g. the location)

hen (e.g. the time related to the life-cycle of a product) and why

e.g. the reasoning of why the architectural style works well).

The context awareness and adaptation were always con-

idered relevant technologies to the development of mobile

nd ubiquitous systems (Barbosa, 2015) in the area of health

 Damasceno Vianna and Barbosa, 2014), commerce (Barbosa et al.,

016), accessibility (Tavares et al., 2016; Barbosa et al., 2018), learn-

ng (Wagner et al., 2014; Wiedmann et al., 2016), competences

anagement (Rosa et al., 2015) and well-being (Vianna et al.,

017). All these works used the definition of Dey et al. (2001a) as

he basis for their context models. The definition is generic enough

o be applied across different domains. In this sense, all these

orks referred to the same context, that is, the one defined by

ey, Abowd and Salber. In contrast, each computational model

hat applied this definition to create a ubiquitous system needed

o specify some aspects related to the specific domain. For ex-

mple, the health domain has considered vital signs and health

esources available in the environment, and the accessibility has

sed users’ deficiencies and accessible resources. The definition

f Dey et al. (2001a) allows this flexibility through a specific in-

ormation category called “Status” or “Activity”, what according to

hem “identifies intrinsic characteristics of the entity that can be

ensed.” All contexts used in specific ubiquitous applications have

ifferences, but the definition used as the basis is the same. In ad-

ition, the literature has discussed the role of the context concepts

n general software development (Latoza et al., 2014; Leano et al.,

014; Martie and Hoek, 2014). In this sense, a research challenge is

o model generic tools to support the use of contexts in software

evelopment.

Some authors use the concept of context histories (Rosa et al.,

015; 2016). In general, these approaches have in common the fact

f dealing with records of sequences of events, ordered chrono-

ogically and tied to an identifiable entity. The difference is the

ype of information that is described in these sequences. Some of

hese studies treat sequences describing the location (Driver and

larke, 2004; Li et al., 2012) or user’s activities (Driver and Clarke,

0 04; 20 08; Smith, 20 08), while Silva et al. (2010) offer support

o generic entities. This generic approach corresponds to the cate-

ories proposed by Dey et al. (2001b) for describing the context of

n entity.

Temporal series are sets of observations sequen-

ially ordered (Fu, 2011). Based on this definition,

iedmann et al. (2016) adopted the premise that the sequences

f contexts visited by an entity can be described as a temporal

eries, since they are chronologically ordered and relevant data for

he similarity analysis are quantifiable variables, i.e., temperature,

elocity, heart rate, speed, costs, sales volume, and others. The

emporal series are also used to commerce support (Barbosa et al.,

016) and to assist wheelchair users (Barbosa et al., 2018).

.2. Context and software

Briand et al. (2017) highlighted the importance of context in

oftware engineering. According to the authors, software engineer-

ng solutions applicability and scalability depend largely on contex-

ual factors, such as human (engineers background), organizational

such as cost and time constraints), or domain-related (such as the

evel of criticality and compliance with standards).

Petersen and Wohlin (2009) proposed a checklist for the con-

ext description in software maintenance. This checklist identifies

ome context facets as a product, processes, practices and tech-

iques, people, organization, and marketing. Besides that, the au-

L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443 3

t

F

s

p

t

i

l

W

c

t

v

t

p

e

v

t

a

m

e

p

o

p

o

t

p

t

r

a

t

w

b

t

s

b

o

w

s

k

i

o

w

t

m

t

T

c

N

t

t

s

n

o

s

i

i

v

m

i

i

s

s

w

fl

2

v

d

m

n

i

(

t

t

l

t

a

f

d

p

o

a

Z

i

h

s

t

v

w

m

a

a

w

f

a

l

i

d

t

t

r

t
hors define the object of study that interacts with the context.

or example, when an agile process is considered as the object of

tudy, the process is used to develop a product, it is run by peo-

le, interact with other processes, and it is supported by practices,

ools and techniques. In addition, the object of study is embedded

n an organization that is operating within a market.

Each context facet comprises a set of context elements, such as:

• Product: The product is the software developed with the

help of the object of study. The context elements considered

for product have information like maturity, quality, size of

the product, system type and programming language;
• Process: The process describes the development workflow

considering the activities and their artifacts;
• Practices, Tools, Techniques: Practices, tools, and techniques

describe systematic approaches that are used in an organiza-

tion, and are interacting with the object of study;
• People: The human factor is important when studying soft-

ware development, as it has a major impact on the success

of this activity. The context elements considered for people

have information regarding roles and experience;
• Organization: The organization describes the company

structure in which the other context facts and the solution

are embedded in;
• Market: The market represents the customers and competi-

tors. Context elements describing the market are number of

customers, market segments, strategy and constraints.

Antunes and Gomes (2009) propose an approach that fol-

ows some categories of context described by Petersen and

ohlin (2009) . However, the object of study considered in this

ase is the developer. The contextual information should be cap-

ured considering every work environment that supports the de-

eloper’s work. It means that contextual information must be re-

rieved from all applications that the developer uses, as an IDE,

roject management tools, human capital management tools and

ven the operating system itself. Many of these tools already pro-

ide data extraction interfaces via plug-in or APIs. The informa-

ion obtained through the applications should then be centralized

nd integrated coherently in a context model, so the user context

odel is instantly available anywhere in real time.

Murphy (2018) argues that the lack of context in the software

ngineering tools limits the effectiveness of developers and com-

romises the software development practices. The development

f a software system requires the orchestration of many different

eople using many different tools. Considering the need of devel-

pers to understand the contexts in which the tasks are under-

aken, the tools would be helping them to work within the appro-

riate context.

Antunes et al. (2011) consider, in turn, that software context

akes into account all dimensions that characterize the work envi-

onment of the developer. These dimensions were represented as

 layered model with four main layers: personal, project, organiza-

ion and domain. The personal layer represents the context of the

ork a developer has at hands at any point in time, which can

e defined as a set of tasks. In order to accomplish these tasks,

he developer has to deal with various kinds of resources at the

ame time, such as source code files, specification documents and

ug reports. The project layer focuses on the context of the project,

r projects, in which the developer is somehow involved. A soft-

are development project is an aggregation of a team, a set of re-

ources and a combination of explicit and implicit knowledge that

eeps the project running. The team is responsible for accomplish-

ng tasks, which end up consuming and producing resources. The

rganization layer takes into account the organization context to

hich the developer belongs. Similarly to a project, an organiza-

ion is made up of people, resources and their relations, but in a
uch more complex network. The domain layer takes into account

he knowledge domain, or domains, in which the developer works.

his layer goes beyond the project and organization levels and in-

ludes a set of knowledge sources that stand out of these spheres.

owadays, a typical developer uses the Internet to search informa-

ion and to keep informed of the advances in the technologies.

Baysal et al. (2013) and Augustine et al. (2017) suggested

hat supplementing quantitative dashboards with more developer-

pecific qualitative data can improve developers situational aware-

ess of their working context. This awareness will enable devel-

pers to keep better track of the ever-increasing number of is-

ues involved in complex software systems. Situational awareness

s a term from cognitive psychology referring to a state of mind

n which people are aware of the elements of their immediate en-

ironment, have an understanding as to the environment’s greater

eaning, and can anticipate (or plan to change) these elements

n the near future (Endsley, 1995). The term is used in engineer-

ng, for example, to describe how air traffic controllers work, more

pecifically, as they track and route air traffic. It is also an apt de-

cription of how software developers must maintain awareness of

hat is happening on their projects and as they manage a constant

ow of information and react accordingly.

.3. Software analytics

Software engineering is a data rich activity. Many aspects of de-

elopment from code repositories can be measured with a high

egree of automation, efficiency, and granularity. Projects can be

easured throughout their life-cycle from specification to mainte-

ance. Over the past few decades, researchers have used analyt-

cs techniques on such data to better understand software quality

 Zhang et al., 2013; Menzies, 2018). The analytic approaches strive

o provide actionable real-time insights and can be both quantita-

ive and qualitative in nature. The quantitative analytics can high-

ight high-level data trends, while qualitative analytics enable real-

ime decision making for day-to-day tasks (Baysal et al., 2013).

Menzies and Zimmermann (2013) defined software analytics

s the use of analysis and systematic reasoning on software data

or managers and engineers to gain and share insights from their

ata to make better decisions. Software analytics enables software

ractitioners to perform data exploration and analysis in order to

btain insightful and actionable information for data-driven tasks

round software and services (Zhang et al., 2011). In another study,

hang et al. (2013) define that software analytics aims to obtain

nsightful and actionable information from software artifacts that

elp developers accomplish tasks related to software development.

Software analytics utilizes data-driven approaches to enable

oftware practitioners to perform data exploration and analysis

o obtain insightful and actionable information for completing

arious tasks around software systems, software users, and soft-

are development process (Lou et al., 2013). Buse and Zimmer-

ann (2012) provided the following definition about software an-

lytics: “Software analytics is analytics on software data for man-

gers and software engineers with the aim of empowering soft-

are development individuals and teams to gain and share insight

rom their data to make better decisions”.

There are also many potential advantages to the application of

nalytics to software development and project management. Ana-

ytics can help: monitor a project; know what is really working;

mprove efficiency; manage risk; anticipate changes; evaluate past

ecisions (Buse and Zimmermann, 2012).

Port and Taber (2017) described the use of analytics to moni-

or more widely the development process of system (Monte). Using

hese data it is possible, for example, to evaluate/mitigate the risks

elated to the maintenance activities and forecast the effort need

o add new features to Monte. This system has with over 80 0,0 0 0

4 L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443

r

r

e

t

i

t

c

(

s

w

t

w

i

s

q

t

a

t

t

t

3

p

n

a

s

t

o

t

b

t

a

i

c

c

i

t

p

s

b

q

t

p

u

d

g

i

r

v

s

u

fi

t
lines of code and supports NASA’s Jet Propulsion Laboratory (JPL)

in critical missions. The authors presented some examples of how

the usage of a robust software metrics and analytics enables ac-

tionable maintenance management of Monte system in a timely,

economical, and risk-controlled fashion.

3. Experiment planning

This section describes the main decisions considering the de-

sign of the controlled experiment to grasp the impact of the use of

contextual data on the software maintenance. All methodological

steps described in this section are based on well-known guidelines

about empirical studies (Wohlin et al., 2012; Kitchenham et al.,

2008; Sjøberg et al., 2002).

3.1. Contextual information

Section 2.2 discussed the use of contextual information to sup-

port the software development, mainly describing specific charac-

teristics that should be considered as Contexts to software. The

work of Petersen and Wohlin (2009) cited software dependencies,

last changes, performance requirements, software usage and design

patterns as strategic aspects that should be considered in the con-

textual information.

Based on the study carried out through the background litera-

ture review (Section 2) and related works discussion (Section 6),

we have chosen the information indicated by Petersen and

Wohlin (2009) as the basis of the contextual information ap-

plied in the experiment. The information was improved and or-

ganized in a dashboard as suggested by Baysal et al. (2013) and

Augustine et al. (2017) , and provided to the subjects in a PDF file.

The contextual information made available to users was as follows:

• Design patterns : This group of information aims to advice

the developer about the current architecture of application.

The developer should correlate the change requests with a

possible software artifact (e.g class or method) in terms of

architecture (e.g. factory) and extend this pattern avoiding

degradation (Latoza et al., 2014).
• History of last changes : By checking the history of last

changes, the developers would identify similar previous

changes and more easily find the source code artifact to

be changed or discover some code examples (Sawadsky and

Murphy, 2011).
• Customer usage of features and Performance execution :

These groups were created as simulation regarding the fea-

ture usage and application response time. The aim of that is

to get the developers aware about the possible impacts of a

wrong implementation, for example, for the customers that

are using the application (Zhang et al., 2013). At this point,

the developer can correlate the variation of time responses

with the history of changes and more easily identify the ar-

tifacts involved.
• Non-functional requirements : This information usually

represents quality patterns or restrictions defined for the

application under maintenance. Depending on development

method and technology, these factors impact the software

architecture and must be considering during the mainte-

nance activities (Carlson et al., 2016).

3.2. Objective and research questions

This research aims to evaluate the effects of contextual infor-

mation on three variables: correctness of source code, effort to im-

plement change requests, and maintainability. These variables are

explored in Section 3.8 . These effects were investigated based on
ealistic maintenance scenarios involving the realization of change

equests, thereby generating empirical knowledge about the ben-

fits of contextual information to improve the developer’s situa-

ional awareness. The participants (Section 3.4) used the contextual

nformation represented using a dashboard as a prove of concept

o improve their situational awareness about the application to be

hanged.

The objective of this study is stated based on the GQM template

 van Solingen et al., 2002) as follows:

Analyze the use of contextual information

for the purpose of investigating its effects

with respect to correctness, effort and maintainability

from the perspective of students

in the contexts of performing assigned maintenance activities .

The effort is measured considering the time expended by the

ubjects to perform the requested changes. Some manual tests

ere defined to validate the correctness of each maintenance

ask. The maintainability variable is ensured considering the place

here the subjects have implemented the changes requests, keep-

ng the application’s architecture. These three variables are de-

cribed in detail in Section 3.8 . Thus, we focus on three research

uestions, as follows:

RQ1: What is the correctness of source code after undergoing

wo software maintenance activities using contextual information

nd not using contextual information?

RQ2: What is the effort of implementing two software main-

enance activities using contextual information and not using con-

extual information?

RQ3: What is the maintainability of source code using contex-

ual information and not using contextual information?

.3. Hypothesis formulation

To address the research questions described before, three hy-

otheses were formulated. The first refers to evaluate the correct-

ess of changed code by using contextual information through

 dashboard. The second hypothesis considers the usage of the

ame dashboard and its effects on the effort on implementing

he change requests. The third hypothesis considers the usage

f the same dashboard and its effects on the maintainability of

he changed code. The formulation of these hypotheses was done

ased on the assumption that, the contextual information improves

he developer’s awareness regarding the application under changes,

nd the environment related. The formulation of three hypotheses

s described as follows.

Hypothesis 1 . In practice, developers usually go to source

ode having no qualitative information whatsoever to support the

hanges to be done, relying only on an arsenal of mentally-held

ndicators about the source code (a.k.a “experience”). Even though

his strategy to implement the change requests is often used in

ractice, we conjecture that it is not effective enough to correctly

upport the implementation of complex change requests. In part,

ecause usually developers need to maintain non-functional re-

uirements, e.g., performance and security, whose implementa-

ions are widely known as crosscutting concerns. That is, their im-

lementations end up scattering and spreading over many mod-

les of the system, giving rise to code duplication and significant

ependencies between modules. Moreover, it is very difficult to

ather qualitative information about how these requirements are

mplemented, apart from that found in source code, to properly

ealize the change requests. Consequently, we hypothesize that de-

elopers tend to produce a higher number of correctly changed

ource code by making use of contextual information rather than

sing their personal experiences and knowledge. Therefore, the

rst hypothesis evaluates whether the use of contextual informa-

ion with qualitative information produces a higher number of cor-

L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443 5

r

i

t

p

p

D

i

m

e

o

c

q

u

d

o

l

t

c

r

t

T

t

c

t

s

a

g

D

k

p

d

m

o

i

c

t

t

e

d

c

p

t

s

s

r

o

i

i

t

a

t

c

f

t

t

p

n

f

t

3

v

a

t

o

a

t

a

g

a

p

C

1

(

p

p

o

t

w

s

s

g

a

t

h

c

1 https://marketplace.eclipse.org/content/codepro-analytix .
ectly changed source code compared to the use of mentally-held

ndicators only. Based on this statement, we state the null and al-

ernative hypotheses as follows:

• Null Hypothesis 1 , H 1 −0 : The use of contextual information

produces a lower (or equal) number of correctly changed

source code than the use of mentally-held indicators only (no-

Context).

H 1 −0 : Corr (Code) Context ≤ Cor r (Code) No−Context

• Alternative Hypothesis 1 , H 1 −1 : The use of contextual infor-

mation produces a higher number of correctly changed source

code (Context) than the use of mentally-held indicators only.

H 1 −1 : Corr (Code) Context > Cor r (Code) No−Context

Hypothesis 2 . As previously mentioned, fast-changing and un-

redictable customer requirements in most software development

rojects have given rise to an elevated number of change requests.

evelopers are often challenged to accommodate such requests

nto evolving source code. In practice, developers aim at imple-

enting the required changes without understanding the side-

ffects of the changes and the software architecture itself. More-

ver, developers often work under pressure to deliver the source

ode modified more rapidly. Due to time constraints and lack of

ualitative information about the source code (e.g., design patterns

sed, design decisions and non-requirements to be considered),

evelopers end up implementing the change requests considering

nly information found in the source code (Lavallée and Robil-

ard, 2015). With this in mind, we conjecture that the use of con-

extual information may reduce the implementation effort signifi-

antly. That is, we suspect that the effort to implement the change

equests tends to be lower if developers use qualitative informa-

ion about the source code, apart from the developers’ experience.

herefore, the second hypothesis evaluates whether the use of con-

extual information with qualitative information reduces signifi-

antly the effort of the change requests implementation, compared

o the use of developers’ mentally-held indicators and needed

ource code analysis. Based on this statement, we state the null

nd alternative hypotheses as follows:

• Null Hypothesis 2 , H 2 −0 : The use of contextual information

(Context) does not reduce significantly the effort of implement-

ing the change requests compared to the use of developers ex-

perience only (no-Context).

H 2 −0 : Effort (Code) Context > E f f ort(Code) No−Context

• Alternative Hypothesis 2 , H 2 −1 : The use of contextual informa-

tion (Context) reduces significantly the effort of implementing

the change requests compared to the use of developers experi-

ence only (no-Context).

H 2 −1 : Effort (Code) Context ≤ E f f ort(Code) No−Context

Hypothesis 3 . The maintenance activities usually came from ur-

ent issues, legal requirements, environment changes and others.

evelopers need to adapt the system to these changes and try to

eep the software architecture according to the best practices and

revious design considering some organization factors, like lack of

ocumentation, with a potential impact on the success or failure

aintenance activities. According to nature of the requests, devel-

pers need to go changing the code with the focus on solve the

ssue, as soon as possible, without considering properly the ar-

hitecture of the software and the side effect of the changes to

he customers, users and module/system integration. Besides that,

he customer pressure may often reduce the time that develop-

rs have to analyze and implement the needed system changes. To

eal with this complex network of factors, developers perform the

hanges based on the their own experience and knowledge about a
articular module (Lavallée and Robillard, 2015). It is very difficult

o get qualitative information about the architecture adopted, de-

ign patterns and software dependencies apart from that found in

ource code, to properly perform the maintenance activities in the

ight place, it means, in the correct class, include, method, function

r procedure. So, we conjecture that the maintainability of a mod-

fied software code can be different if there is available contextual

nformation with qualitative information regarding this artifact to

he process of changing it. We suspect that the code may have

 higher maintainability if the change is carried out using con-

extual information with qualitative information about the source

ode and not only considering the developer’s experience. There-

ore, the third hypothesis evaluates whether the use of contex-

ual information with qualitative information improves the main-

enance of source code compared with the use of developer’s ex-

erience only. Based on this statement, we state the null and alter-

ative hypotheses as follows:

• Null Hypothesis 3 , H 3 −0 : The use of contextual information

(Context) does not improves significantly (or even jeopardize)

the maintainability of evolving source code compared to the

use of developers experience only (no-Context).

H 3 −0 : Maint (Code) Context ≤ Maint(Code) No−Context

• Alternative Hypothesis 3 , H 3 −1 : The use of contextual infor-

mation (Context) improves significantly the maintainability of

evolving source code compared to the use of developers expe-

rience only (no-Context).

H 3 −1 : Maint (Code) Context > Maint(Code) No−Context

These three hypotheses consider the variables correctness, ef-

ort and maintainability which will have measurement method de-

ailed in Section 3.8 .

.4. Context and subject selection

The subjects used the Eclipse IDE (Integrated Development En-

ironment) (Eclipse, 2016) to perform the software maintenance

ctivities extending the scope of an existing application. The main-

enance activities were tasks on a prototype Java application devel-

ped by Deitel and Deitel (2010) , where different types of salary

re calculated. This application is well structured and implements

he basic concepts of object oriented paradigm. Besides that, this

pplication is widely used in learning of the Java programming lan-

uage and this factor would facilitate the execution of experiment

ctivities. The application is not large due to its educational pur-

ose as detailed by the following metrics extracted using Google

odePro AnalytiX tool 1 : 491 lines of code (LOC), 5 packages (NOP),

0 classes (NOC) and 66 methods (NOM).

In total, 30 subjects were recruited by convenience

 Wohlin et al., 2012). The experiment was conducted with 4

rofessionals from Brazilian companies and 26 students with

rofessional experience. They were recruited considering the level

f theoretical knowledge and practical experience. Majority of

he subjects had experience with software development, which

ere acquired from previous software development projects. Fig. 1

hows the subjects distribution regarding their experience in

oftware development.

All participants were familiar with the Eclipse IDE and Java pro-

ramming language. Based on that, we are confident that they had

 proper training, theoretical knowledge and practical experience

o get rid of any threat to the vitality of our results. All subjects

eld a Master’s degree, Bachelor’s degree or equivalent, and had a

onsiderable knowledge to participate in the experiment.

https://marketplace.eclipse.org/content/codepro-analytix

6 L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443

Fig. 1. Subjects distribution by experience.

 Fig. 2. The main class diagram of the application.
3.5. Experiment design and object

Completely randomized design. Our study is a human-

oriented experiment, in which humans are the subjects, applying

two treatments (with or without dashboard) to objects, which are

programs to be maintained. Each subject was submitted to one

treatment (either maintenance of a program with or without dash-

board). In this sense, the study adopted an experiment design that

allowed us to compare two treatment means. The design setup al-

lowed the subjects to make use of the same object for both treat-

ments. This means that half of subjects performed maintenance

tasks on one program without dashboard support, while the rest

had dashboard support to carry out maintenance tasks. The assign-

ment of the subjects to each treatment was done randomly. How-

ever, the experience of subjects was considered to have balanced

groups in terms of software-development knowledge. The number

of subjects per treatment was equal. Each subject was assigned to

the treatments randomly. Therefore, our experiment design can be

considered as balanced .

Object. The object of the experiment consists of the program

that the subjects had to change when executing the experimental

tasks. This program is a Java application, whose its main feature is

to calculate salary in three different ways. It is based on applica-

tions found in Deitel and Deitel (2010) and follows design patterns

and good programming practices. Subjects interact with the appli-

cation through a graphical user interface, which shows the calcu-

lated salary. Fig. 2 shows a class diagram of the application. These

classes are responsible for implementing the feature related to the

salary calculation:

• Entities package contains classes that refer to the types of exist-

ing employment contract, i.e., Commission, Hourly and Salaried

employee.
• Payroll Service package has classes that are responsible for im-

plementing services to compute salary according to the differ-

ent types of existing employment contract.

1. PayCalculationCommission : It computes the commission-

based salary. In this sense, the method getEarnings() mul-

tiples the grossSales and commissionRate attributes of Com-

missionEmployee class.

2. PayCalculationHourly : It calculates hourly-based salary. The

method getEarnings() multiples the attributes HourlyEm-

ployee.wage and HourlyEmployee.hours .

L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443 7

3

p

p

P

d

t

g

a

s

p

s

i

a

w

r

n

r

i

h

m

e

p

v

3

r

b

t

p

w

t

v

n

b

h

n

n

j

p

t

a

l

G

i

i

s

s

p

t

t

m

r

d

t

n

f

p

a

b

i

t

s

a

t

w

t

t

t
3. PayCalculationSalaried : It calculates incomes of paid em-

ployment. The method getEarnings() multiples the attribute

SalariedEmployee.weeklySalary by the number four.
• UI package contains the MainApp class, which is responsible for

displaying the computed salary to the end user.

.6. Execution

This section presents each step followed to run the ex-

erimental design. We highlight that any deviations from the

lan occurred. Jedlitschka et al. (2008) and Jedlitschka and

fahl (2005) reinforce the need to discuss how the experimental

esign was enacted.

Preparation. Participants were allocated to two experimen-

al groups. During group formation, we were concerned to keep

roups balanced in terms of participants’ level of knowledge. This

ction was taken to prevent more experienced participants from

taying in a group. This could interfere with the results, since the

articipants did not act on the two treatments. This preparation

tage lasted 2 h and was performed in conjunction with the train-

ng, which will be explained in Section 3.7 .

Data collection performed. The data collection related to vari-

bles (described in Section 3.8) was followed so that deviations

ere avoided. Effort was calculated in minutes. Each participant

ecorded the time invested to perform each activity on a question-

aire. This effort record was followed closely to avoid any incorrect

ecord. Correctness and maintainability were computed consider-

ng the source code changed by participants.

Validity procedure. Throughout the experiment the authors

ad a great concern to ensure the correct execution of the experi-

ental project. In this sense, the defined experimental process was

xplained to all participants. This explanation was important for all

articipants to be aware of all experimental tasks. This avoided de-

iations during the execution of the studies.

.7. Experimental process

Experimental process. Fig. 3 presents the process adopted to

un the experimental study. This experimental process is composed

y three tasks, which are organized in 3 phases as follows:

• Phase 1: Training. All participants received training on the pro-

gram used in the experiment. At this moment of familiariza-

tion, the participants were able to perform, analyze and be en-

vironmentally friendly with the source code. Subjects received

details on each feature concerning the program to be main-

tained (experiment object). The subjects were not aware of RQs

to avoid bias during the experiment execution. The knowledge

received by subjects was passed through a session where the

main class diagram of application was explained in detail, the

requirements already implemented were described and finally,

a demonstration of current application behavior was performed.
• Phase 2: Execution of experimental tasks. The second phase

concentrated on the execution of the maintenance tasks. For

this, subjects had access to the source code of application in

a laboratory environment, and change requests that needed to

be applied in such an application. Only half of the subjects ac-

cessed contextual information through a dashboard support. To

carry out the change requests, 30 participants were randomly

divided into two groups of 15. The first group, named Group

1 , performed the implementation of changes with the use of

contextual information represented in a dashboard, which con-

tains contextual information about the application. The Group

2 made the same implementation without using the contextual

information. The subjects individually performed the first two

phases to avoid any threat to the experimental process.
• Phase 3: Evaluation of results. The subjects recorded the start

and end times for each implementation task. This informa-

tion was filled through a Google Form application and allowed

to compare the implementation effort of both subject groups.

Moreover, the correctness of each implementation task was

evaluated by manual and automated testing. All 30 produced

codes were tested in order to check their results against the

expected values. In addition, some maintainability aspects were

evaluated by code review. All produced codes were revised to

evaluate the implementation way adopted by the subjects. This

review allowed to identify how the application architecture re-

mained consistent after the changes.

Experimental tasks. The participants were requested to change

he application by including two new features in a classroom

repared for the experiment. The implementation of both tasks

as monitored by the authors to avoid any communication be-

ween the subjects. The first task was to compute a tax and net

alue based on the existing salary calculation. The second mainte-

ance activity was to create a new type of salary composed by a

ase salary plus a commission. The second activity was considered

arder to implement than the first task due to the amount of code

eeded to cover the requirement. Both tasks were defined to have

o dependence on the order of execution. It means that the sub-

ects can implement the second task even though they have im-

lemented the first one wrongly. These two requirements define

he change request to be implemented. To keep the architecture of

pplication the participants should implement the features as fol-

ows:

1. Tax calculation: The participants should use the PayrollCalcula-

tionService class and use the predefined variables;

2. New type of salary: The participants should extend the Commis-

sionEmployee or Employee class and create a new pay calculation

class, which must be called by the factory PayrollCalculationFac-

tory class.

The dashboard of contextual information provided (only to

roup 1) was created manually with quantitative and qualitative

nformation regarding the application used in the experiment. The

nformation available in this dashboard represent: the existing de-

ign patterns, a history of the last code changes, a graph repre-

enting the customers usage of features, a graph representing the

erformance execution and non-functional requirements.

Fig. 4 .A shows the design patterns implemented in the applica-

ion. Thus, subjects can be aware about these aspects without in-

erpreting the source code and keeping them in mind when imple-

enting the change request. Fig. 4 .B represents the non-functional

equirements implemented. This information aims to advise the

eveloper that there are important aspects already considered in

he application as security and performance needs.

As mentioned by Augustine et al. (2017) , developers often do

ot know whom to contact for guidance when modifying an un-

amiliar part of the project. A history of last changes of the ap-

lication is provided to the developer in the dashboard through

 table. Fig. 5 represents this information and the developer can

e more effective implementing the changes requested by check-

ng for a previous version.

Complementing the context of the application, the informa-

ion regarding software operation is provided to participants. Fig. 6

hows a graph containing the number of customer by feature us-

ge. This information aims to alert the developer about the impor-

ance of functionalities and the impact of a possible error. Like-

ise, Fig. 7 presents the application response times. This informa-

ion supplies the developer about the application situation related

o execution time and performance measurements.

By providing the application context, considering the informa-

ion described above, the expectation is to leverage the developers’

8 L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443

Fig. 3. The experimental process adopted.

Fig. 4. Design patterns and Non-functional requirements.

Fig. 5. Description of the last changes performed in the source code.

L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443 9

Fig. 6. Customer feature usage.

Fig. 7. Performance metrics.

Table 1

Accomplishment of assigned tasks.

Task Requirement Requested changes to the source code Score

1 Tax Calculation Implement the calculation in the PayrollCalculationService class 1

Use the predefined variables 1

2 New Type of Salary Extend the CommissionEmployee or Employee class 1

Use the PayrollCalculationFactory to provide the new calculation 2

a

t

c

t

3

t

w

d

wareness about the application under development. This informa-

ion aims to guide the developer to implement the change request

onsidering the possible impacts of a wrong implementation, e.g.,

he number of customers that can be impacted by a bug.

.8. Study variables

The independent variable of this study is the usage of con-

extual information having qualitative information during the soft-

are maintenance activities. We investigated the impact of this in-

ependent variable in the following dependent variables:

• Correctness: The correctness of the maintenance activity is en-

sured when the output code produces the expected result ac-

cording to the change request described in Section 3.5 . This

measurement is done by performing manual tests developed

to each task and also automated unit tests previously created.

These manual test cases validate the output report generated by

the application where all employees are listed with they type

of contract type, salary amount, taxes and net amount. For the

first task, the manual test checked in the net amount was cal-

culated properly according to the percentage defined. And, the

second task was validated considering the new type of contract

and the salary amount. If the result of the first task (Table 1)

is correct, it is assigned the value 1. It is the same for the sec-
ond task. Considering that the subject implemented improperly

the two activities, then final score will be 0. By comparing the

correctness, we can understand which approaches are more ef-

fective for producing code closer to the output intended result.

We have measured this variable for each task performed.
• Effort: This variable measures the time expended by the sub-

ject to implement the change requests described in Table 1 .

Each implementation activity task considers different require-

ments and the effort to implement each one tends to be dif-

ferent. By comparing the values (in minutes) assumed by these

variables, we can also grasp how the usage of contextual infor-

mation outnumbers the other one considering a particular task.
• Maintainability : This variable measures if the subject imple-

mented the code respecting the architecture of the application

and the design patterns involved. Each implementation activity

task considers different maintainability aspects to define the fi-

nal score. This means that, there are expected points of source

code where the developer should put the changes. These ex-

pected points of source code are based on the availability of the

contextual information provided in the dashboard, more specif-

ically the groups Design Patterns and History of last changes . The

maximum score value that can be obtained by each subject is

5 points, if all changes are implemented in the expected class

according to Table 1 . In order to measure the maintainability

10 L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443

Fig. 8. Histogram of the correct modifications.

Table 2

The Pearson Chi-square test for the correctness.

Task Statistic Correctness

All p-value 0.001

X 2 10.756

X 2 = Pearson’s Chi-square, α = 0 . 05

t

t

t

c

T

l

t

o

1

l

t

i

4

i

s

t

C

a

T

n

a

g

a

2

c

c

t

c

i

S

c
variable, a maintainability rate was defined and it is calculated

by dividing the sum of points obtained in both tasks by 5. Eq.

(1) shows how the maintainability rate is calculated.

Maintainability =

(∑

(ScoreT ask 1) +

∑

(ScoreT ask 2)

)
/ 5

(1)

3.9. Analysis

We performed descriptive statistics to analyze the normal dis-

tribution (Wohlin et al., 2012) and statistical inference to test the

hypotheses. The level of significance of the hypothesis tests was α
= 0.05. The analyses were performed to test the hypotheses indi-

vidually considering the score obtained regarding the correctness,

effort and maintainability for all tasks. To test the H 1 −1 , we ap-

plied the nonparametric Pearson’s Chi-square test for the correct-

ness score of the maintenance tasks. To test H 2 −1 and H 3 −1 , we

applied the nonparametric Mann-Whitney test for the score of the

two maintenance tasks.

4. Study results

This section analyzes the data set obtained from the experi-

mental procedures described in Section 3 . Our findings are de-

rived from both the numerical processing of this data set and

the graphical representation of interesting aspects of the gath-

ered results. Section 4.1 describes the results regarding the correct-

ness of code changed. Section 4.2 discusses the effort implementa-

tion results of change requests. Section 4.3 discusses the collected

data and results related to the maintainability of code changed.

Section 4.4 presents some findings and discussions.

4.1. RQ1: Correctness and contextual information

Fig. 8 shows the number of correct modifications in of the

maintenance activities implemented by the subjects. Context rep-

resents the sum of tasks performed correctly by the subjects of

Group 1, in which the activities were performed with the usage of

the dashboard. The No-Context represents the sum of tasks per-

formed correctly by the Group 2 where the activities were im-

plemented without the usage of the dashboard. The final score of

Group 1 was 28 and the score of Group 2 was 17. Our initial expec-

tation was that the sum of correct tasks of Group 1 could be higher
han Group 2. This expectation was confirmed. We can consider

hat the usage of contextual information with qualitative informa-

ion improved the correctness of the source code produce when

ompared to the counterpart.

We tested the H 1 −1 applying the Pearson’s Chi-square test.

able 3 presents the contingency table, which provides the fol-

owing information: the observed cell totals, (the expected cell to-

als) and [the chi-square statistic for each cell]. Table 2 shows the

btained results. The chi-square value obtained by the test was

0.756 and the p-value was 0,001. Considering that the p-value is

ower than 0.05, then there is a statistically significant difference in

he correctness measures associated with the usage of contextual

nformation through a dashboard.

.2. RQ2: Effort and contextual information

Table 4 shows the effort (in minutes) invested by the subjects

n the maintenance activities. In this table, the line Context repre-

ents the statistics of effort time of Group 1, in which the activi-

ies were performed with the usage of the dashboard. The line No-

ontext contains the statistics of effort of the Group 2 where the

ctivities were implemented without the usage of the dashboard.

he mean time expended for Group 1 to implement both mainte-

ance activities was 19.67 min., while the Group 2 spent, on aver-

ge, 48.47 min. We perceived a significant difference between the

roups in terms of effort. The Group 1 finalized the maintenance

ctivities, on average, 28.28 min (40.58%) faster than the Group

. Our initial expectation was that the effort invested by Group 1

ould be lower than Group 2. This expectation was confirmed. We

an consider that the usage of contextual information with quali-

ative information reduced the maintenance effort to perform the

hange requests when compared to the counterpart. The next step

s to test whether this difference is statistically significant.

To apply the proper hypothesis test we used the Kolmogorov–

mirnov and Shapiro Wilk tests (Devore and Farnum, 1999) to

heck the normal distribution of the data. Table 5 shows the re-

L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443 11

Table 3

The Pearson Chi-square test for the correctness.

Correct Not Correct Marginal Row Totals

Group 1 28 (21.82) [1.75] 2 (8.18) [4.67] 30

Group 2 12 (18.18) [2.1] 13 (6.82) [5.6] 30

Marginal Column Totals 40 15 60 (Grand Total)

Table 4

Descriptive statistic for maintenance effort.

N Min Med IQR Max Mean SD

Context 30 2 17 20.25 70 19.67 16.12

No-Context 30 3 30.35 47 180 48.47 47.87

Diff 0 1 13.50 26.75 110 28.28 31.75

N: number of tasks performed, Min: minimum, Med: median, Max: maximum, SD:

standard deviation, IQR: interquartile range

Table 5

Test of normality.

Kolmorogov-Smirnov Shapiro-Wilk

Statistic df. p-value Statistic df p-value

Context 0.161 30 0.046 0.860 30 0.001

No-Context 0.278 30 0.000 0.777 30 0.000

Fig. 9. The effort frequency for task 1.

s

l

t

w

t

t

j

t

c

t

h

u

w

j

8

2

t

w

l

d

q

1

B

o

(

h

o

4

c

l

G

o

m

p

s

w

w

t

a

r

e
ults. Given that the p-values are lower than 0.05, then the col-

ected data are not normally distributed. Thus, the Mann-Whitney

est was applied to test the H 2 −1 . The p-value obtained by the test

as 0.002. Considering that the p-value is lower than 0.05, then

here is sufficient evidence to reject the null hypothesis. Therefore,

he results suggest that the maintenance effort invested by sub-

ects for implementing change requests using contextual informa-

ion is significantly lower than the effort invested without using

ontextual information.

We also evaluated the effort invested by the subjects in each

ask. Fig. 9 shows two histograms regarding the task 1 . The first

istogram (Context) represents the distribution of effort in min-

tes of Group 1, in which the maintenance task was performed

ith the usage of the dashboard. The majority (13 of 15) of sub-

ects finished the implementation in up to 20 min. In contrast, just

 of 15 subjects finished the activity in up to 20 min for the Group

 (histogram No-Context). The impact of using contextual informa-

ion with qualitative information in the implementation of task 1

as similar to the total effort time. It means the subjects invested

ess time to implement the changes when using the dashboard.

The effort invested by the subjects in the task 2 was also re-

uced for the subjects that used the contextual information with

ualitative information. The Context histogram (Fig. 10) shows that

b
1 of 15 subjects finished the maintenance task in up to 30 min.

y contrast, just 4 of 15 subjects that implemented the task with-

ut the dashboard, finished the implementation in up to 30 min

histogram No-Context). Maybe, the effort difference of task 2 is

igher than the first one due to the complexity. The change request

f task 1 is simpler in terms of complexity and objects involved.

.3. RQ3: Maintainability

Table 6 shows the maintainability rate of the source code

hanged by the subjects during in the maintenance activities. The

ine Context represents the statistics of maintainability rate of

roup 1, in which the activities were performed with the usage

f the dashboard. The line No-Context contains the statistics of

aintainability rate of the Group 2 where the activities were im-

lemented without the usage of the dashboard. The average of

ource code maintainability rate changed by Group 1 was 0.8133

hile the source code maintainability rate produced by Group 2

as, on average, 0.6133. We perceived a significant difference be-

ween the source code maintainability rate. The Group 1 produced

 source code, during the maintenance activities, with an average

ate 24.60% higher than the produced rate by Group 2. Our initial

xpectation was that maintainability of the source code produced

y Group 1 could be higher than Group 2. This expectation was

12 L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443

Fig. 10. The effort frequency for task 2.

Table 6

Descriptive statistic and test of normality.

Descriptive statistic Shapiro-Wilk Mann-Whitney test

N Min Med Mean SD Statistic p-value U W Z p-value

Context 15 0.40 0.8000 0.8133 0.15976 0.782 0.002 59 179 -2.338 0.026

No-Context 15 0.20 0.6000 0.6133 0.24456 0.914 0.155

Diff 0 0.20 0.2000 0.2000 0.08480 0.132 0.153

N #tasks, Min: minimum, Med: median SD: standard deviation range

i

c

t

a

p

l

c

o

t

l

p

t

m

q

o

w
confirmed. We can consider that the usage of contextual informa-

tion with qualitative information improved the maintainability of

produced source code when compared to the counterpart.

We have used the Shapiro Wilk test (Devore and Farnum, 1999)

to check the normal distribution of the data. Table 6 shows the

results. Since the results indicated deviations from normality, the

Mann-Whitney test was applied to test the H 3 −1 . We can be con-

cluded that the maintainability rate in the contextual information

group was statistically significantly higher than the group without

contextual information (U = 59, p-value = 0.026).

4.4. Additional discussion

This section summarizes our findings and outlines some im-

plications for practitioners and researchers. The implications can

help the researchers that intend to characterize software context in

their empirical studies and also developers who deal with mainte-

nance activities and need context information for that.

The conducted experiments allowed to conclude that the con-

textual information brought the following benefits for developers

and researchers:

• Uncovering context information for preventing critical bugs .

The study indicated that the developers’ awareness about the

application is increased through software contextual informa-

tion. This indication comes from the results of RQ1: Correct-

ness and Contextual Information where there is a statistically sig-

nificant difference in the correctness measures associated with

the usage of contextual information through the dashboard.

Our perception is that, with more awareness about the possi-

ble impacts of a wrong implementation, the developers tend to

change the source code more carefully and with more owner-

ship about the changes.
• The availability of context information for reducing effort .

We perceived a difference (on average, 28.28 min) between the

groups in terms of effort. This indication resulted of RQ2: Effort

and Contextual Information and suggested that the dashboard

accelerated, for example, the searching time of source codes to

be changed. Maybe, the history of last changes brought to the
developers similar changes previously performed and the ob-

jects changed. Without the contextual information, the search-

ing time of objects to be changed would depend on the devel-

oper’s experience and source code reading. Another aspect that

reduced the implementation effort was the information about

the design patterns, once one of the tasks demands changes of

factory class.
• Providing actionable information for preventing architecture

degradation . The information about design patterns and non-

functional requirements implemented in the application advises

the developer that there are important aspects already con-

sidered in the application, such as security and performance

needs. These aspects are tight related to the application’s archi-

tecture and the study indicated that the developers were aware

about that when implementing the change request. The results

of RQ3: Maintainability indicated that the usage of contextual

information improved the maintainability of produced source

code when compared to the group that did no use the dash-

board.

However, to convince industry about the validity and applicabil-

ty of the results of controlled software engineering experiments is

hallenge. Sjøberg et al. (2003) believe that the tasks, subjects and

he environments should be as realistic as practically possible to

chieve it. According to Cartaxo et al. (2015) , some studies fail to

resent rigorous empirical evidence about their findings due to the

ack of information about the context in which the studies were

onducted. Additionally, the lack of contextual information is one

f the main obstacles to replicate experiments.

Based on that, we also investigated whether the aforemen-

ioned results could be explained based on some information col-

ected during the experiment. During the experiment, the subjects

rovided some qualitative data about themselves through a ques-

ionnaire. For instance, the subjects informed their current employ-

ent, the experience in software development and the academic

ualifications. Analyzing the answers, we notice that 53% (16/30)

f the subjects have no more than 2 years of experience in soft-

are development. Considering this fact, we analyzed additionally

L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443 13

Table 7

Additional analysis.

N Correctness Mean Maint Mean Effort

Context 8 14 0.575 43

No-Context 8 10 0.475 80

Diff 0 4 0.100 37

N #subjects, Correctness: correctness score Mean Maint: mean of

maintainability rate Mean Effort: mean of effort in minutes

h

a

m

e

f

r

a

e

(

p

c

i

l

m

f

m

i

w

i

a

n

p

t

j

c

5

f

n

t

5

(

m

a

C

c

w

c

t

o

r

r

s

p

u

F

w

t

0

g

t

t

w

o

C

r

5

w

i

C

c

t

o

v

(

t

b

e

t

a

w

t

t

w

h

f

(

i

A

m

E

t

e

p

d

c

r

t

t

t

f

t

5

t

a

a

e

t

r

c

f

o

m
ow the usage of contextual information influenced the same vari-

bles evaluated for all subjects.

We built a new data set containing the correctness, effort and

aintainability of the subjects that have up to 2 years of experi-

nce developing software. To analyze these data, we did not per-

orm hypothesis testing or other advanced analysis. We summa-

ized the correctness frequency in this group and calculated the

verage of maintainability rate as well as the average of the effort

xpended during the experiment. Table 7 shows that the subjects

with experience up to 2 years) obtained similar results in the ex-

eriment compared with all subjects. In other words, the usage of

ontextual information improved the correctness and maintainabil-

ty as well as reduced the maintenance effort f or the subject s with

ess experience.

Additionally, we have observed no significant differences in the

aintainability metrics (lines of code and cyclomatic complexity

or example) extracted from the produced source codes. These

etrics were extracted from all produced code by the subjects us-

ng the Google CodePro AnalytiX . We suspect that, these metrics

ere not impacted due to the size of the application under exper-

ment and the nature of the maintenance activities proposed. The

pplication under experiment can be considered small, in terms of

umber of classes (10) and lines of code (491 lines), and the pro-

osed changes have no potential to change significantly the main-

ainability metrics. As we had a short time to count with the sub-

ects, the changes requested could not be so complex as to signifi-

antly modify the application.

. Threats to validity

This study has a number of threats to validity that range

rom statistical conclusion validity, construct, internal, and exter-

al threats. This section discusses the strategies used for managing

hese threats.

.1. Statistical conclusion validity

We minimized this threat by checking whether the variables

independent and dependent) were submitted to suitable statistical

ethods. The evaluation checked (1) whether the presumed cause

nd effect covary and (2) how strongly they covary (Cook and

ampbell, 1979). Considering the first inferences, we may wrongly

onclude that there is a causal relation between the variables

hen, in fact, they do not. We may also incorrectly state that the

ausal relation does not exist when, in fact, it exists. With respect

o the second inference, we may incorrectly define the significance

f covariation and the degree of confidence that the estimate war-

ants (Campbell and Russo, 1998).

We minimized the threats to the causal relation between the

esearch variables studying the normal distribution of the collected

ample. Thus, it was possible to verify whether parametric or non-

arametric statistical methods could be used. For this purpose, we

sed the Kolmogorov-Smirnov and Shapiro Wilk tests (Devore and

arnum, 1999) to check the normal distribution of the data. Hence,

e are confident that the test statistics were applied correctly, as

he assumptions of the statistical test were not violated.
We tested all hypotheses considering the significance level at

.05 level (p-value ≤ 0.05). In addition, we followed some general

uidelines to improve conclusion validity (Trochim, 2006). First, we

ried to obtain a significant number of subjects to improve the sta-

istical power. Second, the subjects used pieces of realistic soft-

are applications. These improvements reduced errors that could

bscure the causal relationship between the variable under study.

onsequently, the improvements brought a better reliability for our

esults.

.2. Construct validity

The construct validity refers the degree to which inferences are

arranted from the observed cause and effect operations included

n our study to the constructs that these instances might represent.

onsidering these aspects, we evaluated (1) whether the quantifi-

ation methods of the dependent variables are correct, (2) whether

he quantification was accurately done, and (3) whether the usage

f the IDE tool to implement the maintenance tasks can face the

alidity of our results.

We quantified the dependent variable Effort based on the time

in minutes) invested by the subjects to perform each of main-

enance activities, while the correctness and maintainability rate

ased on a suite of metrics. We quantified the correctness by ex-

cuting the existing unit testing in the application and checking

he success rate, while the effort was recorded at the beginning

nd at the end of each experimental task. The maintainability rate

as quantified through cycles of code reviews and, according to

he code review, a final score was assigned to each point of change.

The authors have worked together to guarantee that the quan-

ification of the variables was correctly performed. We checked

hether the collected data were aligned with the objective and

ypotheses of our study. The quantification procedures were care-

ully planned, and followed well-known quantification guidelines

 Wohlin et al., 2012; Kitchenham et al., 2008; Kitchenham, 2007).

Another threat that we have controlled is if the use of the

mplementation IDE might unintentionally influence the results.

ll subjects have used the Eclipse IDE (Eclipse, 2016) to imple-

ent the changes requested by the experiment. The use of the

clipse tool might jeopardize the results; as specific resources of

he tools might influence the subjects during the execution of the

xperimental tasks. Considering this scenario, we have taken the

recaution of making experimental decisions and seeking a study

esign that does not affect the results. First, the nature of the

hange requests did not require that the subjects understood the

esources/details of the IDE tools. Second, the size of the applica-

ion under experiment and the complexity of the implementation

asks were managed so that the use of these tools might not inten-

ionally reduce (or exacerbate) the implementation effort. There-

ore, we believe that the use of the Eclipse IDE tool did not impose

hreats to the validity of our experimental results.

.3. Internal validity

Inferences between our independent variable (usage of contex-

ual information through a dashboard) and the dependent vari-

bles (correctness, effort and maintainability) are internally valid if

 causal relation involving these variables is demonstrated (Wohlin

t al., 2012; Shadish, W., Cook, T., Campbell, 2005). Our study met

he internal validity because: (1) the temporal precedence crite-

ion was met, i.e., the implementation of maintenance tasks pre-

eded the correctness and maintainability rate as well as the ef-

ort implementation; (2) the covariation was observed, i.e., the use

f contextual information led to varying accordingly to the imple-

entation effort; and (3) there is no clear extra cause for the de-

14 L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443

d

t

d

(

i

c

(

e

w

G

v

f

t

v

p

w

m

p

o

fi

o

n

a

s

d

t

l

a

a

h

p

i

t

t

t

e

t

c

t

p

o

v

c

t

o

t

o

c

s

tected covariation. Our study satisfied all these three requirements

for internal validity.

We also analyzed if the internal validity can be supported by

other means. First, we performed some cases for demonstrating

how the dependent variables are being exclusively affected by the

independent variable. Second, we have observed that the collected

values for the correctness, maintainability rate and implementation

effort were confidently caused by the usage of contextual informa-

tion through a dashboard.

Next, usually the confounding variable is seen as the major

threat to the internal validity (Mitchell and Jolley, 2012). That is,

rather than just the independent variable, an unknown variable

unexpectedly affects the dependent variable. Thus, a pilot study

was carried out to make sure that the dependent variables were

not affected by any existing variable other than the use of the con-

textual information. During this pilot study, we tried to identify

which other variables could affect the dependent variables, such

as the experience of the subjects in software development, which

was evaluated in the Section 4.4 .

5.4. External validity

External validity refers to the validity of the obtained results in

other broader contexts (Mitchell and Jolley, 2012). That is, to what

extent the results of this controlled study can be generalized to

other realities, for instance, with different qualitative information,

complexity of the code to be changed, with more experienced de-

velopers and quantifying other inconsistencies. As this study was

not replicated yet, we made use of the theory of proximal similar-

ity (proposed by Campbell and Russo (1998)) to identify the degree

of generalization of the results. The goal is to define criteria that

can be used to identify similar contexts where the results of this

study can be applied.

Some criteria are shown as follows. First, the developers must

have a basic knowledge about the software’s domain under the

study. The maintenance tasks should be implemented for evolving

software applications; more specifically, evolution based on addi-

tion, exclusion, derivation, and change features. It is important to

highlight that the software application used was small. Given that

these criteria may happen in mainstream software development,

we conclude that the results of our study may be generalized, at

some point, to other contexts that are more similar to these re-

quirements (Farias et al., 2012; 2015).

6. Related works

This section presents some related studies, which define con-

text for software and use this definition on software-development

process to improve the situation awareness of developers.

Section 6.1 describes the related studies and their contributions.

Section 6.2 discusses evaluation criteria and comparison of these

criteria in order to figure out some research opportunities related

to the objective of this study.

6.1. Related works using context on software development

Kersten and Murphy (2006) defined task context as the infor-

mation that a software developer needs to know to complete that

task. Each element and relationship in the study model correspond

to a weighting of its relevance to that task. The task context is used

by Mylar Elipse plug-in (renamed currently to Mylyn project) to

improve the developer productivity when he needs to change the

current task for another. The plug-in slices the project vision show-

ing only the relevant artifacts to complete the current task. The

histories of the programmers interactions with a source code and

related artifacts are also used by Sawadsky and Murphy (2011) to
iscover relevant code examples from the web through the Fish-

ail Eclipse plug-in. This plug-in used as base the Mylar plug-in

escribed before. The key pieces of Fishtails architecture include:

1) a task context manager component for tracking the degree-of-

nterest of program elements; (2) a query generator component for

onstructing keywords for program elements in the task context;

3) a query executor component for sending queries to a search

ngine and prioritizing results; and (4) a result display component

hich surfaces in search results within the IDE.

In the same line of task management and recovery, Parnin and

örg (2006) proposed an approach for capturing the context rele-

ant to a task from programmer’s interactions with an IDE. This in-

ormation is then used to aid the programmer recovering the men-

al state associated with a previous task and to support the de-

elopment activities using recommendation techniques. Their ap-

roach is focused on analyzing the interactions of the programmer

ith the source code, in order to create techniques for supporting

ental recovery and source code exploration.

Leano et al. (2014) defined a task context using a hybrid ap-

roach. The files that are going to be edited are considered as part

f task context and developers spend a lot of time to identify these

les. So, the idea of the hybrid technique is to use a combination

f information retrieval (IR), data mining and textual analysis tech-

iques to determine the files which should be edited to accomplish

 task. For example, when the developer starts editing an artifact,

imilar stored traces related to the artifact will be analyzed in or-

er to provide a possible set of files to be changed. To determine

he full set of files that are likely to be changed for a task the fol-

owing approaches can be used: Commit Graphs, CrowdSourcing

nd Expert inputs.

Strathcona Eclipse plugin (Holmes and Murphy, 2005) considers

s structural context the same artifact elements of task context;

owever, the usage of this kind of context is to suggest code sam-

les to a developer by querying a repository in order to find sim-

lar source code usage. The main idea of this study is to facilitate

he usage of frameworks and APIs. Strathcona works by extracting

he structural context of source code entities. This structural con-

ext includes the methods signature, the declared type and par-

nt type, the methods called, the name of fields accessed, and the

ypes referred by each method. The extracted structural context

an be used in two ways: (1) as an automatic query that describes

he source code fragment for which the developer requests sup-

ort; and (2) to build a database containing the structural context

f classes.

Gasparic et al. (2017) presented a context model which captures

arious situations in which developers interact with an IDE. This

ontext model can be used to support and enhance user interac-

ion with the IDE or to improve the accuracy and timing of rec-

mmendations produced. The suggested context model consists of

hirteen contextual factors, namely, variables with precise domains

f possible values to be used to identify the context. The authors

haracterize developer situations from several perspectives as de-

cribed bellow:

• Who: The contextual factors in this category capture general in-

formation about the developer who is interacting with an IDE.
• What: The contextual factors in this category capture informa-

tion about what developers are doing with an IDE and which

project artifacts are used during or affected by their actions.
• When: The contextual factors in this category capture temporal

aspects of developers interaction with an IDE considering the

time of the day and day of the week which describe when the

work is being performed.
• Where: The contextual factors in the where category capture in-

formation about the environment with which a developer is in-

L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443 15

r

a

c

t

m

f

t

c

p

e

c

w

t

s

t

c

s

t

p

c

m

A

h

t

p

p

t

q

q

t

fi

o

d

t

i

o

a

f

w

d

f

t

a

b

s

a

e

p

C

a

d

c

t

h

n

i

i

m

a

I

e

s

t

t

c

i

c

i

b

p

m

a

p

d

r

d

h

u

w

d

s

z

a

t

s

t

c

6

teracting to describe which parts of the IDE are available and

which ones the developer is using.

According to Latoza et al. (2014) , software development tasks

equire many types of context. Developers must know context such

s where features are implemented, how to implement changes

onsistent with an architecture and design, and which developers

o ask questions. For example, when writing a function, developers

ust understand the context in which it is used. When calling a

unction, developers must understand what assumptions it makes

he systems state and the effects that this execution may cause. Ac-

ording to the authors, much of the context required in common

rogramming tasks can be captured in the interfaces of functions,

nabling tasks to be performed modularly on functions in isolation.

Requirements, dependent tasks, discussions and knowledge ex-

hanges about tasks and artifacts are considered as part of soft-

are context. Tillmann et al. (2014) identified the use of this con-

ext information in Code Hunt tool. Code Hunt 2 is a web-based

erious gaming platform in which players write code to advance

hrough levels. The types of context identified in Code Hunt were

ategorized as follows: earlier solved coding duels, the secret code

egment of the coding duel, the playing history of the coding duel,

he coding duel being modified by the player, the input-output

airs reported to the player, and the hint reported to the player.

Martie and Hoek (2014) used contexts to help developers on

ode searching activity. Searching for source code on-line is a com-

on activity in programming. Algorithms, language examples, and

PI usage examples are all searched during programming. They

ave developed a new code search engine called CodeExchange

o directly support query reformulation. CodeExchanges interface

resents meta-data about the code results, highlights semantic

roperties of the code results, and allows the programmer to use

hese meta-data and properties directly to reform the ongoing

uery. As such, the programmers can incrementally reform their

ueries not just with keywords but with the results returned, i.e.,

hey search in context.

StackMine (Zhang et al., 2013) is a Microsoft project that identi-

es high-impact program execution patterns from a large number

f trace streams based on sequences of function calls that happen

uring program execution. This project helps developers to iden-

ify a performance-bottleneck through analytics techniques reduc-

ng the human investigation effort by 90 percent. The build process

f StackMine was done using an iterative flow between researchers

nd practitioners where the constant feedback was a valuable in-

ormation to product improvements and usability.

Haron and Syed-Mohamad (2015) proposed the TDCA model,

hich focuses on integrating test coverage and defect coverage

ata to assist managers to make decisions. These data are extracted

rom source code artifacts under test, unit test cases from test suit

ools and reported defects from a defect tracking database. After

nalyzing these data, the model shows the result through a dash-

oard named Test Analytics Dashboard. This dashboard demon-

trates the information using a Bubble chart applying a qualitative

pproach. The model was implemented as an Eclipse plugin and its

valuation was performed by a case study on the Apache POI. The

roposed model was compared to some test coverage tools such as

lover 3 and SonnerQube 4 ..

Some studies define context widely and not only to software

rtifacts. Petersen and Wohlin (2009) proposed a checklist for the

escription of context, consisting of context facets (product, pro-

ess, practice, tools, people, organization, market) and related con-

ext elements based on a literature review. This checklist aims to
2 https://www.codehunt.com/ .
3 https://confluence.atlassian.com/display/CLOVER/About+Clover+code+metrics .
4 http://www.sonarqube.org/

s

t

a

s
elp researchers to take informed decisions on what to include and

ot to include.

Antunes and Gomes (2009) proposed an approach for captur-

ng contextual information from developers where it should take

nto account the whole environment that supports their work. This

eans that contextual information should be retrieved from all the

pplications which the developer typically deals with, such as an

DE, a set of office tools, a PIM (Personal Information Manager) and

ven the operating system itself. Most of the tools referred provide

ome kind of plug-in integration, which largely facilitate informa-

ion retrieval. The information gathered across the various applica-

ions should then be centralized and coherently integrated into the

ontext model, so that a snapshot of the context model of the user

s available at any point in time.

In another study (Antunes et al., 2011) considered that software

ontext developer takes into account all dimensions that character-

ze the work environment of the developer. These dimensions can

e represented as a layered model with four main layers: personal,

roject, organization and domain. The authors consider that the

ain sources of this of contextual information are project man-

gement tools. These tools store a big amount of explicit and im-

licit information about the resources produced during a software

evelopment project, how the people involved relate with these

esources and how the resources relate to each other. They have

eveloped a prototype, in the form of an Eclipse plug-in, to show

ow the context information can be integrated into an IDE and

sed to help developers.

Carlson et al. (2016) proposed a context model that identifies

hich context properties are important for efficient and effective

ecision making and enable documentation of architectural deci-

ions. Initially, five categories structure the model, namely organi-

ation, product, stakeholder, development methods & technologies

nd market & business. These are considered essential for studying

he contextual elements of the phenomenon of architectural deci-

ion making and the effectiveness of modern, complex, strategic,

actical and operational decisions. The five main categories of the

ontext model were described in the following way:

• Organization: Information that characterizes the organization

type in which the implementation is carried out or intended

for, i.e., structure, model of management, distribution, etc.
• Product: It describes the properties of the system developed,

and all contextual information related to the current state of

product.
• Stakeholder: It describes the type of organizations or people

that might affect an architectural decision or that are affected

by the decision. These are not taking part in the decision mak-

ing process directly, but can represent the end-users of the de-

cision, and thus are opt to be differentiated from the decision

makers.
• Development method & technology: This category covers any

systematic approach or technology used in or by the organiza-

tion and is affecting the development of the product.
• Market & business: It represents the current state of the market

and the business in general, outside the organization bound-

aries, i.e., involves customers, competitors, partners, ecosys-

tems, etc.

.2. Comparative analysis of the related works

In this section, a comparison of related work is described con-

idering six groups of characteristics, highlighting the most impor-

ant, namely, the Context Definition . Table 8 organizes these char-

cteristics in evaluation criteria and presents a comparison of the

tudies described before. These criteria were researched in order to

https://www.codehunt.com/
https://confluence.atlassian.com/display/CLOVER/About+Clover+code+metrics
http://www.sonarqube.org/

1
6

L.F.
 D

’A
v

ila
,
 K

.
 Fa

ria
s
 a

n
d
 J.L.V

.
 B

a
rb

o
sa
 /
 T

h
e
 Jo

u
rn

a
l
 o

f
 Sy

stem
s
 a

n
d
 So

ftw
a

re
 15

9
 (2

0
2

0
)
 110

4
4

3

Table 8

Related work comparison.

Context Definition Type of Study Type of Model Tool Support License Visualization

Study Definition/

Formal-

ization

Related to

artifacts

Related to

develop-

ers

Related to

projects

Related to

software

opera-

tions

Survey Case

Study

Controlled

Experi-

ment

Mapping

study

Archite-

cture

Conceptual

model

Ontology Algorithm Prototype Tool IDE

Plugin

Heuristic Open

Source

Private Analytics

dashboards

Structured

data

Views

GASPARIC

et al. (2017)

∼ √ √
- - -

√
- - -

√
- - - -

√
- ∅ ∅ ∅ -

√

CARLSON

et al. (2016)

-
√ √ √ √

- - - - - - - - - - - - ∅ ∅ ∅ - -

HARON;

SYED-MOHAMAD

(2015)

-
√ √

- - -
√

- -
√

- - - - -
√

- ∅ ∅

√
- -

LEANO; KASI;

SARMA (2014)

∼ √ √
- - - - - - -

√
- - - - -

√
∅ ∅ - - -

TILLMANN

et al. (2014)

-
√ √ √

- - - - - -
√

- ∼ -
√

-
√ √

- -
√

-

MARTIE; HOEK

(2014)

∼ √ √
- - - - - -

√
- - - ∅

√
- -

√
- -

√ √

LATOZA; TOWNE;

HOEK (2014)

∼ √ √
- - - - - - - - - - -

√
- -

√
- -

√
-

ZHANG et al. (2013) ∼ √ √
-

√
-

√
- - ∅ ∅ ∅

√
∅

√
∅ ∅ -

√ √ √
-

CLARKE;

O’CONNOR (2012)

∼ √ √ √ √
- - -

√
-

√
- - ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

SAWADSKY;

MURPHY (2011)

-
√ √

- - - - - - - - -
√ √

-
√

- ∅ ∅ -
√ √

ANTUNES;

CORREIA; GOMES

(2011)

∼ √ √ √
- ∅ ∅ ∅ ∅ ∼ √

-
√ √

- - - ∅ ∅ -
√ √

ANTUNES; GOMES

(2009)

-
√ √ √

- - ∼ - - ∼ - ∼ - - - - - ∅ ∅ ∅ ∅ ∅

KERSTEN;

MURPHY (2006)

√ √ √
- - - -

√
-

√
- ∼ √

- -
√ √ √

- -
√ √

PARNIN; GRG, 2006 ∼ √ √
- - -

√
- - - - -

√
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

HOLMES; MURPHY

(2005)

-
√ √

- - -
√

- - - - -
√

- -
√ √ √

- -
√ √

Notes: (
√

) Supported (-) Not supported (∼) Partly supported (∅) Not applicable

L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443 17

u

u

r

K

i

I

w

i

u

a

a

w

e

c

g

w

t

s

A

m

e

c

t

f

a

m

p

n

t

a

w

c

z

4

e

c

a

u

d

t

p

H

o

p

c

a

o

w

f

d

M

M

a

t

b

t

s

o

A

m

i

f

q

t

i

7

f

i

c

i

s
nderstand the state of the art regarding the studies related to the

sage of context information on software-development process.

The comparison criteria are:

1. Context Definition : This group of criteria evaluates how the

study has defined formally the context information, and what

kind of information was used on this. The criteria of this group

are:
• Context definition/formalization : this criterion evaluates if the

study describes a formal definition of context applied to

software development;
• Context related to artifacts : this criterion evaluates if the

study considers information captured from the interaction

between developers and IDEs and the artifacts’ relationship

as part of the context;
• Context related to developers : the developer has to deal with

various kinds of resources at the same time, such as source

code files, specification documents, bug reports, organiza-

tion culture, software-development methodologies and oth-

ers to accomplish determined tasks. The studies are evalu-

ated by this criterion, considering this information as part

of the context;
• Context related to projects : a software-development project

is an aggregation of a team, a set of resources and a

combination of explicit and implicit knowledge that keeps

the project running. Usually, projects have tight deadlines,

aggressive scopes and other restrictions and assumptions,

which are so relevant to a software development. This crite-

rion evaluates the usage of this data as part of the context;
• Context related to software operations : information, such as

the number of clients who use a certain feature, the interac-

tion between the feature and the computing infrastructure,

performance and others can help developers to have a bet-

ter understand about the context and the code under de-

velopment. The usage of this information by the studies is

evaluated by this criterion.

2. Type of study : This criterion considers the type of researched

study. The types considered are survey, case study, controlled

experiment and mapping study;

3. Type of Model : The type of model proposed by the researched

studies is evaluated by this criterion. The type of models con-

sidered are architecture, conceptual model, ontology and algo-

rithm;

4. Tool support : This criterion evaluates if the researched stud-

ies propose some tool. Prototype, IDE plug-in or heuristic were

considered in this criterion;

5. License : The proposed tool license is evaluated by this criterion

considering as open source or private;

6. Visualization : This criterion evaluates the approach of provid-

ing context information. The considered approaches are analyt-

ics, dashboards, structured data and views.

As shown in Table 8 , all studies consider context information

elated to software artifacts and developers. Only the study of

ersten and Murphy (2006) defines formally context, but its def-

nition is limited to the developer’s interaction with development

DE, disregarding other aspects such as project information or soft-

are operations.

Gasparic et al. (2017) proposed enhancements in the developer

nteraction with the Eclipse IDE and the context model were eval-

ated their by a case study. The evaluation showed that context

ffects the usage of IDE commands on the individual level, as well

s on the group level. The authors plan to evaluate the model also

ith a bigger and more diverse group of IDE users, to improve the

xternal validity of their conclusions.

The study of Zhang et al. (2013) , through the StackMine tool,

onsiders information about software operations (the result of pro-
rams performance evaluation) as relevant to compose the soft-

are context. The proposed tool provides the performance evalua-

ion results to speed problem analysis in production environments

ystems done by developers.

The studies of Carlson et al. (2016) , Antunes et al. (2011) , and

ntunes and Gomes (2009) define context for software develop-

ent more widely, considering the main aspects listed in the lit-

rature. The studies consider that the context information should

ontain more than the data extracted from the developer’s in-

eraction with the development IDE. This means, the context in-

ormation should consider personal aspects, organizational factors

nd projects where the requirements, assumptions and constraints

ake up the framework of information capable of improving the

roductivity of developers. The software operations dimension is

ot considered by the studies cited, and there is no formal defini-

ion or context model in the form of ontology or class diagram.

With a similar approach, Clarke and O’Connor (2012) propose

 reference framework of situational factors which affect the soft-

are development process. This framework is grouped in 8 classifi-

ations: Personnel, Requirements, Application, Technology, Organi-

ation, Operation, Management and Business. They resulted to the

4 factors and 170 subfactors, from which the authors acknowl-

dge that their scope of domains was restricted and did not in-

lude among other topics. This study enables researches to access

 broad, systematically developed initial framework, which can be

sed as a reference for the situational factors affecting the software

evelopment process. Additionally, software development practi-

ioners can access the proposed study as a check list of the im-

ortant considerations for their software development process.

Haron and Syed-Mohamad (2015) , Zhang et al. (2013) ,

olmes and Murphy (2005) , and Parnin and Görg (2006) have

rganized their studies as case studies. Kersten and Mur-

hy (2006) conducted the study through the implementation of a

ontrolled experiment. The remaining studies were organized with

 concept different from the covered by the criterion type of study.

Considering the type of model criteria, it was found that none

f the studies defined ontology or class diagram to represent soft-

are context. Most studies have proposed algorithms as the main

eature of their proposal.

In terms of visualization, most studies deal with structured

ata and views in their models. The only exceptions are Stack-

ine tool by Zhang et al. (2013) and TDCA by Haron and Syed-

ohamad (2015) . These works provide information using the an-

lytics approach, allowing developers real-time decision-making in

he analysis of performance issues.

Finally, we see this paper as a first step in a more am-

itious agenda to define and use software contextual informa-

ion in a qualitative way so that developers can get better re-

ults in their maintenance activities. According to the studies

f Zhang et al. (2013) , Haron and Syed-Mohamad (2015) and

ntunes et al. (2011) , a useful model of software qualitative infor-

ation should be structured considering more than artifact data

n the context definition. In addition, the way to visualize this in-

ormation is an important feature to be considered by a context

ualitative model for software. As demonstrated in the Section 4 ,

his combination has a high potential to help the developers dur-

ng their maintenance activities becoming a research opportunity.

. Concluding remarks and future work

This paper reported a controlled experiment to grasp the ef-

ects of contextual information on correctness and maintainabil-

ty of code changed as well as the effort on implementing these

hanges. It can be seen as first step to assess the effects of us-

ng contextual information through qualitative dashboards on the

oftware maintenance in terms of correctness, effort and main-

18 L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443

C

C

C

D

D

D

D

D

D

D

E

E

F

F

G

H

H

J

J

K

K

L

L

L

L

tainability. The results of this controlled experiment suggest that

the usage of software contextual information, through qualitative

dashboards, improves the awareness of developers regarding the

application and the development environment. This awareness im-

provement can be verified by the higher software correctness and

maintainability as well as a lower implementation effort measured

during the experiment. These results can be considered a first step

on supporting the definition of a context model for software devel-

opment. The entities, which compose this model, should consider

the qualitative information provided in the experiment.

However, all development aspects were controlled by the exper-

iment. All participants performed the same activities in the same

versions of code in an artificial environment. On this way, further

empirical studies are still required to investigate if our results can

be confirmed in other contexts. As a future work, we plan to build

a dashboard composed by contextual information of a real applica-

tion. This dashboard will be used in a real development team, in-

side of a software company. In this second study, it will not be pos-

sible to control all variables. The change requests can occur accord-

ing to a bug or a legal requirement without forecast. The devel-

opers will perform changes in different artifacts and versions. The

main goal of this second study will be to evaluate how the usage

of contextual information can be applied to real software mainte-

nance activities helping the developers to do the right thing in a

proper place. The understanding of the role that different kinds of

contextual information impact in the decision-making process of

developers also will be evaluated in this study. From the result of

this second assessment, we will have a complete overview about

this approach and how it can be useful in the industry.

Acknowledgments

This work was financed by Coordenao de Aperfeioamento de

Pessoal de Nvel Superior - Brasil (CAPES) - Finance Code 001

and CNPq/Brazil (National Council for Scientific and Technolog-

icalCE: Please raise an author query for missing grantnumber.

https://doi.org/10.13039/50110 0 0 03593

Development - http://www.cnpq.br). We would like to acknowl-

edge both institutions for their support. Finally, we would like

to thank Unisinos (http://www.unisinos.br) for embracing this re-

search.

References

Antunes, B. , Correia, F. , Gomes, P. , 2011. Context capture in software development.
arXiv:11014101 .

Antunes, B. , Gomes, P. , 2009. Context-Based retrieval in software development. Proc.
of the Doctoral Symposium on Artificial Intelligence (SDIA 2009) of the 14th

Portuguese Conference on Artificial Intelligence (EPIA 2009) 1–10 .
Augustine, V., Hudepohl, J., Marcinczak, P., Snipes, W., 2017. Deploying software

team analytics in a multinational organization. IEEE Softw. 35 (1), 72–76. doi: 10.

1109/MS.2017.4541044 .
Barbosa, J., Tavares, J., Cardoso, I., Alves, B., Martini, B., 2018. Trailcare: an indoor

and outdoor context-aware system to assist wheelchair users. Int J Hum Comput
Stud 116, 1–14. doi: 10.1016/j.ijhcs.2018.04.001 .

Barbosa, J.L.V., 2015. Ubiquitous computing: applications and research opportuni-
ties. In: 2015 IEEE International Conference on Computational Intelligence and

Computing Research (ICCIC), pp. 1–8. doi: 10.1109/ICCIC.2015.7435625 .

Barbosa, J.L.V., Martins, C., Franco, L.K., Barbosa, D.N.F., 2016. Trailtrade: a model for
trail-aware commerce support. Comput. Ind. 80, 43–53. doi: 10.1016/j.compind.

2016.04.006 .
Baysal, O., Holmes, R., Godfrey, M.W., 2013. Developer dashboards: the need for

qualitative analytics. IEEE Softw. 30 (4), 46–52. doi: 10.1109/MS.2013.66 .
Briand, L., Bianculli, D., Nejati, S., Pastore, F., Sabetzadeh, M., 2017. The case for

context-Driven software engineering research: generalizability is overrated. IEEE
Softw. 34 (5), 72–75. doi: 10.1109/MS.2017.3571562 .

Buse, R.P.L., Zimmermann, T., 2012. Information needs for software development an-

alytics. Proc. - Int. Conf. Softw.Eng. 987–996. doi: 10.1109/ICSE.2012.6227122 .
Campbell, D.T. , Russo, M.J. , 1998. Social Experimentation. SAGE Classics .

Carlson, J., Papatheocharous, E., Petersen, K., 2016. A context model for architectural
decision support. In: 2016 1st International Workshop on Decision Making in

Software ARCHitecture (MARCH), pp. 9–15. doi: 10.1109/MARCH.2016.6 .
artaxo, B. , Almeida, A. , Barreiros, E. , Saraiva, J. , Ferreira, W. , Soares, S. , 2015. Mech-
anisms to characterize context of empirical studies in software engineering. In:

Experimental Software Engineering Latin American Workshop (ESELAW 2015),
pp. 1–14 .

azzola, W., Shaqiri, A., 2017. Context-aware software variability through adaptable
interpreters. IEEE Softw. 34 (6), 83–88. doi: 10.1109/MS.2017.4121222 .

larke, P., O’Connor, R.V., 2012. The situational factors that affect the software de-
velopment process: towards a comprehensive reference framework. Inf. Softw.

Technol. 54 (5), 433–447. doi: 10.1016/j.infsof.2011.12.003 .

Cook, T. , Campbell, D. , 1979. Quasi-Experimentation: Design & Analysis Issues for
Field Settings. Houghton Mifflin .

amasceno Vianna, H., Barbosa, J., 2014. A model for ubiquitous care of noncom-
municable diseases. Biomed. Health Inf. IEEE J. 18 (5), 1597–1606. doi: 10.1109/

JBHI.2013.2292860 .
eitel, H.M. , Deitel, P.J. , 2010. Java: Como Programar. PRENTICE HALL BRASIL .

Devore, J.L. , Farnum, N. , 1999. Applied Statistics for Engineers and Scientists.

Duxbury Press .
ey, A., Abowd, G., Salber, D., 2001. A conceptual framework and a toolkit for sup-

porting the rapid prototyping of context-Aware applications. Human-Comput.
Interact. 16 (2), 97–166. doi: 10.1207/S15327051HCI16234 _ 02 .

ey, A.K. , Abowd, G.D. , Salber, D. , 2001. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Com-

put. Interact. 16 (2), 97–166 .

river, C., Clarke, S., 2004. Context-aware trails [mobile computing]. Computer 37
(8), 97–99. doi: 10.1109/MC.2004.89 .

river, C., Clarke, S., 2008. An application framework for mobile, context-aware
trails. Pervasive Mob. Comput. 4 (5), 719–736. doi: 10.1016/j.pmcj.20 08.04.0 09 .

yb, T., Sjberg, D.I.K., Cruzes, D.S., 2012. What works for whom, where, when, and
why? On the role of context in empirical software engineering. In: Proceed-

ings of the 2012 ACM-IEEE International Symposium on Empirical Software En-

gineering and Measurement, pp. 19–28. doi: 10.1145/2372251.2372256 .
clipse, 2016. Eclipse eclipse. http://www.eclipse.org . Accessed: 2016-03-19.

ndsley, M.R. , 1995. Toward a theory of situation awareness in dynamic systems:
situation awareness. Hum. Factors 37 (1), 32–64 .

Farias, K., Garcia, A., Whittle, J., Chavez, C., Lucena, C., 2012. Evaluating the effort
of composing design models: a controlled experiment. Lect. Note. Comput. Sci.

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) 7590 LNCS, 676–691. doi: 10.1007/978- 3- 642- 33666-9 _ 43 .
arias, K., Garcia, A., Whittle, J., von Flach Garcia Chavez, C., Lucena, C., 2015. Eval-

uating the effort of composing design models: a controlled experiment. Softw.
Syst. Model. 14 (4), 1349–1365. doi: 10.1007/s10270- 014- 0408- 2 .

u, T., 2011. A review on time series data mining. Eng. Appl. Artif. Intell. 24 (1), 164–
181. doi: 10.1016/j.engappai.2010.09.007 . http://www.sciencedirect.com/science/

article/pii/S0952197610 0 01727

asparic, M., Murphy, G.C., Ricci, F., 2017. A context model for IDE-based recom-
mendation systems. J. Syst. Softw. 128, 200–219. doi: 10.1016/j.jss.2016.09.012 .

aron, N.H. , Syed-Mohamad, S.M. , 2015. Test and defect coverage analytics model
for the assessment of software test adequacy. In: 2015 9th Malaysian Software

Engineering Conference (MySEC). IEEE, pp. 13–18 .
olmes, R., Murphy, G., 2005. Using structural context to recommend source code

examples. Proc. 27th Int Conf.Softw. Eng., 2005. ICSE 2005. 117–125. doi: 10.
1109/ICSE.2005.1553554 .

edlitschka, A. , Ciolkowski, M. , Pfahl, D. , 2008. Reporting experiments in software

engineering. In: Guide to Advanced Empirical Software Engineering. Springer,
pp. 201–228 .

edlitschka, A. , Pfahl, D. , 2005. Reporting guidelines for controlled experiments in
software engineering. In: International Symposium on Empirical Software Engi-

neering. IEEE, pp. 95–104 .
Kersten, M., Murphy, G.C., 2006. Using task context to improve programmer pro-

ductivity. Proc. 14th ACM SIGSOFT Int. Sympos. Found. Softw. Eng. - SIGSOFT

’06/FSE-14 1—-11. doi: 10.1145/1181775.1181777 .
itchenham, B. , 2007. Empirical paradigm - the role of experiments. In: Proceedings

of the 2006 International Conference on Empirical Software Engineering Issues:
Critical Assessment and Future Directions. Springer-Verlag, Berlin, Heidelberg,

pp. 25–32 .
itchenham, B. , Al-Khilidar, H. , Babar, M.A. , Berry, M. , Cox, K. , Keung, J. , Kurni-

awati, F. , Staples, M. , Zhang, H. , Zhu, L. , 2008. Evaluating guidelines for reporting

empirical software engineering studies. Empir. Softw. Eng. 13 (1), 97–121 .
Latoza, T.D. , Towne, W.B. , Hoek, A.V.D. , 2014. Harnessing the crowd : decontextual-

izing software work. Csd 2014 2–3 .
avallée, M., Robillard, P.N., 2015. Why good developers write bad code : an obser-

vational case study of the impacts of organizational factors on software quality.
IEEE/ACM 37th IEEE Int. Conf.Softw. Eng. Why 677–687. doi: 10.1109/ICSE.2015.

83 .

eano, R. , Kasi, B.K. , Sarma, A. , 2014. Recommending task context: automation meets
crowd. Int. Workshop Context Softw. Dev. .

i, W., Eickhoff, C., de Vries, A.P., 2012. Want a coffee?: predicting users’ trails. In:
Proceedings of the 35th International ACM SIGIR Conference on Research and

Development in Information Retrieval. ACM, New York, NY, USA, pp. 1171–1172.
doi: 10.1145/2348283.2348524 .

ientz, B.P. , Swanson, E.B. , 1980. Software Maintenance Management: A Study of the

Maintenance of Computer Application Software in 487 Data Processing Organi-
zations. Addison-Wesley .

Lou, J.-G., Lin, Q., Ding, R., Fu, Q., Zhang, D., Xie, T., 2013. Software analytics for inci-
dent management of online services: an experience report. 2013 28th IEEE/ACM

Int. Conf.Autom. Softw. Eng. (ASE) 475–485. doi: 10.1109/ASE.2013.6693105 .

https://doi.org/10.13039/501100002322
http://www.cnpq.br
http://www.unisinos.br
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0002
https://doi.org/10.1109/MS.2017.4541044
https://doi.org/10.1016/j.ijhcs.2018.04.001
https://doi.org/10.1109/ICCIC.2015.7435625
https://doi.org/10.1016/j.compind.2016.04.006
https://doi.org/10.1109/MS.2013.66
https://doi.org/10.1109/MS.2017.3571562
https://doi.org/10.1109/ICSE.2012.6227122
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0010
https://doi.org/10.1109/MARCH.2016.6
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0012
https://doi.org/10.1109/MS.2017.4121222
https://doi.org/10.1016/j.infsof.2011.12.003
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0015
https://doi.org/10.1109/JBHI.2013.2292860
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0018
https://doi.org/10.1207/S15327051HCI16234_02
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0020
https://doi.org/10.1109/MC.2004.89
https://doi.org/10.1016/j.pmcj.2008.04.009
https://doi.org/10.1145/2372251.2372256
http://www.eclipse.org
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0024
https://doi.org/10.1007/978-3-642-33666-9_43
https://doi.org/10.1007/s10270-014-0408-2
https://doi.org/10.1016/j.engappai.2010.09.007
http://www.sciencedirect.com/science/article/pii/S0952197610001727
https://doi.org/10.1016/j.jss.2016.09.012
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0029
https://doi.org/10.1109/ICSE.2005.1553554
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0032
https://doi.org/10.1145/1181775.1181777
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0036
https://doi.org/10.1109/ICSE.2015.83
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0038
https://doi.org/10.1145/2348283.2348524
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0040
https://doi.org/10.1109/ASE.2013.6693105

L.F. D’Avila, K. Farias and J.L.V. Barbosa / The Journal of Systems and Software 159 (2020) 110443 19

M

M

M

M

M

M

M

P

P

P

R

R

R

S

S

S

S

S

S

S

v

T

T

T

V

W

W

W

Z

Z

L

y

C

S

2

a

K

g

h

i

G

b

a

w

2

J

F

a

R

L

v

i

t

a

artie, L. , Hoek, A.V.D. , 2014. Context in code search. 1st International Workshop
on Context in Software Development Workshop (CSD) .

enzies, T., 2018. The unreasonable effectiveness of software analytics. IEEE Softw.
35 (2), 96–98. doi: 10.1109/MS.2018.1661323 .

enzies, T. , Zimmermann, T. , 2013. Software analytics: so what? IEEE Softw. 30 (4),
31–37 .

itchell, M. , Jolley, J. , 2012. Research Design Explained, 8th edn. Wadsworth Pub-
lishing .

orse, D.R., Armstrong, S., Dey, A.K., 20 0 0. The what, who, where, when, why and

how of context-awareness. In: CHI ’00 Extended Abstracts on Human Factors
in Computing Systems. ACM, New York, NY, USA, p. 371. doi: 10.1145/633292.

633518 .
ostefaoui, G.K., Pasquier-Rocha, J., Brézillon, P., 2004. Context-aware computing:

a guide for the pervasive computing community. ICPS ’04: Proceedings of the
The IEEE/ACS International Conference on Pervasive Services 39–48. doi: 10.1109/

ICPS.2004.14 .

urphy, G.C., 2018. The need for context in software engineering (ieee cs harlan
mills award keynote). In: Proceedings of the 33rd ACM/IEEE International Con-

ference on Automated Software Engineering. ACM, New York, NY, USA, p. 5.
doi: 10.1145/3238147.3241987 .

arnin, C., Görg, C., 2006. Building usage contexts during program comprehension.
IEEE Int. Conf. Progr.Comprehens. 2006, 13–22. doi: 10.1109/ICPC.2006.14 .

etersen, K., Wohlin, C., 2009. Context in industrial software engineering research.

2009 3rd Int. Sympos. Empir.Softw. Eng. Measur., ESEM 2009 401–404. doi: 10.
1109/ESEM.2009.5316010 .

ort, D., Taber, B., 2017. Actionable analytics for strategic maintenance of critical
software: an industry experience report. IEEE Softw. 35 (1), 58–63. doi: 10.1109/

MS.2017.4541055 .
ajlich, V., 2001. Software evolution: a road map. Proc. IEEE Int. Conf. Softw. Main-

ten. ICSM 2001 6. doi: 10.1109/ICSM.2001.972705 .

osa, J., Barbosa, J., Kich, M., Brito, L., 2015. A multi-temporal context-aware sys-
tem for competences management. Int. J. Artif. Intell. Educ. 1–38. doi: 10.1007/

s40593- 015- 0047- y .
osa, J., Barbosa, J.L.V., Ribeiro, G.D., 2016. ORACON: an adaptive model for context

prediction. Expert Syst. Appl. 45, 56–70. doi: 10.1016/j.eswa.2015.09.016 .
atyanarayanan, M. , 2001. Pervasive computing: vision and challenges. IEEE Pers.

Commun. 8, 10–17 .

awadsky, N., Murphy, G., 2011. Fishtail: from task context to source code examples.
Proc. 1st Workshop on... 48–51. doi: 10.1145/1984708.1984722 .

hadishW., Cook, T., Campbell, T., 2005. Experiments and generalized causal infer-
ence. Exp. Quasi-Exp. Desig.General. Causal Inference 100 (470), 1–81. doi: 10.

1198/jasa.2005.s22 .
ilva, J.M., Rosa, J.H., Barbosa, J.L., Barbosa, D.N., Palazzo, L.A., 2010. Content dis-

tribution in trail-aware environments. J. Braz. Comput. Soc. 16 (3), 163–176.

doi: 10.1007/s13173-010-0015-1 .
jøberg, D.I. , Anda, B. , Arisholm, E. , Dybå, T. , Jørgensen, M. , Karahasanovi ́c, A. ,

Vokáč, M. , 2003. Challenges and recommendations when increasing the real-
ism of controlled software engineering experiments. In: Empirical methods and

studies in software engineering. Springer, pp. 24–38 .
jøberg, D.I.K., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Karahasanovic, A., Ko-

ren, E.F., Vokác, M., 2002. Conducting Realistic Experiments in Software En-
gineering. In: Proceedings of the 2002 International Symposium on Empirical

Software Engineering doi: 10.1109/ISESE.2002.1166921 .

mith, A. , 2008. Who Controls the Past Controls the Future - Life Annotation in
Principle and Practice. University of Southampton .
an Solingen, R. , Basili, V. , Caldiera, G. , Rombach, H.D. , 2002. Goal Question Metric
(GQM) Approach. John Wiley and Sons, Inc. .

avares, J., Barbosa, J., Cardoso, I., Costa, C., Yamin, A., Real, R., 2016. Hefestos: an
intelligent system applied to ubiquitous accessibility. Universal Access Inf. Soc.

15 (4), 589–607. doi: 10.1007/s10209- 015- 0423- 2 .
illmann, N. , Halleux, J.D. , Bishop, J. , Xie, T. , 2014. ualitative Measures. 2nd ed.

Engr.Illinois.Edu 0–1 .
rochim, W. M., Research method knowledge base: improving conclusion validity,

Qualitative Measures. 2nd ed, 2006.

ianna, H.D., Barbosa, J.L.V., Pittoli, F., 2017. In the pursuit of hygge software. IEEE
Softw. 34 (6), 48–52. doi: 10.1109/MS.2017.4121208 .

agner, A., Barbosa, J.L.V., Barbosa, D.N.F., 2014. A model for profile management
applied to ubiquitous learning environments. Expert Syst. Appl. 41 (4), 2023–

2034. doi: 10.1016/j.eswa.2013.08.098 .
iedmann, T. , Luis, J. , Barbosa, V. , 2016. Recsim: a model for learning objects rec-

ommendation using similarity of sessions. J. UCS 22 (8), 1175–1200 .

ohlin, C. , Runeson, P. , Hst, M. , Ohlsson, M. , Regnell, B. , Wessln, A. , 2012. Experi-
ment process. In: Experimentation in Software Engineering. Springer Berlin Hei-

delberg, pp. 73–81 .
hang, D., Dang, Y., Lou, J.-G., Han, S., Zhang, H., Xie, T., 2011. Software analytics as

a learning case in practice. Proc. Int. WorkshopMach. Learn. Technol. Softw. Eng.
- MALETS ’11 55–58. doi: 10.1145/2070821.2070829 .

hang, D., Han, S., Dang, Y., Lou, J.-G., Zhang, H., Xie, T., 2013. Software analytics in

practice. IEEE Softw. 30 (5), 30–37. doi: 10.1109/MS.2013.94 .

eandro Ferreira D’Avila is software developer specialist at SAP company with 20

ears of experience in software development. He has received his MSc in Applied
omputing of University of Vale do Rio dos Sinos (UNISINOS) in 2017, and degree in

ystem Information from the Pontifical Catholic University of Rio Grande do Sul in
006. His main research interests are ubiquitous computing, context definition and

pplied to software engineering.

leinner Farias is an Adjunct Professor at the Applied Computing Graduate Pro-
ram (PPGCA) of the University of Vale do Rio dos Sinos (UNISINOS). He received

is Ph.D. in Computer Science from Pontifical Catholic University of Rio de Janeiro
n 2012, and MSc in Computer Science from the Pontifical Catholic University of Rio

rande do Sul in 2008. His current research interests include several topics in the

road area of software engineering, including software modeling, empirical evalu-
tion of model composition techniques, model-driven software development, soft-

are metrics and software product lines. He holds a CNPq productivity grant (level
).

orge Luis Victória Barbosa received MSc and PhD in computer science from the
ederal University of Rio Grande do Sul, Porto Alegre, Brazil. He is a full professor

t the Applied Computing Graduate Program (PPGCA) of the University of Vale do

io dos Sinos (UNISINOS), head of the universitys Mobile Computing Lab (MOBI-
AB), and a researcher at the Brazilian Council for Scientific and Technological De-

elopment (CNPq). His main research interests are mobile and ubiquitous comput-
ng, context prediction using context histories, mainly through similarity and pat-

ern analysis, and ubiquitous computing applications mainly in health (u-health),
nd accessibility (u-accessibility) and learning (u-learning).

http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0042
https://doi.org/10.1109/MS.2018.1661323
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0045
https://doi.org/10.1145/633292.633518
https://doi.org/10.1109/ICPS.2004.14
https://doi.org/10.1145/3238147.3241987
https://doi.org/10.1109/ICPC.2006.14
https://doi.org/10.1109/ESEM.2009.5316010
https://doi.org/10.1109/MS.2017.4541055
https://doi.org/10.1109/ICSM.2001.972705
https://doi.org/10.1007/s40593-015-0047-y
https://doi.org/10.1016/j.eswa.2015.09.016
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0055
https://doi.org/10.1145/1984708.1984722
https://doi.org/10.1198/jasa.2005.s22
https://doi.org/10.1007/s13173-010-0015-1
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0059
https://doi.org/10.1109/ISESE.2002.1166921
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0062
https://doi.org/10.1007/s10209-015-0423-2
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0064
https://doi.org/10.1109/MS.2017.4121208
https://doi.org/10.1016/j.eswa.2013.08.098
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30217-1/sbref0068
https://doi.org/10.1145/2070821.2070829
https://doi.org/10.1109/MS.2013.94

	Effects of contextual information on maintenance effort: A controlled experiment
	1 Introduction
	2 Background
	2.1 Context and context history
	2.2 Context and software
	2.3 Software analytics

	3 Experiment planning
	3.1 Contextual information
	3.2 Objective and research questions
	3.3 Hypothesis formulation
	3.4 Context and subject selection
	3.5 Experiment design and object
	3.6 Execution
	3.7 Experimental process
	3.8 Study variables
	3.9 Analysis

	4 Study results
	4.1 RQ1: Correctness and contextual information
	4.2 RQ2: Effort and contextual information
	4.3 RQ3: Maintainability
	4.4 Additional discussion

	5 Threats to validity
	5.1 Statistical conclusion validity
	5.2 Construct validity
	5.3 Internal validity
	5.4 External validity

	6 Related works
	6.1 Related works using context on software development
	6.2 Comparative analysis of the related works

	7 Concluding remarks and future work
	Acknowledgments
	References

