
The Journal of Systems and Software 131 (2017) 505–527

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

CollabRDL: A language to coordinate collaborative reuse

Edson M. Lucas a , b , ∗, Toacy C. Oliveira

a , d , Kleinner Farias c , Paulo S.C. Alencar d

a PESC/COPPE, Federal University of Rio de Janeiro, Brazil
b IPRJ/UERJ, Polytechnic Institute, State University of Rio de Janeiro, Brazil
c PIPCA, University of Vale do Rio dos Sinos (Unisinos), Brazil
d David Cheriton School of Computer Science, University of Waterloo, Canada

a r t i c l e i n f o

Article history:

Received 19 June 2015

Revised 17 January 2017

Accepted 31 January 2017

Available online 2 February 2017

Keywords:

Software reuse

Collaboration

Framework

Language

Reuse process

a b s t r a c t

Coordinating software reuse activities is a complex problem when considering collaborative software de-

velopment. This is mainly motivated due to the difficulty in specifying how the artifacts and the knowl-

edge produced in previous projects can be applied in future ones. In addition, modern software systems

are developed in group working in separate geographical locations. Therefore, techniques to enrich collab-

oration on software development are important to improve quality and reduce costs. Unfortunately, the

current literature fails to address this problem by overlooking existing reuse techniques. There are many

reuse approaches proposed in academia and industry, including Framework Instantiation, Software Prod-

uct Line, Transformation Chains, and Staged Configuration. But, the current approaches do not support

the representation and implementation of collaborative instantiations that involve individual and group

roles, the simultaneous performance of multiple activities, restrictions related to concurrency and syn-

chronization of activities, and allocation of activities to reuse actors as a coordination mechanism. These

limitations are the main reasons why the Reuse Description Language (RDL) is unable to promote col-

laborative reuse, i.e., those related to reuse activities in collaborative software development. To overcome

these shortcomings, this work, therefore, proposes CollabRDL, a language to coordinate collaborative reuse

by providing essential concepts and constructs for allowing group-based reuse activities. For this purpose,

we extend RDL by introducing three new commands, including role, parallel , and doparallel . To evaluate

CollabRDL we have conducted a case study in which developer groups performed reuse activities collab-

oratively to instantiate a mainstream Java framework. The results indicated that CollabRDL was able to

represent critical workflow patterns, including parallel split pattern, synchronization pattern, multiple-

choice pattern, role-based distribution pattern, and multiple instances with decision at runtime. Overall,

we believe that the provision of a new language that supports group-based activities in framework in-

stantiation can help enable software organizations to document their coordinated efforts and achieve the

benefits of software mass customization with significantly less development time and effort.

© 2017 Elsevier Inc. All rights reserved.

1

g

r

h

k

t

f

c

p

t

(

w

c

o

r

s

a

h

0

. Introduction

Modern software systems are developed by people working to-

ether, since the complexity of these systems requires knowledge

elated to numerous fields, including programming languages,

uman-machine interfaces and databases, which goes beyond the

nowledge associated with a single system application domain. In

his context, collaboration among people emerges as an important

actor for the success of a software project development, and,
∗ Corresponding author.

E-mail addresses: edmlucas@cos.ufrj.br , emlucas@iprj.uerj.br (E.M. Lu-

as), toacy@cos.ufrj.br (T.C. Oliveira), kleinnerfarias@unisinos.br (K. Farias),

alencar@uwaterloo.ca (P.S.C. Alencar).

I

2

a

f

(

ttp://dx.doi.org/10.1016/j.jss.2017.01.031

164-1212/© 2017 Elsevier Inc. All rights reserved.
herefore, tools to support collaborative work are crucially needed

 Barthelmess and Anderson, 2002).

Another important aspect pertaining the construction of soft-

are systems is Software Reuse (Frakes and Kang, 2005). This

oncept involves, in part, reusing the knowledge acquired in previ-

us projects during the development of a current project, and can

esult in higher-quality outcomes and resource savings. For this,

ome reuse techniques have proposed in the last decades, such

s the RDL, a Reuse Description Language (Oliveira et al., 2007).

n this scenario, Collaborative Software Reuse (Mendonça et al.,

008) (Noor et al., 2007) combines concepts of collaborative work

nd software development with those related to reusable arti-

acts, so that the development process can progress harmoniously

 Mohagheghi and Conradi, 2007).

http://dx.doi.org/10.1016/j.jss.2017.01.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.01.031&domain=pdf
mailto:edmlucas@cos.ufrj.br
mailto:emlucas@iprj.uerj.br
mailto:toacy@cos.ufrj.br
mailto:kleinnerfarias@unisinos.br
mailto:palencar@uwaterloo.ca
http://dx.doi.org/10.1016/j.jss.2017.01.031

506 E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527

i

o

o

m

t

b

c

a

o

o

r

t

t

t

c

c

w

f

o

p

T

b

w

a

M

B

b

m

i

e

w

t

t

(

o

2

a

o

v

S

r

d

2

a

c

a

2

b

m

3

3

e

c

o

i

3
In order to achieve the full potential of reusing software

artifacts, one must embrace Systematic Reuse, which advo-

cates the need of repeatable and (semi-)formal reuse processes

(Rothenberger et al., 2003), where reusable artifacts and their as-

sociated constraints are known upfront Furthermore, reuse should

be planned and coordinated (Malone and Crowston, 1994), and

developers must perform the reuse activities configuring reusable

artifacts in a collaborative and coordinated way to avoid errors

and rework. A key aspect when practicing Systematic Reuse is

documentation, and the documentation of a typical collaborative

software reuse process needs to describe activities that can be

interactive. Thus, multiple executions of the same process can

produce different software behavior, as they are consequences

of choices and responses resulting from interactive activities.

Therefore, the documentation can support building software

with different characteristics for the same domain, e.g., when a

team decides to reuse the framework Portlet to build Web-based

systems (Bellas, 2004) (Hepper, 2008).

In addition, Oliveira et al. propose a Reuse Description Language

(RDL) for describing reuse processes and minimizing the problems

associated with the instantiation of object-oriented frameworks

(Oliveira et al., 2007). RDL is a textual and executable language,

allowing the representation of reuse activities organized as a

reuse process. RDL is also an interactive language. As a result, the

RDL runtime environment prompts reusers during the framework

instantiation process, to gather application-specific information

(Oliveira et al., 2007, 2011).

Although RDL is effective for representing reuse activities, it

falters when a collaborative reuse process is needed, a common

scenario in software development projects. Today, a program in

RDL expresses a sequential reuse process typically representing

a single reuser, and is therefore unsuitable for complex reuse

situations (Oliveira et al., 2007, 2011). The key problems are that

RDL is (1) imprecise for specifying the interplay between the reuse

activities, (2) inefficient for allowing developers to create working

groups based on the available critical skills and responsibilities,

and (3) ineffective for specifying how different working groups

should perform distinct reuse activities collaboratively and in

parallel. Hence, developers end up being unable to use the RDL

constructs to support a systematic collaborative reuse process,

especially when parallel activities performed by specific working

groups need to be represented.

This paper, therefore, extends RDL towards supporting col-

laborative reuse activities. The extension, which leads to a new

language called CollabRDL, involves the definition of three com-

mands: (1) Role allows assigning reuse activities to working

groups; (2) Parallel allows modularizing a set of commands that

can be simultaneously performed; and (3) Doparallel allows per-

forming blocks of commands concurrently. These commands were

selected for our collaborative reuse extension for three reasons.

First, to promote a systematic, collaborative reuse in a coor-

dinated way in RDL, developers must be able to allocate reuse

activities to development team members considering their skills

and responsibilities. Moreover, the current literature (e.g., (De Paoli

and Tisato, 1994) (OASIS, 2006) (BPMN, 2011) (Cortes and Mishra,

1996) (Li and Muntz, 20 0 0) (Briggs et al., 2003) (Fuks et al., 2007))

highlights that collaborative languages must allow associating

activities to working groups; otherwise, the collaboration in devel-

opment teams can be compromised. In fact, the Communication,

Coordination and Cooperation (3C) model, proposed in (Ellis et al.,

1991), refers to the activity-aware software development as a way

to generate context for the execution of activities based on the

understanding of activities performed by other developers.

Second, an ever-present need in collaborative software develop-

ment is the concurrent execution of activities. For this, developers

need to carefully define upfront which activities may be performed
n parallel. Unfortunately, these definitions are usually done based

n several mentally held indicators (a.k.a. experience) of devel-

pers, or even by personal communication (i.e., informally). This

ay transform the modularization of commands that can be run

ogether into an informal but error-prone task.

Third, the current version of the RDL cannot determine how

locks of activities must be performed in parallel, despite its

apacity to represent the sequential behavior, for example, using

 traditional Loop command. Today, pivotal concepts (e.g., co-

rdination) for supporting the simultaneity and synchronization

f activities are still lacking. Hence, the RDL fails to reach the

equired coordination of modularized blocks of activities so as

o enable them to work together effectively. Therefore, we argue

hat these commands are necessary and sufficient to support

he broader collaboration issues found in RDL. We make also no

laims about the generality of the proposed commands beyond

ollaboration in the context of RDL programs.

In addition, these new commands overcome critical problems,

hich include the inability of specifying how the produced arti-

acts and the acquired knowledge should be reused and the lack

f constructs for describing how the reuse activities should be

erformed by groups of developers asynchronously or in parallel.

hese commands are fully supported by a runtime environment

ased on the workflow and Business Processes Manager (BPM),

hich provides facilities to load, start and run processes, besides

llowing workflow functionalities. We chose Business Process

odel and Notation (BPMN) to CollabRDL environment because

PMN is a pattern in the context of BPM that has been maintained

y the Object Management Group (OMG). Furthermore, there are

any environments offering support to BPMN (BPMN, 2016). Our

nitial evaluation has shown that the proposed commands are

ffective by using them to represent a set of well-established

orkflow patterns and performing a realistic case study in which

wo working groups collaboratively performed reuse activi-

ies for instantiating a mainstream Java framework, OpenSwing

 OpenSwing, 2015). In total, the reuse process led to the creation

f 49 attributes and the redefinition of 90 methods.

The remainder of this paper is organized as follows. Section

 briefly introduces the concepts of collaboration, reuse process

nd describes RDL. Section 3 presents CollabRDL as an extension

f RDL and describes its commands. Section 4 presents an en-

ironment for running reuse processes expressed in CollabRDL.

ection 5 presents our evaluation of CollabRDL. Section 6 reviews

elated work and, lastly, Section 7 concludes our paper with a final

iscussion and a brief description of future work.

. Background

CollabRDL aims at defining a collaborative reuse process. As

 result, the following subsections briefly introduce the main

oncepts used in this work, such as Collaboration, Reuse Processes

nd RDL.

.1. Collaboration

Collaboration is a kind of cooperation where interactions

etween people must take place in an organized and planned

anner to achieve a common goal. Fuks et al. (2007) explore the

C model that was originally presented by Ellis et al. (1991) . The

C model is composed of Communication, Coordination and Coop-

ration. Coordination makes the link between communication and

ooperation in order to promote collaboration. Cooperation is a set

f operations during a session in a shared working environment

n the context of groupware (Ellis et al., 1991). In this sense, the

C model emphasizes the importance of awareness, defined by

E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527 507

D

o

2

p

a

s

p

s

p

w

a

d

t

o

a

(

w

p

c

a

r

s

w

c

s

o

a

u

t

i

n

T

b

d

c

v

2

(

o

e

e

s

t

o

a

2

2

i

f

a

(

t

t

t

m

t

Fig. 1. Extension to reuse an object-oriented framework modeled in UML.

“

s

m

b

(

c

a

p

s

o

o

r

p

a

N

S

a

t

p

c

n

g

b

p

b

t

r

e

a

e

c

h

t

b

d
ourish and Bellotti (1992) as an understanding of the activities of

thers, which provides a context for your own activity .

.2. Software processes and reuse

Fuggetta (20 0 0) defines software process as a coherent set of

olicies, organizational structures, technologies, procedures and

rtifacts that are needed to design, develop, deploy and keep up

oftware. Therefore, there is a need to define mechanisms for

eople to collaborate harmoniously to achieve the goals of the

oftware construction process. For example, in a development

roject, several activities need to be delegated to professionals

ith specific skills, such as database administrator, programmers

nd analysts, called roles. This approach does not change when the

evelopment is through the reuse of already developed software

o be reused, which is the case of frameworks.

Software Reuse is an important practice in the software devel-

pment process and refers to the use of existing reliable software

rtifacts or software knowledge to build new software systems

 Frakes and Kang, 2005). Experimental studies indicate that soft-

are reuse helps to improve software quality and increasing of

roductivity. To illustrate, in (Lim, 1994), two case studies were

onducted: the first reduced by 51% defects (quality improvement)

nd increased productivity by 57%, and the second got 24% in

educing defects and 40% increasing productivity. However, other

tudies were not so conclusive (Frakes and Succi, 2001).

Framework instantiation is a type of software reuse. A frame-

ork is a comprehensive application that can be reused to produce

ustom applications (Mohamed and Schmidt, 1997). In the early

tages of research on frameworks, this paradigm was based on

bject-oriented with Smalltalk language, Lisp and C + + and led to

 wide range of applications, including some involving graphical

ser interfaces and compilers (Johnson and Foote, 1988). His-

orically, the reuse process of Model-View-Controller framework

s described through CookBook (Krasner and Pope, 1988), using

atural language to document the key steps for its instantiation.

he notion of hook was defined by Froehlich et al. (1997) and can

e understood as an evolution of CookBook, having a structured

escription such as a name that identifies the hook, type, and

ondition, while still keeping the natural language descriptions.

The Software Reuse Process is presented with two goals, de-

eloping for reuse and development with reuse (De Almeida et al.,

005). The first goal focuses on the development of reusable assets

 Arango and Prieto-Diaz, 1991) and the second on the development

f applications using reusable assets, also known as application

ngineering. Initially and until 1998, reuse was focused on domain

ngineering (De Almeida et al., 2005). After this period, the focus

hifted to Software Product Lines, SPLs. An SPL is a set of systems

hat share common and manageable features that meet the needs

f a particular market segment or mission and are developed from

 shared set of core assets in a predetermined way (Northrop,

002).

.3. RDL

RDL, which is the acronym for Reuse Description Language,

s a language used to represent the process of object-oriented

ramework instantiation and support software reuse, which aims

t explicitly representing the processes that specify reuse activities

 Oliveira et al., 2007). RDL is also an interactive language in which

he reuser, who performs the instantiation of a framework, needs

o interact with the system by answering questions related to

he reuse activities. For example, the execution of an RDL com-

and could prompt the question, “What is the class name?”, and

he reuser can answer this question by providing a class name:
Person”. The RDL programs can be executed in an environment

o-called ReuseTool (Oliveira et al., 2011).

Fig. 1 shows a reuse extension of an object-oriented framework

odeled in Unified Modeling Language (UML). This example is

ased on the framework Shape, which is described in detail in

 Oliveira et al., 2011). The result of this reuse extension is Circle

lass, which expands the Shape class by redefining its methods—

ddConnectionAnchor, getFigure, and getIcon—and leads to a new

ackage called org.reusetool.myshapeseditor .

Fig. 1 also shows a snippet of a program in RDL that guides this

pecific reuse process. For example, line 1 describes the creation

f a package, packA , and line 2 indicates the beginning of a block

f activities that can be repeated at runtime as many times the

euser needs. Thus, when reusers execute this line, they will be

rompted the question: Create another shape? If the question is

nswered, the program will advance to the LOOP command block.

ext, line 4 describes the creation of a new class that extends

hape . For this purpose, the superclass, Shape, is specified, as well

s the package, packA , into which it will be inserted. Moreover,

he parameter “?” indicates that, at runtime, the reuser will be

rompted a question and needs to provide the name of the new

lass. In this example, the reuser chose the class name Circle . Fi-

ally, lines 6, 7 and 8 redefine the addConnectionAnchor, getFigure,

etIcon methods of the parent class Shape in the class pointed to

y the variable shapeClass .

It is noteworthy that many executions of the snippet of the

rogram in RDL in Fig. 1 can generate several different models

ecause there are two descriptions that may vary from execution

o execution, thus giving rise to different results. The first is

elated to the number of classes that can be generated from the

xtension of Shape, and this is due to the LOOP command, as it

llows the reuser, at runtime, to define the number of classes that

xtend the Shape class. Moreover, the second description involves

hoosing the names of the new classes that inherit from Shape.

RDL has two well-defined phases, a Development Phase that

as an RDL program as a product, and an Execution Phase, where

he products are application models in UML. The RDL program can

e seen as an execution plan for a Software Product Line whose

omain is the framework, and the products are applications in the

508 E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527

Fig. 2. CollabRDL reuse process overview, adapted of Oliveira et al. (2011) .

i

i

c

l

s

p

r

t

t

f

f

“

i

t

1

9

t

t

i

g

a

F

t

t

t

3

i

t

s

p

a

a

C

t

e

p

a

c

i

g

a

C

a

N

c

i

d

g

t

m

t

p

a

r

3

t

f
domain. In the Development Phase, expert reusers of the frame-

work, using documentation and examples of applications, write

the RDL program to guide reuse process. A program expressed in

RDL defines the extension points of the framework, requesting,

when necessary, user decisions on questions about optional and

alternative extensions involving situations based on a feature

model (Filho et al., 2004).

The Execution Phase guides step-by-step activities of a spe-

cific framework reuse through an RDL program to generate an

application. Reusers do not need to be as knowledgeable about

the framework as those involved in the development of an RDL,

but they need to have some knowledge about the framework,

and access to its documentation and to the specification of the

application to be generated. As described in (Mendonça et al.,

2008) (Noor et al., 2007) the reuse process can be performed by

several people aiming to build software with better quality and

shorter duration. However, the current version of RDL describes

reuse as a single-user form, not allowing multiple reusers to

execute snippets of RDL in the same framework reuse. In other

words, there are no specification mechanisms to express tasks to

be performed in parallel, and connect people with specific skills

with certain tasks. In this context, the definition of an extension of

RDL, so-called CollabRDL, is highly needed because it will support

pivotal concepts and mechanisms related to collaboration and

execution of tasks in parallel.

3. CollabRDL

This Section presents an overview of CollabRDL and focuses on

three coordination-oriented commands, namely role, parallel, and

doparallel .

3.1. CollabRDL overview

As previously mentioned, CollabRDL extends RDL to support

collaborative reuse activities. Fig. 2 shows an overview illustrating

how the proposed extension changes the traditional reuse process

in RDL by introducing, in contrast with RDL, which assumes a

single reuser, a set of reusers who will execute group-related

activities. Moreover, Fig. 2 shows how the reusers are engaged in

a five-step collaborative reuse process.

First, the reusers provide UML models of a particular frame-

work to be instantiated. Typically, these input models have some

classes, along with their methods, that represent the main con-

cepts and behavior that will be reused, e.g., the classes Text and

Style , and their methods apply() .

Then, as a second step, a CollabRDL program is provided, which

involves both the traditional RDL commands and new commands,

including ROLE, PARALLEL, and DOPARALLEL. Next, the reusers
nteract with each other to provide a particular instance of the

nput framework models. It is important to highlight that this

ollaboration cannot be undertaken by using the existing RDL

anguage. Finally, an output application is generated.

To illustrate how an RDL Script can be created, Fig. 3 shows the

teps that a CollabRDL developer can follow to create a CollabRDL

rogram. The first step is to “identify reuse activities,” in which

eusers consult the model of the framework that will be instan-

iated and its documentation and examples, as well as identify

he reuse activities by using the strategy of delimitation of the

ramework regions (e.g., the Model, View and Control pattern) or

eatures (i.e., the description of use cases). The second step is to

identify the activities that can be performed in parallel,” taking

nto account their interdependencies.

The main guideline is to create a table to help in the organiza-

ion of parallelism among activities. In this example, the activities

, 2, and 3 can be executed in parallel, just after the activities

 and 10 are executed in parallel with activities 11 and 12. The

hird step is to "define reuse groups" by taking into account

he required skills and responsibilities to carry out the activities

dentified in the first step. The fourth step, "Assign activities to

roups", is achieved when all activities identified in the first step

re associated with a group, which was defined in the third step.

inally, the fifth step, "Express in CollabRDL", involves describing

he identified activities, considering their parallel executions and

heir associations with groups using legacy RDL commands and

he new CollabRDL commands.

.2. CollabRDL commands

CollabRDL must support reusers in multiple groups who work

n parallel throughout the reuse process. The underlying assump-

ion is that the language should be able to support coordination

ince individual effort s need to be organized and coordinated to

roduce a result. Coordination theory states that coordination is

 set of principles about how activities can be jointly organized

nd implemented through multiple group effort s (Malone and

rowston, 1990). In this context, CollabRDL must allow developers

o assign tasks to groups and represent parallel activities.

The new proposed commands must be consistent with the

xisting RDL structure. RDL follows the paradigm of imperative

rogramming languages (Jouault and Kurtev, 2006). Code 1 shows

 snippet of a typical RDL program. In line 1, the NEW_PACKAGE

ommand precedes CLASS_EXTENSION command in line 2, and

s represented textually in the line ending with “;”. Thus, it is

uaranteed that the CLASS_EXTENSION command will be initi-

ted only after the completion of NEW_PACKAGE command. The

LASS_EXTENSION command uses the result of NEW_PACKAGE,

 reference to the created package (packA). In this case, the

EW_PACKAGE command is a pre-requisite for CLASS_EXTENSION.

The existing set of RDL commands (Oliveira et al., 2007) is

omplemented with the role, parallel , and doparallel commands

n order to define the first version of CollabRDL, which allows

evelopers to represent parallel activities and assign them to

roups of reusers. On the other hand, at runtime, it helps reusers

o coordinate reuse activities in teams. The new CollabRDL com-

ands will be introduced in order, from general to specific, in

he following sections by: a) explaining the command goals; b)

resent an example to illustrate use scenarios for the commands;

nd, in Appendix A , providing the Backus Normal Form (BNF)

epresentation that defines the commands.

.2.1. ROLE command

CollabRDL uses the concept of roles to associate activities

o groups. Role is a human-oriented construct; it relies on the

act that in general a person can interact in different ways in

E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527 509

Fig. 3. Steps to create a CollabRDL program.

Code 1. The snippet of an RDL program. The Shape framework was described in

detail in Oliveira et al. (2011) .

Code 2. ROLE command.

t

e

l

o

(

(

l

a

t

a

O

p

t

3

c

m

o

e

t

Code 3. PARALLEL command.

Code 4. The combination of the LOOP command with ROLE command.

(

i

t

g

(

t

P

e

t

t

n

R

y

a

R

q

t

a

a

3

r
he society (Smith et al., 1998). Role is also defined as how an

ntity participates in a relationship (Uschold et al., 1998). Further,

anguages that can be used to represent collaboration mechanisms

ften implement roles (De Paoli and Tisato, 1994) (OASIS, 2006)

 BPMN, 2011) (Cortes and Mishra, 1996) (Li and Muntz, 20 0 0)

 Briggs et al., 2003).

Code 2 shows the syntax of the new ROLE command in Col-

abRDL. This command is used to assign activities to groups. Thus,

t runtime, all activities that need user intervention and are in

he block bounded by braces shall be delegated to reusers in the

nalyst group shown as the first parameter, and the information "

nly two-dimensional figures are allowed!" is provided as an out-

ut. In this way, a member of the analysis group can be assigned

o execute the next activity.

.2.2. PARALLEL command

Code 3 shows the PARALLEL command used to group blocks of

ommands that can be executed in parallel. This command imple-

ents a set of restrictions related to concurrency, synchronization

f activities, and allocates activities to actors as a coordination

lement. The first FLOW block indicates that the reuser (coordina-

or) will delegate interactive activities, which are shown in braces
"{" and "}") to the analyst group, and that a message with specific

nstructions is provided through the second parameter, such as in

he case of the ROLE command.

Moreover, without waiting for someone else in the analyst

roup to perform the activities in the first FLOW block, the reuser

coordinator) may delegate activities in the second FLOW block

o a group of designers. The right-hand braces that close the

ARALLEL command ("}") indicate that the reuser wait for the

xecution of all activities in both FLOW blocks to finish in order

o proceed with the reuse process. The PARALLEL command allows

wo or more FLOW blocks.

Code 4 shows the combination of the LOOP command with

ew ROLE CollabRDL command. This combination will generate

OLE blocks for sequential execution. First, a reuser must answer

es to the question “Repeat?” and wait for someone from the

nalyst group to perform all interactive activities that are in the

OLE block. Only after the completion of these activities, the

uestion “Repeat?” will be issued again. If the answer is positive,

he ROLE block will be again delegated to the analyst group and,

s in the first iteration, this group is expected to carry out their

ctivities so that the question in the LOOP is presented once again.

.2.3. DOPARALLEL command

In other situations, in contrast with the sequential behavior

epresented by LOOP command, there is a need to execute blocks

510 E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527

Code 5. DOPARALLEL command.

e

w

f

2

g

R

i

T

o

o

o

a

fi

i

(

P

r

a

c

v

s

a

T

p

p

m

t

t

m

o

c

2

a

p

o

E

w

t

c

S

S

R

w

t

w

g

m

5

t

p

f

c

r

i

o

t

a

c

f
in parallel. The DOPARALLEL command represents this behavior by

implementing restrictions on the simultaneity and synchronization

of activities as a coordination element.

Code 5 expresses that, at runtime, an activity A will be assigned

to an analyst group and without waiting for its end, the question

“Run the block again?” will be displayed. If the answer is positive,

another instance of activity A will be assigned to the analyst

group; otherwise, the flow will move to the end of DOPARALLEL,

the semicolon (“;”), which will wait for the completion of all

instances of activity included in the DOPARALEL command block

which, in this example, are instances of the activity A .

4. The CollabRDL runtime environment

The runtime environment for process reuse expressed in Col-

labRDL should provide facilities to load, start and run processes,

besides supporting basic workflow functionality (WFMC, 1999).

In the context of BPMN, there are more than 70 environments

offering these features (BPMN, 2016). Therefore, if we convert a

CollabRDL program to BPMN, we will take advantage of these

features. Our choice was the Activiti environment (Activiti, 2015)

because it is free and open source, and also uses, as in the case of

the RDL core, Java technology.

The runtime CollabRDL-Activiti-Explorer is based on the work-

flow and Activiti business processes manager (Activiti, 2015). It

uses the Activiti environment and functionality to manipulate the

RDL core artifacts in UML. To use this execution environment, we

need to convert the process described in CollabRDL to XML format

with Activiti-BPMN markings.

Fig. 4 shows how to use the CollabRDL-Activiti-Explorer en-

vironment to run a CollabRDL program. The first step converts

the program written in CollabRDL to BPMN-Activiti using the

RDL.BPMN-Activiti package. The interactive activities are converted

into UserTask type activities and the non-interactive into servic-

eTask. UserTask type activities are those that will be defined by

reusers (people) and serviceTasks are performed automatically at

runtime (BPMN 2011). The UserTasks need the classes that imple-

ment the TaskListener interface to delegate the execution of activ-

ities to be reused to the RDL-core and RDL.Artifact-UML packages,

since the serviceTasks need classes that implement JavaDelegate .

Step 2 loads the BPMN-Activiti program converted into Activiti-

Explorer, including the RDL-core and RDL.Artifact-UML packages.

The Activiti-Explorer is a system developed for Web platforms that

allows creation of users and groups using their Manager tab, with

start and end processes through the Process tab. The activities

delegated to CollabRDL by ROLE or FLOW at runtime will appear

in a separate group, the Queued menu item, and the activities to

be performed by who that started the process will appear in the

Involved item.

5. Evaluation

RDL has been evaluated with illustrative examples to instanti-

ate real object-oriented frameworks: Shape (Oliveira et al., 2011);

DTFrame (Oliveira et al., 2007); REMF (Mendonça et al., 2005);

HotDraw (Oliveira et al., 2004); and GEF (Kovalski, 2005). These

examples show how RDL programs can systematically describe

how to tailor a specific software design based on a framework. For
xample, in Oliveira et al. (2011) the ShapesProducts RDL program

hen executed builds a new software design using the Shape

ramework. In addition, an Exploratory Case Study (Runeson,

009) evaluated the ReuseTool, an environment to run RDL pro-

rams (Oliveira et al., 2011). The research question was: “Is the

euseTool approach capable of representing and executing the

nstantiation process (RDL programs) for diverse frameworks?”.

he Study involved one researcher and 3 subjects with good

bject-oriented programming, JAVA and modeling skills and a mix

f academic and industry backgrounds. Each subject chose one

r more object-oriented frameworks from literature or self-made

nd created RDL programs. The result was five RDL programs for

ve frameworks, and the ReuseTool created successful frameworks

nstances for all five frameworks: Shapes (GEF, 2015); JHotDraw

 HotDraw, 2015); Ecommerce Product Line (Gomaa, 2004); Arcade

roduct Line (APL, 2015); and REMF (Oliveira et al., 2007).

CollabRDL has been evaluated by assessing its ability to rep-

esent specific workflow patterns. Workflow systems can be seen

s systems that help organizations specify, execute, monitor, and

oordinate the flow of work cases within a distributed office en-

ironment (Bull Corporation, 1992). A workflow typically has two

tages. The first stage focuses on representing the work process

s well as its modeling and highlighting the workflow activities.

he second stage is the implementation, where the represented

rocess, once executed, generates the work that will result in a

roduct or service. Although most processes and activities can be

odeled, some activities need to involve human interaction due

o their nature. Thus, as a result, these interactive activities have

o be performed outside the computerized environment.

In general, workflow patterns were created so that the funda-

ental requirements that arise during business process modeling

n a recurring basis could be captured, and these requirements

ould be described in an imperative form (Van Der Aalst et al.,

003). Van Der Aalst et al. proposed 20 workflow patterns, and

 few years later, Russell et al. (2006) reviewed this work. These

atterns are used to compare workflow tools, indicating whether

r not the tool implements certain standards (Wohed et al., 2009;

WP, 2015) (CPE, 2015) (OSPE, 2015). For this evaluation, we

ill focus on seven patterns, which relate to coordination and

eamwork, and present their representation in CollabRDL.

We have assessed CollabRDL with respect to the following

oordination-oriented patterns: Parallel Split Pattern (WCP2),

ynchronization Pattern (WCP3), Exclusive Choice Pattern (WCP4),

imple Merge Pattern (WCP5), Multi-Choice Pattern (WCP6),

ole-based Distribution Pattern (WRP2), and Multiple instances

ith decision at runtime (WCP14). In Appendix B , we show how

hese patterns are represented in CollabRDL. Next, CollabRDL

as evaluated by conducting a case study in which developer

roups performed reuse activities collaboratively to instantiate a

ainstream Java framework.

.1. Evaluating CollabRDL

This section presents a realistic case study conducted in order

o evaluate CollabRDL in which two working groups collaboratively

erformed reuse activities for instantiating a mainstream Java

ramework, OpenSwing (OpenSwing, 2015). In this context the

ommands ROLE, PARALLEL and DOPARALLEL are evaluated with

espect to their functionality in order to realize the reuse activities

n team and in parallel when possible. The questions for this

bjective are 1 – Can the ROLE command offer a block of activities

o a group? 2 – Can the PARALLEL command create instances of

ctivities block for running in parallel? 3 – Can the DOPARALLEL

ommand create threads of the same block of activities? The

ollowing metrics are used to answer these questions: 1 – Number

E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527 511

Fig. 4. CollabRDL programs run in the CollabRDL-Activiti-Explorer environment.

o

N

c

a

g

A

A

g

S

r

l

i

s

s

i

t

t

g

5

(

c

p

(

t

e

(

t

(

c

a

l

s

2

c

d

a

f

d

a

b

o

f

D

“

O

f

i

c

L

m

f

a

C

G

l

f

w

i

o

t
f activities contained in activities block; 2 – Number of roles; 3 –

umber of flows in parallel.

This study uses the OpenSwing framework (Section 5.1.1) and

an be described in 3 steps: 1- A model was created to represent

 target application (Section 5.1.2); 2 - A program was created to

enerate CollabRDL applications for this domain (Section 5.1.3); 3 -

 trial was conducted using the execution environment CollabRDL-

ctiviti-Explorer with two physically distant working groups to

enerate the target application, described in detail in Section 5.1.4 .

ection 5.1.5 presents the results and the threats to validity are

eported in Section 5.1.6 .

This case study was designed this way because the new Col-

abRDL commands are of the type workflow. Moreover, applications

n OpenSwing involve the participation of people with different

kills and responsibilities and, therefore, these applications are

uitable for evaluating aspects related to collaboration.

The next section shows the use of these commands in the

nstantiation of an object-oriented framework, thus showing that

hey are needed in a specific reuse case. However, we believe

hat this type of structure is also useful in describing the reuse of

eneric artifacts.

.1.1. The openSwing framework

Swing is a library of graphical components for Java applications

 Swing, 2016). OpenSwing (OpenSwing, 2015) in turn offers new

omponents based on Swing and is also a framework that sup-

orts the development of customized applications using the MVC

Model, View and Control) paradigm. Using OpenSwing is possible

o develop desktop-like applications for the Internet in three lay-

rs, that is, besides Swing, (1) Java, (2) Hypertext Transfer Protocol

HTTP) Servlets and (3) databases, or distributed applications in

hree layers, that is, besides Swing, (1) Remote Method Invocation

RMI), (2) Java Beans and (3) databases.

OpenSwing supports MDI (Multiple Document Interface) that

an contain several other screen structures. The MDI interface
llows the customization of many features, such as title, menu

anguage selection, authentication, and windows menu. Our case

tudy is based on the OpenSwing Demo 10 (Tutorial OpenSwing,

016), which describes the creation of an MDI application server

lient. This example implements the functionality of registration

epartment, employees and tasks.

The OpenSwing framework allows the creation of complete

pplications based on the MVC architecture, and is organized to

acilitate the distribution of reuse activities between teams with

ifferent profiles/responsibilities such as analyst, designer, database

dministrator so on. As a result, block independent activities can

e identified so that they are executed in parallel, with the goal

f reducing the total time to create the application. Therefore, this

ramework is suitable for use in a scenario of collaborative reuse.

Fig. 5 shows the class model in UML for the OpenSwing

emo10 (Tutorial OpenSwing, 2016). The classes are marked with

from demo10”. We omitted the attributes and methods of the

penSwing classes and interfaces, and attributes of Demo10 to

acilitate the visualization of the model. The model shows the

nterface implementations, inheritance and dependencies between

lasses. As an example, the ClientApplication class implements

oginController interface to add authentication and authorization

echanisms to the application, and the MDIController to add MDI

eatures .

The DemoClientFacade class is instantiated by ClientApplication

nd through their methods the control classes are instantiated.

ontrol classes must inherit from GridController and implement the

ridDataLocator interface to control the actions in the windows,

inking the data layer to the view layer. All classes that inherit

rom InternalFrame do it to get the behavior of windows to interact

ith the user. The classes that are mapped to the database need to

nherit from ValueObjectImpl directly, as in the case of GridEmpVO ,

r indirectly, as in the case of EmpVO .

Table 1 shows the extension points of Demo10. The GridCon-

roller class is the most complex extension. It has two attributes

512 E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527

Fig. 5. The UML Class Model of the Openswing Demo10 framework.

E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527 513

Table 1

Extension points of Demo10.

Extension Points Attributes Methods ∗

ClientFacade 0 0

CustomFilterPanel 0 7

GridController 2 48

GridDataLocator 0 1

InternalFrame 9 2

LoginController 0 4

LookupController 38 11

MDIController 0 16

ValueObjectImpl 0 1

Total 49 90

∗ Methods that can be redefined.

a

t

i

d

4

d

c

d

g

d

5

t

C

a

t

p

t

b

c

w

b

r

p

b

l

V

t

m

g

t

5

c

t

P

D

T

t

p

a

a

i

a

b

c

d

t

o

o

P

R

n

b

b

7

o

t

N

D

5

w

m

r

A

o

u

t

t

o

g

t

C

d

t

t

n

a

a

c

a

a

r

f

m

I

i

d

C

T

t

e

g

d

v

m

o

d

i

U

e

r

g

t

e

m
nd 48 methods, which can be redefined. The MDIController in-

erface presents the need to implement 16 methods. ClientFacade

nterface is created only to serve as a super type, so it does not

efine services. The total of all the attributes of extension points is

9 and there are 90 methods that can be redefined. These numbers

o not include inherited attributes and methods. They indicate the

omplexity of reuse, which involves attributes are associated with

ata handling and methods of application behavior. Moreover, in

eneral an application to implement specific requirements usually

oes it through various control, model and view classes.

.1.2. Instantiating a new application

The new application will have all Demo10 classes, except

he WorkingDayVO, WorkingDaysControlller, WorkingDaysInForm-

ontroller, and TaskFilterPanel classes. The construction of this

pplication model will be guided by a CollabRDL program that

akes in to account group development and explores as much as

ossible the performance of activities in parallel. Fig. 6 shows

he UML model checking classes that are intended to be built

y the reusers group. The ClientApplication and DemoClientFacade

lasses, labeled with the letter I on the left, should be built by

ho initiates the instantiation process, a person who needs to

e knowledgeable about the framework and can delegate tasks to

eusers. The EmpGridFrame, TaskGridFrame, DeptGridFrame and Em-

DetailFrame classes, labeled with the letter D on the left, should

e offered to the designer group. The control classes labeled by the

etter A are associated with the analyst group.

Note that Demo10 is organized according to the MVC (Model,

iew and Control classes) paradigm. As a result, the new applica-

ion also will follow this organization. In this way, specific tasks

ay be re-arranged according to the level of expertise of the

roups in these areas of the framework. This helps the framework

o be instantiated by groups in a collaborative way.

.1.3. The CollabRDL instantiation program

A CollabRDL program was written to guide the process of

ollectively creating new applications for Demo10 making use of

he new ROLE, PARALLEL and DOPARALLEL commands (CollabRDL

age, 2015). This program does not include the creation of Working-

ayVO, WorkingDaysControlller, WorkingDaysInFormController and

askFilterPanel classes because they are not required to generate

he application of this case study. Table 2 shows the CollabRDL

rogram created for this case study in numbers. We considered

s activities all commands that add some information to the

pplication model including, for example, NEW_REALIZATION

ndicating that a class will implement an interface, and interactive

ctivities that need the user to enter some information that should

e added to the model, as in the case of the CLASS_EXTENSION

ommand. Thus, in order to have a meaningful comparison, we

o not count the IF statements as an interactive activity, since

hey only call for a yes or no response from the user, but, because
f their importance, we created a column to explain this type

f interaction. Moreover, the FLOW command that is part of the

ARALLEL command produces the same result as the result of the

OLE command, delegating activities to groups. However, we did

ot count them separately.

Table 2 shows that the greatest effort to instantiate applications

ased on the Demo10 domain is concentrated in the execution of

lock activities from the DOPARALLEL command. These amounts to

0 activities, with 5 being interactive and contain 53 IFs, with 20

f these nested, therefore requiring much reuser intervention in

he decision whether or not to add items to the application model.

ote that the count of the IFs in ROLE command is the same for

OPARALLEL command because the ROLE is contained in its block.

.1.4. Running a reuse process in CollabRDL

The CollabRDL program was converted to BPMN-Activiti and

as loaded into CollabRDL-Activiti-Explorer execution environ-

ent. In this environment two users and three groups were

egistered: the analyst, designer and databaseAdministrator groups .

 user was associated to the analyst group and the other with all

thers groups.

The goal is to reproduce the target model (Fig. 6) by groups

sing four roles. A reuser (coordinator) initiates the process execu-

ion and runs the first stretch of activities as shown in Code 6 . In

he first command, the execution environment asks for the name

f the package where the model of the new application will be

enerated. Then, the execution environment asks for the name of

he client application class, where the coordinator should answer

lienteApplication , as seen in Fig. 6 . Next, without need for coor-

inator intervention, the environment creates two associations for

he created class, both indicating the implementation of MDICon-

roller and LoginController interfaces. Then, it prompts so that the

ame of facade class is entered, which must be DemoClientFacade ,

nd associates the new class to the ClientFacade interface, always

ccording to the model in Fig. 6 , the target model.

Code 7 shows the reduced code snippet for DOPARALLEL

ommand. The full stretch (CollabRDL Page, 2015) expresses the

ctivities needed to create all control and windows classes, which

re the classes whose names end with FrameController or frame ,

espectively. The first command in the DOPARALLEL block asks

or the initiator of the proceedings, i.e., the name of new facade

ethod referenced by clientFacadeClass , class created in the Stretch

, Code 6 . The answer should be getEmployees, getDepts or getTasks

n this example, which indicates the importance of following the

ependencies in the model as seen in Fig. 6 .

The activities that create classes named with the suffix Lookup-

ontroller and VO , respectively, are independent of each other.

hus, as seen in Code 8 , a block of FLOW was written to generate

he classes of type LookupController classes and another to gen-

rate the classes of type VO , all of them offered by the analyst

roup. The first FLOW is a LOOP to create LookupController classes

epending on the response of the analyst , including or not the

alidateCode, loadData and getTreeModel methods in the application

odel. The second FLOW presents a LOOP for creating the classes

f type VO and other to create methods in VO classes

Code 9 is the fourth and the last stretch. It adds to the list of

atabaseAdministrator group activity to create a database, and it

s external because it does not handle the application model in

ML but is rather a task that is executed in another execution

nvironment.

Figs. 7 and 8 are snapshots of CollabRDL-Activiti-Explorer

unning this case study. The users were working in separate geo-

raphical locations and used Skype to communicate to each other

hroughout the process of creating the application model. The ex-

cution was performed during a work session and lasted approxi-

ately 1 h and 30 minutes. The user who performed the activities

514 E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527

Fig. 6. The UML Class Model of the new application based on the Demo10 application domain.

Code 6. Stretch I to generate a new application based on Demo10.

E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527 515

Table 2

The CollabRDL program in numbers (Demo 10-based applications).

Quantity Activities (Interactive) FLOW IF LOOP

DOPARALLEL 1 70 – 53 0

(5) (20 nested)

PARALLEL 1 6 2 3 3

(2) (1 nested)

ROLE 4 – – 53 0

(2 nested) (6) (20 nested)

Code 7. Stretch II to generate a new application based on Demo10.

Code 8. Stretch III to generate a new application based on Demo10.

Code 9. Stretch IV to generate a new application based on Demo10.

i

r

o

(

C

t

p

t

c

t

t

e

m
n the block of the DOPARALLEL command could receive help at

untime. Thus, the application model was generated in a collab-

rative way, according to the 3C model introduced by Fuks et al.
2007) . This is the case because the coordination was expressed in

ollabRDL, there was communication via Skype and text through

he execution environment, and there was cooperation as the two

arts of the model were generated by different roles, which work

ogether to produce a complete model for the intended application.

Table 3 compares the target application model with the appli-

ation model generated in this case study. With the exception of

he EmpDetailFrameController class, all other classes are present in

he generated model. As a result, the generated model had 24 el-

ments more and 13 less when compared to the target application

odel in Fig. 6 . For the purpose of counting, we considered the

516 E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527

Fig. 7. Snapshot of CollabRDL-Activiti-Explorer for the first reuser.

Fig. 8. Snapshot of CollabRDL-Activiti-Explorer for the second reuser.

E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527 517

Table 3

Comparing the generated application model to the target model.

Class Target Model Generated Model Differences Causes

ClientApplication 3 3 0

DemoClientFacade 5 5 0

EmpGridFrameController 6 13 �

8 elements more; �

Awareness

�

one less; �

Not expressed in CollabRDL;

EmpDetailFrameController 9 0 9 Unknown

DeptFrameController 10 18 8 elements more Awareness

TaskGridFrameController 7 15 8 elements more Awareness

EmpGridFrame 4 2 2 less External Activity

EmpDetailFrame 9 2 7 less External Activity

DeptGridFrame 4 2 2 less External Activity

TaskGridFrame 3 2 1 less External Activity

DeptLookupController 2 2 0

TaskLookupController 1 2 1 more Error on Target Model

EmpVO 8 8 an incorrect inheritance Expressed wrong in CollabRDL;

GridEmpVO 7 7 0

DeptVO 6 6 0

TaskVO 5 5 0

Total 87 92 24 elements more and 13 less. And one error.

f

i

i

o

n

p

c

G

w

D

a

c

C

e

q

f

r

6

u

e

F

d

E

t

c

a

e

i

v

t

t

i

a

E

i

t

a

m

t

t

Code 10. Code snippet used to generate more elements than expected. .

t

a

r

f

t

a

h

t

n

s
ollowing elements in the model: attributes; operations; interface

mplementation; description of inheritance; and class presence

tself. In the second column of Table 3 , we present the number

f expected elements per class. The third column presents the

umber of elements created by implementing the reuse activities

er class described in the CollabRDL Demo 10. Moreover, the last

olumn identifies some of the causes that led to the differences.

The ClientApplication, DemoClientFacade, DeptLookupController,

ridEmpVO, DeptVO and TaskVO classes were created as they

ere specified in the target model. The EmpGridFrameController,

eptFrameController and TaskGridFrameController control classes

re generated by the activities of iterations in the DOPARALLEL

ommand block and therefore have the same number of elements.

ode 10 shows the snippet of CollabRDL that produced these

lements, and it demonstrates that reuser answered NO to the

uestion “Drag event is enabled, do you want to set to false?”

or all these control classes. This mistake happened because the

euser only consulted the target model, which was depicted in Fig.

 , and he has not looked at the CollabRDL program. This leads

s to consider awareness as a cause of problems in the execution

nvironment.

The absence of the getBackgroundColor method in the EmpGrid-

rameController class is because the activity to create it was not

escribed in CollabRDL program. In addition, the absence of the

mpDetailFrameController class was not due to a negative answer

o the question “Create Detail Frame?”, because EmpDetailFrame

lass was created and is part of the block of this condition.

Classes ending in Frame are created by the designer group and

re expressed in CollabRDL as an external activity of the execution

nvironment, and for this reason their methods do not appear

n the target model. This type of activity is very well done with

isual editors for building windows, which are common in IDE

ools such as Eclipse and Netbeans.

The TaskLookupController class has one element more than the

arget model, since it presents inheritance from LookupController

n the generated model. This activity was described in CollabRDL

nd is correct, but the target model omitted this inheritance. The

mpVO class inherits from GridEmpVO but CollabRDL provided an

nheritance from ValueObjectImpl .

Finally, we consider a programming mistake in CollabRDL, i.e.,

he CollabRDL programmer did not represent correctly a reuse

ctivity that was responsible for two differences between the

odels. Concerning the question regarding external activities, the

arget model identifies the elements needed to build the applica-

ion windows. However, the CollabRDL program represented this
ype of activity using visual programming software, which gener-

tes windows, and the execution environment did not build the

esulting model generated from this activity. There were 12 dif-

erences similar to this one. We consider the specification error in

he target model as an error in the project implementation project,

nd this was the cause of the difference. Overall, nine differences

ave unknown causes. Furthermore, 24 differences were caused by

he reuser (lack of) information related to the environment that

eeded to be taken into account in the reuse activities (i.e., the

o-called awareness). The high number of differences related to

518 E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527

p

o

d

m

a

a

fi

m

e

T

c

a

t

o

t

5

n

c

t

s

p

m

a

5

c

m

c

D

t

s

5

t

A

e

p

i

g

w

v

t

r

i

t

t

i

t

e

r

m

a

t

a

w

n

a

a

m

t
awareness is justified because the execution environment tool is

based on business processes that have implementation limitations

when it comes to multi-user environment features.

5.1.5. Summary of the evaluation results

CollabRDL has been evaluated by assessing its ability to repre-

sent specific workflow patterns. For this purpose, we have shown

in Appendix how the following coordination-oriented workflow

patterns are represented in CollabRDL: Parallel Split Pattern

(WCP2), Synchronization Pattern (WCP3), Exclusive Choice Pat-

tern (WCP4), Simple Merge Pattern (WCP5), Multi-Choice Pattern

(WCP6), Role-based Distribution Pattern (WRP2), and Multiple

instances with decision at runtime (WCP14). CollabRDL has also

been evaluated by a case study in which developer groups per-

formed reuse activities collaboratively to instantiate a mainstream

Java framework.

In the case study reuse activities were performed when pos-

sible in parallel. This study was essentially planned to answer

three questions: 1-"Can the ROLE command offer a block of

activities to a group? "; 2- "Can the PARALLEL command create

instances of activities block for running in parallel?"; and 3 -

"Can the DOPARALLEL command create threads of the same block

of activities?". In context of the first question, this study used 4

ROLE commands with 6 interactive activities and 53 responses

to IF commands executed by the groups that have been declared

in ROLE commands (analyst, designer and databaseAdministrator

groups). The answer of the question 2 is affirmative because a

PARALLEL command created two instances of same block in par-

allel. The command was declared with two interactive activities,

two flows in parallel, containing 3 IF commands and 3 LOOP

commands. And the answer for the question 3 is also affirmative

because a PARALLEL command executed more than once its block

declared with 5 interactive activities and 53 IF commands.

5.1.6. Threats to validity

In this study case, validity threats were based on a checklist

to analyze threats according to construct validity, internal validity,

external validity, and reliability, as suggested by Runeson (2009) .

5.1.6.1. Construct validity. The errors on CollabRDL Program were

cause of 24% of differences between the target model and the

generated model. The causes were generated either the absence

activity to add a method was not expressed in CollabRDL or an

incorrect inheritance was expressed in CollabRDL. One error, 3%

of differences, was caused by error on Target Model. In addition,

the execution environment of CollabRDL makes calls to reuse core

functions of the RDL core, which is designed for to single reusers.

Also in this core, a process needs to be started and completed in

a single work session.

The lack of awareness is a problem considering the execution

environment tools. The 65% of differences between the target

model and the generated model were caused by lack of awareness.

Another limitation related to awareness happens when you need

to identify which iteration an activity belongs. For example, the

command "IF (" Do you want resets doubleClick method? ") THEN"

appears three times in the activities queue for the analyst group,

one for each iteration. However, the Activiti-Explorer tool offers us

such implementation features that enable the creation of a single

queue for each group, but this is not suitable for the DOPARALLEL

command.

5.1.6.2. Internal validity. The study had only a trial with one Col-

labRDL program applied in only one framework by two subjects.

Then the result was a limited sample size. One of subjects is also

one of the co-authors of this work. Both of them were exposed to

the CollabRDL execution environment before the case study took
lace. Regarding knowledge about the OpenSwing framework, one

f the subjects had previously used this framework in software

evelopment projects and the other had not.

As it is defined, in terms of its function, the DOPARALLEL com-

and allows the initiator of the process to delegate ROLE block

ctivities to the analyst group, answer yes for the question “Create

nother function?” and create a new method again by using the

rst DOPARALLEL command block without waiting for the imple-

entation of the first ROLE block instance. However, in this case,

rrors can occur due to a simultaneous access to a critical region.

his happens because the reference to frameControllerClass will be

hange for all instances of the ROLE block. To avoid simultaneous

ccess to the critical regions, the initiator can create a method in

he facade class, wait for the fulfillment of all the other activities

f the DOPARALLEL block, and only after it gets an answer “yes”

he question “Create another function?” is asked.

.1.6.3. External validity. This study was made with one coordi-

ator and two reuse groups. A subject performed activities of

oordination, and the other subject performed activities associates

o groups. However, other studies can be created without con-

traints of groups and subjects. In the same way, the CollabRDL

rogram had one DOPARALLEL command, one PARALLEL com-

and, and four ROLE commands, but there are not constraints

bout a number of commands on CollabRDL programs.

.1.6.4. Reliability. This study case demonstrated that CollabRDL

ommands add support to collaboration in RDL. The ROLE com-

and delegated reuse activities to groups. The PARALLEL command

reated two flows of work and synchronized them. Finally, the

OPARALLEL command built many instances of the same block

o be executed by groups. It is expected that the result should be

imilar to other CollabRDL programs.

.2. Discussion

Today, software development is conducted in increasingly

urbulent business environments with globally distributed teams.

lthough the development teams have indeed succeeded in

laborating practices to manually instantiate frameworks, these

ractices are based on the experience of the team members (i.e.,

ndividually), rather than a method carefully defined and widely

rasped by all members (i.e., formal and globally used). In other

ords, the manual instantiation predominantly aims at the indi-

idual level, whereas the CollabRDL raises the instantiation process

o a team-class level by determining a new form to instantiate and

euse the descriptions about how frameworks can be instantiated.

Even though developers can be accustomed to use frameworks

n a manual way, this form of use can be seen am error-prone and

ime-consuming task. First, the whole process is often driven by

rial and error so as to achieve a correct instantiation. Second, it

s very difficult, if not impossible, to automatically identify instan-

iation problems, or even detect problems without investing much

ffort, given the problem hand. Third, the manual instantiation

elies on an understanding of what the key elements of framework

ean, and such semantic information is typically not included in

ny formal way. Fourth, the manual instantiation process becomes

iresome mainly for novices, who usually have little understanding

bout the built-in business rules of large frameworks.

It is worth using CollabRDL, as opposed to the manual frame-

ork reuse, when there is one (or more) development team that

eeds to carefully determine the interplay between the reuse

ctivities, and form working groups taking into account their skills

nd responsibilities. Another scenario would be when develop-

ent team members, e.g., software architect, need to detail how

o form blocks of commands (related to reuse activities) to be

E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527 519

r

P

o

b

t

o

o

b

d

d

d

w

d

c

q

R

g

f

p

s

6

i

o

P

6

6

w

d

T

c

d

t

l

t

o

a

e

t

t

n

e

fi

a

i

L

t

X

a

p

p

G

a

s

m

fi

t

e

b

s

a

b

t

I

r

C

6

M

p

b

(

o

o

S

f

m

t

a

m

i

d

t

r

i

v

f

o

t

a

g

c

c

fi

v

t

t

m

m

m

a

a

w

o

o

H

o

p

e

s

fi

i

w

t

c

un by different working groups collaboratively and in parallel.

erhaps it is not worth to be CollabRDL program in the context

f small development teams, formed for two or three developers,

ecause the benefits of the CollabRDL are not widely perceived.

We also highlight that the experience of developers in reusing

he framework matters in both approaches, either manual or based

n the CollabRDL program. On the other hand, the lower the level

f experience of the development team members, the greater the

enefits of the CollabRDL can be perceived, because the reasoning

eveloped to instantiate the frameworks can be reused by other

evelopers. In contrast, the manual approach requires that all

evelopers have similar reasoning to instantiate the frameworks,

hich increases the likely of instantiation problems, cause by

ivergent reasoning developed.

It is also important to expose CollabRDL programs should be

reated by experienced developers to properly address the re-

uired hotspots and also promote teamwork. To mitigate creating

DL programs from scratch, Gomes et al. (2014) describes how to

enerate RDL programs from repository of applications that reuse

rameworks using process mining algorithms. Creating CollabRDL

rograms automatically using the same process mining approach

eems feasible and is subject to future work.

. Related work

This session presents some of work related to this article

dentified in the literature on Software Reuse. This related work is

rganized in three main areas: Framework Instantiation, Software

roduct Line (SPL) and Chain Transformation (MDD). Next, Section

.4 presents a comparison with this related work.

.1. Framework instantiation

Initially, the process of reusing a Model-View-Controller frame-

ork was described through CookBook using natural language and

ocumenting the steps for its instantiation (Krasner & Pope, 1988).

he notion of Hook was defined by Froehlich et al. (1997) , which

an be seen as an evolution of a CookBook, and had a structured

escription involving a name that identifies the hook, the type of

he hook, relevant conditions, etc., while still keeping the natural

anguage in the descriptions.

RDL (Reuse Description Language) is a language for describing

he reuse process, and provides a systematic way to instantiate

bject-oriented frameworks, but does not address collaborative

spects (Oliveira et al., 2007). Cechticky et al. (2003) describe an

nvironment for instantiating frameworks that uses a transforma-

ion language to generate code from the formal specifications of

he framework components. They make use of processes but do

ot address the issue of teamwork.

Cechticky et al. (2003) approach provides a component-based

nvironment assumes as input Visual Proxy Beans and the speci-

cation of the application. The Beans, implemented as JavaBeans,

re generated from the components of the framework described

n XML, and the transformation language is Extensible Stylesheet

anguage Transformations (XSLT). The output is a formal descrip-

ion of the XML application configuration that is processed by the

SLT program to produce the application code.

Holmes and Walker (2013) described an approach for planning

nd performing reuse in a scenario where the source code was not

roperly designed to be reused. The plan is based on a model of a

ragmatic reuse process with six tasks, whereas a tool suite called

illigan supports the Locate dependencies, Triage dependencies

nd Enact plan tasks. The Locate dependency task involves only

tatic structural relationships, such as Inheritance relationships,

ethod call relationships, field references, Has-Type (only for

elds), and containment relationships. The Triage dependencies
ask offers a structural element six triage decisions: Accept (an

lement that reuser should reuse); Reject (an element will not

e reused); Remap (an element will be changed); Provided (e.g.,

ource and target use same library); Extract (e.g., class field);

nd Inject (inject any arbitrary fragment of code into a class

eing reused). In terms of the Enact plan task, Gilligan supports

hree decisions: Extraction (which source code should be reused);

ntegration (Managing source code additions, Managing dangling

eferences and Managing unnecessary code); and Finalizing Source

ode Modifications.

.2. Software product lines

The practice of reusing suggests a collaborative solution. In

endonça et al. (2007) , the authors show an example of this ap-

roach, which allows users to collaboratively set up a new product

y a process within a Software Product Line. Next, Mendonça et al.

2008) have added improvements to this process called Collab-

rative Product Configuration (CPC) with a detailed presentation

f algorithms. A tool based on this approach was developed, the

PLOT - Software Product Lines Online Tools, which is available for

ree download, including the source code (SPLOT, 2016).

CPC gets as input a feature model (Kang et al., 1990). This

odel is labeled in configuration regions associated with groups

aking into account the knowledge in the field (e.g., database

dministrator, security expert) and decision on the project (e.g.,

anagers, supervisors). The model is then converted to BPMN and

ncludes the execution plan for a CPC. The execution can result in

ecision conflicts. For example, a participant may select a feature

hat depends on another that was not selected in one area of

esponsibility by other participants. Then, to solve these types of

nconsistencies specific algorithms were created to support the

alidation of the execution plan (Mendonça et al., 2008).

CPC allows you to associate tasks to groups of people that per-

orm tasks in parallel, synchronize them during the setup process

f the new product, and produce an executable plan. However,

his approach does not describe the process of choosing the char-

cteristics of the new product, leaving that responsibility to the

roup responsible for a specific configuration region. However, in

ase of a region with many configuration reuse rules, this solution

an be problematic.

Rabiser et al. (2007) present an approach to support the con-

guration of a new product by extending and adapting the model

ariability (i.e., features) in order to eliminate or add features to

he model according to the information about a specific project,

hat is, about the product to be created. They also present a

etamodel with new elements that are not part of the variability

odel, but are important in the product configuration process. The

etamodel represents a product that has one or more properties,

nd each property is related to the decision whether or not to

dd a variability artifact in the product model. A role is associated

ith one or more decisions and, finally, and guidance related to

ne or more decisions can be provided to assist with tips and rec-

mmendations those involved in the new product configuration.

owever, this approach does not make explicit that activities can

ccur in parallel and under specific synchronization constraints.

Noor et al. (2007) present a collaborative approach to express a

rocess in the scope of Product Line using thinklets, but does not

xplore the possibility of activities in parallel, a limitation that is

imilar to the one related to Rabiser et al. (2007) . A thinklet is de-

ned as the smallest unit of intellectual capital required for creat-

ng a repeatable, predictable pattern of collaboration among people

orking to achieve a goal (Briggs et al., 2003). They assume that

he engineering of collaboration is the development of repeated

ollaborative processes conducted by the practitioners themselves.

520 E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527

c

p

s

d

a

a

c

r

d

c

t

t

s

t

M

U

m

(

a

m

C

f

t

m

t

t

G

t

O

u

(

f

d

(

p

a

6

F

b

b

(

f

a

o

t

o

L

a

p

e

m

a

t

i

s

t

4

o

t

c
The Noor et al. (2007) is organized into three layers: the

process layer, the patterns layer, and the thinklets layer. In the

process layer, the objectives and the tasks relevant for achieving

them are defined, including the identification and selection of par-

ticipants. The pattern layer makes use of collaboration engineering

patterns discussed in (Briggs et al., 2003), and includes patterns

such as Divergent (e.g., brainstorming), Convergent (adding or

eliminating concepts), Organization, Evaluation, and Consensus.

The tasks are mapped to these patterns with the goal of realizing

the application. Finally, in the thinklets layer the thinklets that can

be executed are defined. Noor et al. (2007) collaborative approach

supports representing tasks and their order to define the process

of creating a product group, but does not explore the possibility of

parallel activities.

Hubaux et al. (2009) defined Feature Configuration Workflows

(FCW) that use the concept of workflow to describe the process

of configuring a new product from a feature model, allowing the

distribution of activities between people and the performance of

activities in parallel. In Abbasi et al. (2011) a tool for FCW is pre-

sented. FCW supports the association of part of workflow activities

of the features model with the group of people that will perform

them. This can be seen as a form of delegation. In that way, when

the workflow is executed, people in specific groups approve or

disapprove features of the new product and the model is synchro-

nized, respecting change permissions of the groups. In addition,

the workflow can be built with the purpose of analyzing conflict-

ing decisions between groups about the application features.

6.3. Transformation chains

Model Driven Architecture (MDA), specified by OMG, has be-

come a reference in model driven development. This architecture

consists of models in three different levels of abstraction, with

mappings from more abstract to more specific levels until the

concrete level of program code is reached. CIM (Computation

Independent Model) are models that belong to the most abstract

level, and refer to abstractions that are easier for humans to

understand, bing independent of any implementation technology.

PIM (Platform Independent Model) are models to specify the struc-

ture and functionality of the system without referencing technical

details, and add more information to the CIM models without

relying on platform-specific information. In contrast, in the PSM

(Platform Dependent Model) layer, the application components

and their interfaces are described in a more specific way. Indeed,

in PSM the models are built for a specific platform (e.g., Corba,

Java, Dot Net), based on the transformation of PIMs.

In addition, in terms of transformations, the top-level, more

abstract Computation Independent Models (CIMs) can be trans-

formed into PIMs using T1 transformations. Then, the PIMs can

be transformed into one or more Platform Specific Models (PSMs)

using transformations T2 to TN. For example, a transformation

T2 can lead to a model consistent with the Java 2 Enterprise

Edition platform. Finally, code generation is performed using the

platform-specific models, that is, the PSMs are transformed into

code in different programming languages.

Transformations are based on mappings between different

levels of model abstractions. A mapping is defined as a set of rules

and techniques used to modify a model aiming to create another

(more concrete) model. PIM to PIM transformations are performed

to improve, filter out or specialize models without the necessity to

embed components that depend on a specific platform. The PIM

to PSM transformations happen when PIMs are refined and can

be designed for an execution platform. These transformations are

based on the characteristics of the target platform, and therefore

dependent on it, making use of its concepts and components. In

contrast, the transformations of type PSM to PSM are used for
omponent deployment. An example is the configuration and de-

loyment of a component to a platform to meet particular system

pecifications. Even though the PSM to PIM transformations are

ifficult to automate, they can be supported by tools to generate

bstract models from specific platform models. Although the MDA

pproach implicitly supports collaborative work, especially in the

ase of transformations, it does not exploit this issue in an explicit,

epresentation-oriented way.

Constraint-Driven Development (CDD) refers to an model

riven development approach in UML (Lano, 2008). It defines use

ases, class diagrams, state machines, and constraints to describe

he functionality of the system at its PIM abstract layer. From

hese descriptions, Platform Specific Models (PSMs) are generated

ystematically with the help of automated tool processes. Finally,

he code is generated from PSMs in a way that is similar to the

DA approach.

UML-RSDS (Reactive System Design Support) is an extension of

ML to support the CDD. It redefines classes and state diagrams,

aking use of a simplified code in Object Constraint Language

OCL) to express the constraints. CDD as well as MDA does not

ddress issues related to collaboration. An example of a develop-

ent that uses this approach can be described in five steps: 1 -

onstruction of the use cases, class diagrams and state diagrams

or the PIM level using a UML-RSDS tool; 2 - Analysis of consis-

ency and completeness of the PIM models; 3 - Transformation of

odels to perform semantic analysis; 4 - Transformation models

o improve the quality or to suit a platform (PSM). This involves

ransforming the PIMs to PSMs that rely on a Java platform; 5 -

enerate Java code from the PSM Java specification.

In a more general sense, there are other approaches related

o this work reported in the literature: Maia et al. (2007) present

ddyssey-MDA, that supports the transformation of PIMs to PSMs

sing Meta-Object Facility (MOF, 2002), XML Metadata Interchange

 XMI, 2002), and Java Metadata Interface (JMI, 2002); ATLAS Trans-

ormation Language (ATL), which is a transformation language for

efining transformations of declarative and imperative forms

 Jouault and Kurtev, 2006); and (Di Ruscio et al, 2012), who have

roposed a preliminary classification of transformation approaches

nd languages.

.4. Discussion

Table 4 presents a comparison with related work. The area of

ramework Instantiation, which relates to items 1, 3 and 4, proba-

ly started with Krasner and Pope (1988) using a natural language,

ut these authors did not address collaboration. Oliveira et al.

2007) present a new language to describe reuse using imperative

orm, but they do not use collaboration constructs. The same

pplies to Cechticky et al. (2003) , who used an approach based

n a transformation language. Holmes and Walker (2013) , referred

o in item 3, built a tool to support the reuse process of object-

riented source files by a single user. In terms of Software Product

ines, which relate to items 5–8, Mendonça et al. (2008) present

lgorithms to support group work, but they did not describe the

rocess of choosing the characteristics of the new product. Rabiser

t al. (2007) work on the expansion and adaptation of the feature

odel, but they do not explicitly support the representation of

ctivities in parallel. Noor et al. (2007) make use of thinklets, but

hey also do not explore activities in parallel. Hubaux et al. (2009) ,

n the area of Software Product Line, make use of workflows to de-

cribe the process of configuring a new product collaboratively. In

he area of Transformation Chains, which relates to item 9 in Table

 , Lano (2008) presents an extension of UML to support the Devel-

pment Guided by constraints using OCL, but they do not address

he issues of collaboration, synchronization or teamwork-based

oncepts. Finally, in the area of Staged Configuration in Multi-level

E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527 521

Table 4

Comparison of related work.

Reference Area Manner Collaboration

1 Krasner & Pope, 1988 Framework Instantiation CookBook with natural

language

They do not address

collaboration

2 Holmes and Walker, 2013 Object-oriented source Tailored process supported by

tool.

They do not address

collaboration

3 Oliveira et al., 2007 Framework Instantiation Imperative Language They do not make framework

instantiation collaboratively

4 Cechticky et al., 2003 Framework Instantiation Transformation Language They do not make framework

instantiation collaboratively

5 Mendonça et al., 2008 Software Product Line They presented algorithms. They not describe the process

of choosing the application

characteristics

6 Rabiser et al., 2007 Software Product Line They worked on the expansion

and adaptation of the feature

model

They do not make explicit the

activities in parallel

7 Noor et al., 2007 Software Product Line They use thinklets They do not explore activities

in parallel

8 Hubaux et al., 2009 Software Product Line They use workflow to describe

the process of configuring a

new product

The approach is collaborative,

but does not support for

asynchronous configuration.

9 Lano, 2008 Transformation Chains He presented an extension of

UML and use OCL.

The author did not address the

issues of collaboration

10 Czarnecki et al., 2005 Staged Configuration Multi-level Staged

Configuration, mentioned the

participation of people with

different roles

The approach is collaborative,

but sequential.

S

(

b

i

a

w

d

d

c

m

r

t

m

a

r

7

t

C

a

t

p

o

t

e

t

E

P

o

A

o

p

p

(

(

P

(

i

i

R

r

i

j

f

e

c

m

a

a

m

D

p

s

o

t

t

g

u

s

s

a

c

w

fi

t

d

a

m

o

a

under different circumstances. This work can be seen as a first
taged Configuration, which relates to item 10, Czarnecki et al.

2005) mention the participation of people with different roles,

ut the proposed approach is sequential.

CollabRDL extends RDL with concepts related to collaboration

n the imperative form and follows the structure of RDL. Moreover,

s in the case of Hubaux et al. (2009) , CollabRDL makes use of

orkflow environments. In relation to other related works, some

o not support the execution of activities in parallel, while others

o not address the issue of collaboration at all. Therefore, we

onclude that CollabRDL advances the state of the art in software

ass customization since current approaches do not support the

epresentation and implementation of collaborative instantiations

hat involve individual and group roles, the simultaneous perfor-

ance of multiple activities, restrictions related to concurrency

nd synchronization of activities, and allocation of activities to

euse actors as a coordination mechanism.

. Conclusions and future work

In this paper, we have presented CollabRDL, an extension of RDL

hat focuses on collaborative group activities. In the presentation of

ollabRDL, we aimed at achieving the following objectives: (1) to

llow the definition of groups of reusers; (2) to support the delega-

ion of reuse activities to specific groups of people; (3) to represent

arallel reuse activities; and (4) to present an evaluation based

n the representation of some coordination-oriented workflow pat-

erns and based on a case study involving framework instantiation.

The first objective was achieved using the Activiti execution

nvironment (Activiti, 2015). The second one was achieved using

he ROLE and FLOW commands running in the CollabRDL-Activiti-

xplorer environment. The third objective was achieved using the

ARALLEL and DOPARALLEL commands, and the configuration

f the Activiti execution environment, the so-called CollabRDL-

ctiviti-Explorer . Finally, the evaluation, the fourth and last specific

bjective, was achieved by representing the specific workflow

atterns in CollabRDL and by conducting the case study.

CollabRDL was assessed with respect to the following workflow

atterns: Parallel Split Pattern (WCP2), Synchronization Pattern

WCP3), Exclusive Choice Pattern (WCP4), Simple Merge Pattern

WCP5), Multi-Choice Pattern (WCP6), Role-based Distribution
attern (WRP2), and Multiple instances with decision at runtime

WCP14). The case study was conducted by two developers work-

ng in groups that collaboratively performed reuse activities for

nstantiating a mainstream Java framework (OpenSwing, 2015). The

OLE, PARALLEL and DOPARALLEL commands were evaluated with

espect to their functionality in order to realize the reuse activities

n teams and, when possible, in parallel. The questions for this ob-

ective are: 1 – Can the ROLE command assign a block of activities

or a group? 2 – Can the PARALLEL command create streams of ex-

cution of blocks of activities in parallel? 3 – Can the DOPARALLEL

ommand create flows of the same block of activities?

As a result, the case study shows that three CollabRDL com-

ands were effective. The ROLE command coordinated six reuse

ctivities and fifty three questions among the analyst, designer

nd databaseAdministrador groups. The PARALLEL command has

anaged to create two flows of activities in parallel. Moreover, the

OPARALLEL performed more than once specific block activities.

As future work, we seek to improve CollabRDL by (1) sup-

orting the concept of environment awareness in collaborative

oftware reuse, and by (2) implementing an appropriate treatment

f critical regions. These two elements are necessary as a basis

o conduct further studies to explore all the desirable features of

he new commands with the involvement of more individuals and

roups. The first item, awareness, can be potentially dealt with

sing visualization techniques (Botterweck et al., 2008), and the

econd involves the use of concurrent languages (Scott, 2009).

Moreover, empirical studies will be performed to better under-

tand how the effectiveness and usage of the CollabRDL can be

ffected by different collaboration scenarios. In particular, we are

oncerned on exploring scenarios found in: (1) large organizations ,

here the collaboration is more organized and practitioner has

xed role in the team; and (2) open source projects , in which

he collaboration is based on voluntary work of the participants,

eveloped tasks can be added to and removed from the project

t any time, and developers can change their roles or even have

ultiple roles.

Finally, we hope that the proposed extension and the issues

utlined throughout the paper may encourage other researchers

nd developers to use and evaluate the CollabRDL in the future

522 E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527

Code 11. Grammar of ROLE command.

$

a

t

A

l

p

B

i

k

s

c

t

B

T

a

T

c

B

i

t

e

F

r

C

t

r

S

B

i

t

o

I

s

i

i

i

B

t

P

a

i

a

s

m

a

a

t

i

f

step in a more ambitious agenda on how to better support

collaboration in systematic reuse.

Acknowledgements

This work was partially supported by the Brazilian funding

agencies CAPES and CNPq and Natural Sciences and Engineering

Research Council of Canada (NSERC).

Appendix A

This appendix shows the CollabRDL commands in the Backus

Normal Form (BNF) representation.

A.1. ROLE command

In Code 11 , the lines 3–7 show the BNF that identifies the

ROLE command. This command has two parameters represented

by the non-terminal symbols role and comment . The parameter

role identifies the group, and the parameter comment refers to

the comment communicated to this group. Besides the BNF, Code

11 shows how the BPMN code generator handles this command. In

line 5, there is an expression, codeGen.addBeginRoleBlock ($ role.text,

$ Comment.Text) , that represents a method call addBeginRoleBlock

with parameters $ role.text and $ comment.text . This method belongs

to the BPMNCodeGenerator class of the RDL-Activity-BPMN pack-

age, which is responsible for generating the BPMN code in the

Extensible Markup Language (XML) format for all commands.

A.2. PARALLEL command

In Code 12 , lines 3–8 show BNF that identifies PARALLEL com-

mand. This command has a block with two or more flow_statement

statements. Line 5 shows the beginning of the block with the

method call, addFork , which is responsible for creating threads in

parallel for flow_statement statements. In addition, line 7 declares

a method call, addJoin , at the end of the block, to join these

threads of execution. The flow_ statement, in lines 9–13, which is

similar to ROLE with respect to its parameters, declares a block

of activities that can be executed in parallel by the PARALLEL

command. Again, the addFork and addJoin methods belong to the

class BPMNCodeGenerator .

A.3. DOPARALLEL command

In Code 13 , lines 4–9 show the BNF of the DOPARALLEL

command. Line 5 starts with a call to addBeginDoparallelBlock

method. Line 6 declares that the DOPARALLEL command contains

a statement_block , which is a generic block to package reuse

commands and language structures. Lines 7 and 8 indicate iter-

ation, and the expression addEndDoparallelBlock ($ condition.text)

refers to a call to addEndDoparallelBlock method with parameter
condition.text . As it happens in the case of all commands, the

ddBeginDoparallelBlock and addEndDoparallelBlock methods belong

o the BPMNCodeGenerator class.

ppendix B

In order to show its expressiveness, in this appendix Col-

abRDL is used to represent seven coordination-oriented workflow

atterns.

.1. The Parallel Split Pattern (WCP2)

The Parallel Split Pattern is defined as the division of a branch

n one or more branches that can be executed in parallel. It is also

nown as AND-split, parallel routing, parallel split or fork. Fig. 9

hows this pattern in BPMN 2.0.

Code 14 shows the WCP2 pattern in CollabRDL. The PARALLEL

ommand is the implementation of this pattern combined with

he Role-based Distribution (WRP2) pattern presented in Section

.6 . The A activity in BPMN is mapped to activityA in CollabRDL.

he division of branches is indicated by PARALLEL in CollabRDL

nd by the square symbol with a circle and a cross in BPMN.

he branches of the activities B and C in BMPN have a direct

orrespondence with the FLOW blocks in CollabRDL.

.2. The Synchronization Pattern (WCP3)

This pattern defines the convergence of two or more branches

nto a single next branch such that the thread of control is passed

o the subsequent branch when all input branches have been

nabled. Its synonyms are AND-join, rendezvous, and synchronizer.

ig. 10 shows this pattern in BPMN 2.0 and Code 15 shows the

epresentation of this pattern in CollabRDL.

The activityC in CollabRDL has a direct correspondence with the

 activity in BPMN. They are performed only after the execution of

he FLOW blocks in CollabRDL and the activities A and B in BPMN,

espectively. Thus, we conclude that CollabRDL implements the

ynchronization Pattern (WCP3), AND-join.

.3. The Exclusive Choice Pattern (WCP4)

The Exclusive Choice Pattern defines the division of a branch

nto two or more branches. When the input field is enabled, the

hread of control is immediately passed to an output branch based

n the result of a logical expression associated with the branch.

ts synonyms are XOR-split, exclusive OR-split, conditional routing,

witch, decision, or case statement. Fig. 11 illustrates this pattern

n BPMN 2.0 and Code 16 shows the representation of this pattern

n CollabRDL. The IF-ELSE command is part of the RDL and was

nherited by CollabRDL without amendment.

.4. The Simple Merge Pattern (WCP5)

Fig. 12 shows this pattern in BPMN 2.0 and Code 17 shows

he representation of this pattern in CollabRDL. The Simple Merge

attern defines the convergence of two or more branches into

 single subsequent branch. The outputs of the branches are

nputs to the control segment of the subsequent branch. The next

ctivity will use only one of the outputs of previous branches. Its

ynonyms are XOR-join, exclusive OR-join, asynchronous join, and

erge. This code does not represent the case when activities A

nd B start, and the flow goes to C when at least one of these two

ctivities ends. However, there must be more evidence that this

ype of control is needed in a collaborative reuse before adding

t into CollabRDL. Thus, we conclude that CollabRDL still does not

ully implement the Simple Merge pattern (WCP5).

E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527 523

Code 12. Grammar of PARALLEL command.

Code 13. Grammar of DOPARALLEL command.

Fig. 9. Parallel Split Pattern (AND-split) in BPMN 2.0, adapted of Russell et al.

(2006) and White (2004) .

Code 14. The Parallel Split Pattern (AND-split) represented in CollabRDL.

Fig. 10. Synchronization Pattern (AND-join) in BPMN 2.0, adapted of Russell et al.

(2006) and White (2004) .

Code 15. The Synchronization Pattern (AND-join) represented in CollabRDL.

Fig. 11. Exclusive Choice Pattern (XOR-split) in BPMN 2.0, adapted of Russell et al.

(2006) and White (2004) .

Code 16. The Exclusive Choice Pattern (XOR-split) represented in CollabRDL.

B

t

t

o

w

O

2

C

p

n

w

c

.5. The Multi-Choice Pattern (WCP6)

The Multi-Choice Pattern is defined as a branch splitting into

wo or more branches. When the input branch is enabled, the

hread of control is immediately passed to one or more branches

f the output based on the result of a logical expression associated

ith the branch. It is also known as Conditional routing, selection,

R-split, or multiple choices. Fig. 13 shows this pattern in BPMN

.0 and Code 18 shows the representation of this pattern in

ollabRDL.

Code 18 indicates that FLOW blocks will only run if they get a

ositive answer in the evaluation of the IF command. This combi-

ation with the IF statement transforms the PARALLEL command,

hich was originally an AND-split, into an OR-split. Thus, we

onclude that CollabRDL implements WCP6.

524 E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527

Fig. 12. Simple Merge Pattern (XOR-join) in BPMN 2.0, adapted of Russell et al.

(2006) and White (2004) .

Code 17. The Simple Merge Pattern (XOR-join) represented in CollabRDL.

Fig. 13. Multi-Choice Pattern (OR-split) in BPMN 2.0, adapted of Russell et al.

(2006) and White (2004) .

Code 18. The Multi-Choice Pattern (OR-split) represented in CollabRDL.

Fig. 14. Role-based Distribution Pattern in BPMN 2.0, adapted of Russell et al.

(2006) and White (2004) .

Code 19. The Role-based Distribution Pattern represented in CollabRDL.

Fig. 15. Multiple instances of B in serial.

Fig. 16. Multiple instances of B in parallel.

Code 20. Multiple instances in parallel with decision at runtime represented in Col-

labRDL.

B

a

c

d

a

a

s

p

t

q

a

y

e

f

i

r

r

C

b
B.6. The Role-based Distribution Pattern (WRP2)

This pattern represents the roles defined for some activities

at model time will be distributed to groups at runtime. Roles are

used to gather people into groups that have common character-

istics and skills. Fig. 14 shows this pattern in BPMN 2.0 using the

analyst lane to mark the analyst role. Code 19 shows the ROLE

command that was created to represent the WRP2 pattern. The

first parameter of ROLE indicates that the analyst group is assigned

to perform activities in the block, in this example, activity activ-

ityA only. As a result, we can conclude that the WRP2 pattern is

implemented by the ROLE command in CollabRDL.
.7. The Multiple instances with decision at runtime (WCP14)

This pattern describes the creation of multiple instances of an

ctivity in a process. They are independent of each other, so they

an be executed in parallel, and the number of instances will be

ecided at runtime. It is necessary to synchronize the instances

t the end of their execution before passing the flow to the next

ctivities. Figs. 15 and 16 show variants of this pattern, i.e., the

erial and parallel of this pattern in BPMN 2.0 notation.

The DOPARALLEL command expresses blocks to be executed in

arallel at runtime. Code 20 shows that activityA will be offered

o the analyst group, and without waiting for its completion, the

uestion "Run the block again?" will be issued. Another instance of

ctivityA will be offered to the analyst group if the reuser answers

es. Another case, if the reuser answers no, the flow will go to the

nd of DOPARALLEL, marked by a semicolon (";"), which will wait

or the completion of all instances of activityA that were created.

In other situations, which represent a different parallel behav-

or obtained with the DOPARALLEL command, there is a need to

epeat a sequence of activities for a number of times defined at

untime. One way to express this is through the LOOP command.

ode 21 shows this situation, in which the question "Run the

lock?" is asked at runtime and, if the answer is positive, the

E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527 525

Code 21. Multiple instances in serial with decision at runtime represented in Col-

labRDL.

a

L

c

t

w

m

c

p

R

A

A

A

A

B

B

B

B

B

B

B

C

C

C

C

C

D

D

D

D

E

E

F

F

F

F

F

F

G

G

G

H

H

H

H

J

J

J

K

K

K

L

L

L

M

M

M

M

M

M

M
M

M

N

N
O

O

O

O
ctivityA is performed, and, only after its execution, the question

OOP will be reissued. This behavior indicates that the LOOP

ommand produces the execution of n blocks of code serially and

he variable n is set at runtime.

We conclude that CollabRDL implements the Multiple Instances

ith a decision at runtime pattern. In the parallel case the com-

ands DOPARALLEL and FLOW can be used, and in the serial

ase the commands LOOP and ROLE are sufficient to represent the

attern.

eferences

bbasi, E.K. , Hubaux, A. , Heymans, P. , 2011. A toolset for feature-based configuration
workflows. In: Software Product Line Conference (SPLC), 2011 15th International,

pp. 65–69. vol., no.22-26 .
ctiviti, http://www.activiti.org/ , accessed in May 2015.

PL Documentation at http://www.sei.cmu.edu/productlines/ppl/ , accessed in May
2015.

rango, G..E , Prieto-Diaz, R. , 1991. Introduction and overview: domain analysis con-
cepts and research directions. Domain Analysis and Software Systems Modeling.

IEEE Press .

arthelmess, P. , Anderson, K.M. , 2002. A view of software development environ-
ments based on activity theory. Comput. Supported Cooperative Work 11 (1-2),

13–37 .
otterweck, G. , Thiel, S. , Nestor, D. , Abid, S.B. , Cawley, C. , 2008. Visual tool sup-

port for configuring and understanding software product lines. In: Proceedings
- 12th International Software Product Line Conference, SPLC 2008, p. 77 .

ellas, F. , 2004. Standards for second-generation portals. IEEE Internet Comput. 8

(2), 54–60 .
PMN, http://www.bpmn.org/ , accessed January 2016.

PMN, Object Management Group. Business process modeling and notation, Version
2.0, formal/2011-01-03 January 2011.

riggs, R.O. , De Vreede, G. , Nunamaker Jr., J.F. , 2003. Collaboration engineering with
thinklets to pursue sustained success with group support systems. J. Manage.

Inf. Syst. 19 (4), 31–64 .

ull Corporation, FlowPath functional specification. Bull S. A., Paris, France, Septem-
ber 1992.

echticky, V. , Chevalley, P. , Pasetti, A. , Schaufelberger, W. , 2003. A generative ap-
proach to framework instantiation. In: Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 2830, pp. 267–286 .

ollabRDL Page, 2015, http://prisma.cos.ufrj.br/collabrdl/ , accessed June 2015.

ortes, M. , Mishra, P. , 1996. DCWPL: A programming language for describing collab-
orative work. In: Proceedings of the ACM Conference on Computer Supported

Cooperative Work. Boston, Massachusetts, United States, pp. 21–29. November
1996 .

PE, Commercial Product Evaluation, http://www.workflowpatterns.com/
evaluations/commercial/index.php , accessed in April 2015.

zarnecki, K. , Helsen, S. , Eisenecker, U.W. , 2005. "Staged configuration through spe-

cialization and multi-level configuration of feature models. Softw. Process 10
(2), 143–169 .

e Almeida, E.S. , Alvaro, A. , Lucrédio, D. , Garcia, V.C. , De Lemos Meira, S.R. , 2005.
A survey on software reuse processes. Information Reuse and Integration, Conf,

20 05. IRI -20 05 IEEE International Conference on. vol., no., pp.66,71, 15-17 Aug.
2005 .

e Paoli, F. , Tisato, F. , 1994. CSDL: a language for cooperative systems design. IEEE

Trans. Softw. Eng. 20 (8), 606–616 .
i Ruscio, D. , Eramo, R. , Pierantonio, A , 2012. "Model transformations. In: Lec-

ture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) , 7320 LNCS. Bertinoro Itária,

pp. 91–136 .
ourish, P , Bellotti, V , 1992. Awareness sand coordination in shared workspaces. In:

Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW). Toronto, pp. 107–114 .

llis, C.A. , Gibbs, S.J. , Rein, G.L. , 1991. "Group-ware: some issues and experiences.

Commun. ACM 34 (1), 38–58 .
WP. Evaluating of workflow products, http://www.workflowpatterns.com/vendors/

index.php , accessed in April 2015 .
ilho, I.M. , De Oliveira, T.C. , De Lucena, C.J.P. , 2004. A framework instantiation ap-

proach based on the features model. J. Syst. Softw. 73 (2), 333–349 .
rakes, W.B. , Succi, G. , 2001. An industrial study of reuse, quality, and productivity.
J. Syst. Softw. 57 (2), 99–106 .

rakes, W.B. , Kang, K. , 2005. Software reuse research: status and future. IEEE Trans.
Softw. Eng. 31 (7), 529–536 .

roehlich, G. , Hoover, H.J. , Liu, L. , Sorenson, P.G. , 1997. Hooking into object-oriented
application frameworks. In: Proceedings of the 19th International Conference on

Software Engineering. Boston, pp. 491–501. May .
uggetta, A. , 20 0 0. Software process: a roadmap. In: Proceedings of the Conference

on The Future of Software Engineering (ICSE ’00). ACM, New York, NY, USA,

pp. 25–34 .
uks, H. , Raposo, A. , Gerosa, M.A. , Pimentel, M. , Lucena, C.J.P. , 2007. The 3C col-

laboration model. In: The Encyclopedia of E-Collaboration, Ned Kock (org),
pp. 637–644 .

EF Documentation at http://www.eclipse.org/articles/Article- GEF- diagram- editor/
shape.html accessed October 2015.

omaa, H. , 2004. Designing Software Product Lines with UML. Addison Wesley .

omes, T.L. , Oliveira, T.C. , Cowan, D. , Alencar, P. , 2014. Mining reuse processes. In:
CIBSE 2014: Proceedings of the 17th Ibero-American Conference Software Engineer-

ing , p. 179 .
epper, S., 2008, Java portlet specification version 2.0 ,jsr-286.

olmes, R. , Walker, R.J. , 2013. Systematizing pragmatic software reuse. ACM Trans.
Softw. Eng. Methodol. 21 (4), 44 Article 20 (February 2013) .

otDraw Documentation at www.jhotdraw.org/ , accessed October 2015.

ubaux, A. , Classen, A.,E , Heymans, P. , 2009. Formal modelling of feature config-
uration workflows. In: Proceedings of the 13th International Software Product

Line Conference (SPLC ’09). Pittsburgh, PA, USA. Carnegie Mellon University,
pp. 221–230 .

MI. Java metadata interface specification JSR 040 Java Community Process . http:
//www.jcp.org/ .

ohnson, R.E. , Foote, B. , 1988. Designing reusable classes. In: Journal of Object-Ori-

ented Programming, 1, pp. 22–30. 35 .
ouault, F. , Kurtev, I. , 2006. "Transforming models with ATL. In: Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 3844 LNCS, pp. 128–138 .

ang, K., Cohen, S., Hess, J., Novak, W., Peterson, A., 1990. "Feature-oriented domain
analysis (FODA) feasibility study", SEI, CMU, Pittsburgh, PA, Tech. Rep. CMU/SEI-

90-TR-21.

ovalski, F. , 2005. SPEMTool. Portuguese, Undergrad Final Assessment at Faculty of
Informatics .

rasner, G.E. , Pope, S.T. , 1988. A "cookbook for using the model-view-controller user
interface paradigm in smalltalk-80". J. Object-Oriented Program. 1 (3) .

ano, K. , 2008. Constraint-driven development. Inf. Softw. Technol. 50 (5), 406–423 .
i, D. , Muntz, R.R. , 20 0 0. A collaboration specification language. SIGPLAN Notices

(ACM Spec. Interest Group Program. Lang.) 35 (1), 149–162 .

im, W.C , 1994. Effects of reuse on quality, productivity, and economics. IEEE Softw.
11 (5), 23–30 .

aia, N. , Bacelo, A.P.T. , Werner, C.M.L. , 2007. Odyssey-MDA: a transformational ap-
proach to component models. In: International Conference on Software Engi-

neering and Knowledge Engineering (SEKE’2007). Boston, USA, pp. 9–14. July .
alone, T.W. , Crowston, K. , 1990. What is coordination theory and how can it help

design cooperative work systems? In: Proceedings of the 1990 ACM Confer-
ence on Computer-Supported Cooperative Work (CSCW ’90). New York, NY, USA.

ACM, pp. 357–370 .

alone, T.W. , Crowston, K. , 1994. Interdisciplinary study of coordination. ACM Com-
put. Surv. 26 (1), 87–119 .

endonça, M., Oliveira, T.C.; Lucena, Carlos J.P.; Alencar, Paulo; Cowan, Don-
ald D. Assisting Framework Instantiation: Enhancements to Process-Language-

based Approaches Technical Report School of Computer Science at University
of Waterloo, CS-2005-25, 2005, http://www.cs.uwaterloo.ca/research/tr/2005/

25/CS- 2005- 25.pdf .

endonça, M , Cowan, D , Oliveira, T , 2007. A process-centric approach for coordinat-
ing product configuration decisions. In: Proceedings of the 40th Annual Hawaii

International Conference on System Sciences (HICSS ’07). IEEE Computer Soci-
ety .

endonça, M. , Cowan, D. , Malyk, W. , Oliveira, T. , 2008. Collaborative product config-
uration: formalization and efficient algorithms for dependency-analysis. J. Softw.

3 (2), 69–82 .

OF (2002) Meta Object Facility (MOF) specification, version 1.4, OMG.
ohagheghi, P.E , Conradi, R. , 2007. Quality, productivity and economic benefits of

software reuse: a review of industrial studies. Empirical Softw. Eng. 12 (5),
471–516 .

ohamed, F. , Schmidt, D.C. , 1997. Object-oriented application frameworks. Com-
mun. ACM 40 (10), 32–38 (October 1997) .

oor, M.A. , Grünbacher, P. , Briggs, R.O. , 2007. A collaborative approach for product

line scoping: a case study in collaboration engineering. In: Proceedings of the
IASTED International Conference on Software Engineering, SE 2007 , p. 216 .

orthrop, L.M. , 2002. SEI’s software product line tenets. IEEE Softw. 19 (4), 37–40 .
ASIS, ebXML Business Process Specification Schema, Technical Specification v2.0.4,

December 2006.
liveira, T.C. , Alencar, P. , Cowan, D. , 2011. ReuseTool - An extensible tool support for

object-oriented framework reuse. J. Syst. Softw. 84 (12), 2234–2252 .

liveira, T.C. , Alencar, P. , Cowan, D. , Filho, I.M. , Lucena, C.J.P. , 2004. Software process
representation and analysis of framework instantiation. IEEE-Trans. Softw. Eng.

p145–p159 March .
liveira, T.C. , Alencar, P.S.C. , De Lucena, C.J.P. , Cowan, D.D. , 2007. RDL: a language for

framework instantiation representation. J. Syst. Softw. 80 (11), 1902–1929 .

http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0001
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0001
http://www.activiti.org/
http://www.sei.cmu.edu/productlines/ppl/
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0004
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0005
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0006
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0007
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0007
http://www.bpmn.org/
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0009
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0010
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0010
http://prisma.cos.ufrj.br/collabrdl/
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0012
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0012
http://www.workflowpatterns.com/evaluations/commercial/index.php
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0013
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0014
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0015
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0016
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0017
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0018
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0018
http://www.workflowpatterns.com/vendors/index.php
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0020
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0021
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0022
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0023
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0030a
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0030a
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0024
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0024
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0026
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0027
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0028
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0028
http://www.jhotdraw.org/
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0030
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0030
http://www.jcp.org/
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0032
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0033
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0034
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0035
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0036
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0037
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0038
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0039
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0040
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0041
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0041
http://www.cs.uwaterloo.ca/research/tr/2005/25/CS-2005-25.pdf
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0042
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0043
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0044
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0045
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0046
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0047
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0048
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0049
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0050
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0050

526 E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527

S

S

T

U

V

W

W

W

X

Openswing, 2015, http://oswing.sourceforge.net/ .
OSPE, Open Source Product Evaluation, http://www.workflowpatterns.com/

evaluations/opensource/index.php , accessed in April 2015 .
Rabiser, R. , Grünbacher, P. , Dhungana, D. , 2007. Supporting product derivation by

adapting and augmenting variability models. In: Proceedings - 11th Interna-
tional Software Product Line Conference, SPLC 2007. Kyoto, Japan, p. 141 .

Rothenberger, M.A. , Dooley, K.J. , Kulkarni, U.R. , Nada, N. , 2003. Strategies for soft-
ware reuse: a principal component analysis of reuse practices. IEEE Trans. Softw.

Eng. 29 (9), 825–837 .

Runeson, P. , Host, M. , 2009. Guidelines for conducting and reporting case study
research in software engineering. Empirical Softw. Eng. 14 (2), 131–164 April

2009 .
Russell, N., Ter Hofstede, A.H.M., Van Der Aalst, W.M.P. and Mulyar, N., "Workflow

control-flow patterns: a revised view". BPM Center Report BPM-06-22, BPMcen-
ter.org, 2006.

Scott, M.L. , 2009. Programming Language Pragmatics, 3 ed. Morgan Kaufmann, New

York .
Smith, R.B. , Hixon, R.E , Horan, B. , 1998. Supporting flexible roles in a shared space.

In: Proceedings of the ACM Conference on Computer Supported Cooperative
Work. New York, NY, USA, pp. 197–206 .
PLOT - Software Product Lines Online Tools http://www.splot-research.org , ac-
cessed in May 2016 .

wing, http://docs.oracle.com/javase/tutorial/uiswing/start/about.html , accessed in
May 2016 .

utorial Openswing, http://oswing.sourceforge.net/tutorial.html , accessed in May
2016 .

schold, M. , King, M. , Moralee, S. , Zorgios, Y. , 1998. The enterprise ontology. Knowl.
Eng. Rev. 13 (1), 31–89 .

an Der Aalst, W.M.P. , Ter Hofstede, A.H.M. , Kiepuszewski, B.E , Barros, A.P. , 2003.

Workflow patterns. Distrib. Parallel Databases 14 (1), 5–51 .
FMC, Workflow Management Coalition, 1999, Workflow management coalition ter-

minology & glossary . Document Number WFMC-TC-1011, Issue 3.0.
hite, S.A., 2004. Process Modeling Notations and Workflow Patterns. IBM

Corp., United States http://www.workflowpatterns.com/vendors/documentation/
BPMN _ wfh.pdf .

ohed, P. , Russell, N. , Ter Hofstede, A.H.M. , Andersson, B. , Van Der Aalst, W.M.P. ,

2009. Patterns-based evaluation of open source BPM systems: the cases of
jBPM, OpenWFE, and Enhydra Shark. Inf. Softw. Technol. 51 (8), 1187–1216 .

MI (2002) XML Metadata Interchange (XMI) specification, v1.2, OMG.

http://oswing.sourceforge.net/
http://www.workflowpatterns.com/evaluations/opensource/index.php
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0053
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0053
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0053
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0053
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0054
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0054
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0054
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0054
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0054
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0055
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0055
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0055
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0056
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0056
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0057
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0057
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0057
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0057
http://www.splot-research.org
http://docs.oracle.com/javase/tutorial/uiswing/start/about.html
http://oswing.sourceforge.net/tutorial.html
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0061
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0061
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0061
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0061
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0061
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0062
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0062
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0062
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0062
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0062
http://www.workflowpatterns.com/vendors/documentation/BPMN_wfh.pdf
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0064
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0064
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0064
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0064
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0064
http://refhub.elsevier.com/S0164-1212(17)30022-5/sbref0064

E.M. Lucas et al. / The Journal of Systems and Software 131 (2017) 505–527 527

E eiro (COPPE/UFRJ), Brazil. He received his Master in Systems Engineering and Computer
S te, State University of Rio de Janeiro, Brazil (IPRJ/UERJ). Edson has experience in computer

s oftware reuse; frameworks; systems analysis, design and programming object-oriented;
c

D o (COPPE/UFRJ), Brazil. He is also Adjunct Professor with the David R. Cheriton School

o ation at Pontifical Catholic University of Rio de Janeiro, Brazil (Electrical Engineering -
1 oc. His current research interests are under the software engineering umbrella, including

s rocesses and tools to improve the way software systems are developed. He has published
o umerous highly-regarded conferences and workshops. He has been a leading investigator

i ents to the local software industry that lead to the creation of a software development

c ware engineers.

D in Applied Computing (PIPCA) at the University of Vale do Rio dos Sinos (Unisinos). Farias

r tics at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio). He also received an

M ande do Sul (PUC-RS). As a researcher, his work focuses on software modeling, domain-
s e development, software architecture, neuroscience applied to software engineering, and

m pers invest effort to compose design models created in parallel by different development
t rences, including ICSE, MODELS, AOSD, and journals, including JUCS and SoSym. Farias is

a

D uter Science and Associate Director of the Computer Systems Group. He has more than 20
y significant contributions to many areas, including software design and architectures, user

i ents, and event and context-oriented applications. Dr. Alencar has received international

r rch paper in 1995 for his work on a software evolution theory) and IBM (IBM Innovation
A mber of program committees of numerous highly-regarded conferences and workshops.

H se, IBM, CITO, CSER, SAP and Bell, and has engaged in many collaborative international
p

dson Mello Lucas is currently a PhD student at Federal University of Rio de Jan
cience from COPPE/UFRJ in 2013. He is also a systems analyst at Polytechnic Institu

cience, with emphasis on Software Engineering, acting on the following topics: s
ollaborative processes and content management systems.

r. Toacy Oliveira is an Assistant Professor at Federal University of Rio de Janeir

f Computer Science at the University of Waterloo, Canada. He received his educ
992, MSc-1997, PhD - 2001) and spent 3 years at University of Waterloo as a posd

oftware processes and software reuse. Toacy focuses on the use notations, models, p
ver 40 refereed publications, and has been a member of program committees of n

n national projects supported by CAPES and CNPq. Toacy also has strong attachm

ompany in 1998, the OWSE Informatica that currently employes more than 50 soft

r. Kleinner is an Assistant Professor in the Interdisciplinary Postgraduate Program

eceived his Ph.D. in Software Engineering in 2012 from the Department of Informa

.S. in Computer Science in 2008 from the Pontifical Catholic University of Rio Gr
pecific modeling language, empirical software engineering, aspect-oriented softwar

odel-driven software development. Today, Farias investigates how software develo
eams. He has published his research results in premier software engineering confe

 member of the OPUS Research Group and MobiLab.

r. Paulo Alencar is a Research Professor with the David R. Cheriton School of Comp
ears of experience in the software engineering and formal methods, and has made

nterfaces, (mobile) web-based systems, open and big data applications, software ag

esearch awards from organizations such as Compaq (Compaq Award for best resea
ward, 2003). He has published over 180 refereed publications, and has been a me

e has been a leading investigator in national projects supported by NSERC, Syba
rojects involving Germany, Argentina, Canada, USA and Brazil.

	CollabRDL: A language to coordinate collaborative reuse
	1 Introduction
	2 Background
	2.1 Collaboration
	2.2 Software processes and reuse
	2.3 RDL

	3 CollabRDL
	3.1 CollabRDL overview
	3.2 CollabRDL commands
	3.2.1 ROLE command
	3.2.2 PARALLEL command
	3.2.3 DOPARALLEL command

	4 The CollabRDL runtime environment
	5 Evaluation
	5.1 Evaluating CollabRDL
	5.1.1 The openSwing framework
	5.1.2 Instantiating a new application
	5.1.3 The CollabRDL instantiation program
	5.1.4 Running a reuse process in CollabRDL
	5.1.5 Summary of the evaluation results
	5.1.6 Threats to validity

	5.2 Discussion

	6 Related work
	6.1 Framework instantiation
	6.2 Software product lines
	6.3 Transformation chains
	6.4 Discussion

	7 Conclusions and future work
	 Acknowledgements
	 Appendix A
	A.1 ROLE command
	A.2 PARALLEL command
	A.3 DOPARALLEL command

	 Appendix B
	B.1 The Parallel Split Pattern (WCP2)
	B.2 The Synchronization Pattern (WCP3)
	B.3 The Exclusive Choice Pattern (WCP4)
	B.4 The Simple Merge Pattern (WCP5)
	B.5 The Multi-Choice Pattern (WCP6)
	B.6 The Role-based Distribution Pattern (WRP2)
	B.7 The Multiple instances with decision at runtime (WCP14)

	 References

