

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 1

On the prediction of source code design problems: A systematic
mapping study

R. Keemps*1, K. Farias1, R. Kunst1

1 Applied Computing Graduate Program (PPGCA), University of Vale do Rio dos Sinos (Unisinos), Rio Grande do Sul,
São Leopoldo, Brazil

Corresponding author: *robson.keemps@gmail.com

ABSTRACT
Context: Nowadays, the prediction of source code design problems plays an essential role in the software development
industry, identifying defective architectural modules in advance. For this reason, some studies explored this subject in
the last decade. Researchers and practitioners often need to create an overview of such studies considering the
predictors of design problems, their pivotal contributions, the used prediction techniques, and research methods.
Problem: However, the current literature lacks studies introducing a detailed mapping of published works. Objective:
This article, therefore, aims at classifying the current literature, and pinpointing trends and challenges worth investigating
in this research field. Method: We run a systematic mapping study following well-known guidelines. We applied a careful
filtering process from a corpus of 894 candidate studies. In total, 35 primary studies were selected, analyzed, and
categorized. Results: The main results are that a majority of the primary studies (1) explore Bloater bad smells, (2) use
code complexity and size as predictors, (3) apply machine learning techniques to generate predictions, and (4) present
a prediction proposal without an extensive empirical assessment. Conclusions: Predicting design problems is still in its
infancy, showing plenty of room for future works. Finally, our findings can serve as a starting point for upcoming studies.

Keywords: Design problems, Bad smell, Systematic mapping study, Literature review, Prediction

1. Introduction

Design problems are internal structures of source
code that challenge design principles or rules
(Sharma et al., 2018; Oizumi et al., 2016;
Suryanarayana et al., 2014). Typically, they arise
when the source code of applications undergoes
constant changes, for example, to accommodate
new features or even evolve existing ones. These
changes can lead to improper changes
characterized by the scattering and tangling of
software concerns, violating design principles such
as the single-responsibility principle. The violation of
rules and design principles gives rise to symptoms
of poor design (Palomba et al., 2017) due to the
presence of code anomalies, also popularly known
as bad smells (Oizumi et al., 2016).

Previous empirical studies (Oizumi et al., 2016;
Palomba et al., 2018a; Palomba et al., 2017) point
out that bad smells indicate design problems.
Couplers and bloaters are examples of bad smells
(Suryanarayana et al., 2014), which represent

excessive coupling, and large proportions of source
code elements, respectively. As a result,
maintenance tasks become error-prone.
Documenting architectural decisions through UML
models (Petre, 2014; Júnior et al., 2021) could help
identifying such design problems. In practice, UML
models end up not being created or updated,
making it difficult to identify and resolve code
anomalies. As a result, developers tend to rely on
tacit knowledge to prevent further violations of
design principles.

In this context, predicting design problems can play
an essential role, especially identifying defective
architectural modules in advance. The greater the
forecast of the appearance of design problems, the
greater the anticipation capacity to address such
problems. An alternative would be to generate
predictions of design problems, for example, based
on size, complexity, coupling, and cohesion as the
source code is modified on-demand. Today, the
literature lacks studies that provide an overview of
the state of the art on the subject of predicting

kleinnerfarias
pre-print

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 2

source code design problems. Having a literature
mapping would help software developers to identify
potential techniques as well as researchers to
explore gaps in the state of the art. The absence of
this mapping leads developers, for example, to
adopt techniques considering the opinion of
experts.

This article, therefore, proposes a systematic
mapping of the literature to fill this gap. We classify
the current literature and pinpoint trends and
challenges worth investigating in this research field.
Our mapping study follows well-known practical
guidelines (Petersen et al., 2008; Petersen et al.,
2015). Moreover, it is based on the authors’
experience in carrying out previous mapping studies
(Carbonera et al., 2020; Menzen et al., 2021; Vieira
& Farias, 2020; Bischoff et al., 2021). In total, 35
primary studies were selected, analyzed, and
categorized after applying a careful filtering process
to a sample of 894 candidate studies to answer six
research questions.

The main results show that (1) 54.29% (19/35) of
the primary studies use machine learning
techniques, and (2) the majority of the primary
studies explored Bloaters (62.86%, 22/35),
Architectural Problems (54.29%, 19/35), and
Couplers (42.86%, 15/35). Our findings also
indicate that predicting design problems is still in an
incipient field of research, showing plenty of room
for future works. Lacking techniques that can
proactively anticipate the appearance of design
problems, allowing for an early refactoring action to
preserve the internal quality indicators of source
code. Lastly, this article reports worth investigating
challenges regarding the prediction of design
models that can proactively influence the source
code’s quality. Rather than exhausting this topic,
our article seeks to serve as a starting point for
future investigations.

We outline the main concepts discussed throughout
the article, and compare our article with similar
ones, highlighting their differences and
commonalities (Section 2). In addition, we present
the study protocol (Section 3) and introduce the
procedures adopted to filter potentially relevant
studies (Section 4). After that, we present the
collected results (Section 5) and outline additional
discussions and future directions (Section 6). Lastly,

we discuss some limitations and threats to validity
(Section 7) and draw some conclusions (Section 8).

2. Background and Related Work

2.1 Design problems

Design problems are indicators of situations that
improperly affect software quality attributes such as
understandability, testability, extensibility,
reusability, and maintainability in general. Improving
maintainability is one of the cornerstones of making
software evolution easier (Alkharabsheh et al.,
2019). A design problem does not produce compile-
time or run-time errors, but it does negatively affect
the system quality attributes, such as
understandability, testability, extensibility,
reusability, or maintainability in general (Garcia,
2011; Yamashita et al., 2013). Design problems are
indicators of refactoring opportunity (Bavota et al.,
2015) or even signs that can lead to software design
failure (Budgen et al., 2008).

According to Fowler and Kent (Fowler, 2018), code
smells can be defined as a potential indication of
problems in the source code of information systems.
Thus, it is important to define new approaches to
spot them whenever possible. Some systematic
literature reviews (SLRs) have been conducted in
the area of bad smells (Al-Shaaby et al., 2020; de
Paulo et al., 2018; Fernandes et al., 2016; Lacerda
et al., 2020; Rasool et al., 2015; Sabir et al., 2019;
Santos et al., 2018). The code smell detection
process has motivated many researchers to propose
different methods to deal with the occurrence of
code smells in systems. Nowadays, machine
learning techniques are utilized to address code
smell issues with promising results (Al-Shaaby et al.,
2020; Alkharabsheh et al., 2018; Di Nucci et al.,
2018; Fontana et al., 2016). A machine learning
classifier needs first to be trained using a set of code
smell examples to generate a model. The generated
models are then used to identify or detect code
smells in unseen or new instances (Al-Shaaby et al.,
2020).

However, the volume of research in the domain has
multiplied over more than 17 years of activity in the
field. This has led to the need for critical integration
and evaluation of the available research in design
smell detection. In our opinion, understanding this
area is important because, nowadays, a

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 3

considerable number of software projects have large
dimensions, so manual design smell detection is not
a realistic task. Problems are latent in code;
detection usually occurs very late, and then, the
solutions are very complex. As a consequence, the
software quality is negatively affected and technical
debt increases, so redoing the software becomes
the most realistic option. We believe, in a
comparative perspective, that while refactoring has
been extensively adopted by the software industry.
Design smell detection is far from that reality
(Alkharabsheh et al., 2019).

2.2 Prediction of design problems

The prediction of design problems is an attempt to
anticipate design problems based on metrics using
specific techniques. Some techniques analyze
software project histories, trying to guess the
behavior of the software in the future with respect to
its coding (Kaur & Mittal, 2017; Kim et al., 2008;
Palomba et al., 2018; Palomba et al., 2018b; Rani et
al., 2017). Predicting the location can increase the
chances of identifying possible anomalies in the
source code, in addition to assisting in testing
activities, which aim to identify possible problems
with the quality of the software. There are several
benefits of prediction, such as support and planning
for software testing, identification of code snippets
where improvements are needed, reduction of code
defects, and mainly planning of future efforts within
the software project, software developers in
prioritizing their work on the most severe smells
(Alkharabsheh et al., 2018).

2.3 Related work

Current studies pay close attention to empirical
studies’ elaboration to produce evidence-based
knowledge and use purely statistical methods to
predict the quality of the source code. However, little
has been done to create a systematic map of studies
published in recent decades. There are studies in
the literature that also point to problems that impact
the final quality of the software, (Alenezi et al., 2016;
Boehm et al., 2019; Chen et al., 2018; Ibarra et al.,
2018; Martínez-Fernández et al., 2019; Wong,
2018), these studies mainly deal with the final quality
of the software. The team involved in the software
design must have version control of the artifacts and
the software itself, a prerequisite for its modeling and

construction to identify possible failures that may
occur.

Moreover, works are developed in the area of
Software Analytics (Abbes et al., 2011; Barbosa et
al., 2013), tooling supports, and good development
practices for improved source code quality. Barbosa
et al. (2020) report that software design quality
degradation can be avoided, reduced, or
accelerated depending on the developers’
communication dynamics and the specific roles
performed within the software project.
Understanding the role of communication dynamics
and the content involved in the discussion is
important to avoid software design anomalies.
Social metrics can also be indicators of design decay
when analyzing the two aspects together.

It is appointed in (Uchôa et al., 2021; Uchôa et al.,
2021a) that existing studies tend to analyze the
degradation of the software design and consider
unique events like introducing a single design
problem or simply analyzing the rate of degradation.
However, understanding how design degradation
evolves between reviews is still challenging. The
impact of modern code review on the evolution of
project degradation is analyzed. Since the code
review also aims to improve the quality of design and
evaluations can be expected to gradually reduce
over time various symptoms of software
degradation. To this end, they have investigated
retrospectively 14.971 code reviews of seven
software systems belonging to two large open
source communities. Design degradation
characteristics were analyzed in revisions and within
reviews. How design discussions tend to impact
design degradation.

The paper (Alkharabsheh et al., 2019) presents a
systematic mapping, focusing on all types of Design
Smell (Bad Smell, Anti-patterns, Disharmonies,
using Design Smell as a unifying term) and, on the
other hand, on the detection activity and some other
related activities, such as specification, correcting
(refactoring), and prioritization.

Providing an overview and discussing the use of
machine learning approaches in the field of bad
smell work (Azeem et al., 2019) presents a
Systematic Literature Review (SLR) on Machine
Learning Techniques for Smell Detection Code. It is
considered articles published between 2000 and

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 4

2017. Starting from an initial set of 2.456 articles,
only 15 of them took machine learning approaches.
These studies address four different perspectives: (i)
considered code smells, (ii) configuring machine
learning approaches, (iii) design of evaluation
strategies, and (iv) a meta-analysis of the
performance achieved by the models hitherto
proposed.

The analyzes performed show that Class of God and
Long Method and Functional Decomposition and
Spaghetti Code have been widely considered in the
literature. Decision trees and support vector
machines are more machine learning algorithms
commonly used to code smell detection. Models
based on large set of variables had a great
performance. JRip and Random Forest are the
classifiers more effective in terms of performance.
The analyzes also reveal the existence of several
open questions and challenges that the research
community should focus on the future. Providing an
overview and discussing the use of machine learning
approaches in the field of design problems.

This paper presents a systematic mapping that
differs from the previously mentioned studies by
focusing, on the one hand, on all types of Code
Smell and Design Smell (Bad Smell, Anti-patterns,
Disharmonies, among others, using Design Smell
and Code Smell as a unifying term) and, on the other
hand, on the detection activity. Consequently, the
main goal of our systematic mapping study is to
collect and organize the knowledge on Design Smell
Detection in general (approaches, tools, techniques,
datasets, and quality factors) and not just tools, as is
the case of some related work.

3. Planning

This section introduces an outline of the research
protocol used to carry out our mapping study.
Section 3.1 presents the central objective and
research questions of our study. Section 3.2 defines
the search strategy for selecting works already
published. Section 3.3 explains how the search
string was defined and the electronic databases
were chosen. Section 4.4 describes the exclusion
and inclusion criteria used to filter works.

Figure 1 introduces the planning followed to run our
study. This protocol addresses the steps and

guidelines for conducting systematic mapping
studies in software engineering (Keele, 2007;
Kitchenham et al., 2011; Petersen et al., 2008;
Petersen et al., 2015). Additionally, our protocol was
also inspired on our previous mapping studies
(Carbonera et al., 2020; Menzen et al., 2021; Vieira
& Farias, 2020; Bischoff et al., 2021)

Figure 1. The systematic mapping process used in our

study (adapted from (Petersen et al., 2008)).

3.1 Objective and research questions

The main objective of this mapping study is to
introduce a broad and careful view of previous works
considering the theme of predicting design
problems. In particular, this work aims to provide an
overview of the current literature by filtering (Section
4) and classify articles (Section 5), pointing out gaps,
open challenges and research opportunities that are
worth exploring by the scientific community (Section
6).

We formulated six research questions, described in
Table 1, to address this objective. These questions
seek to explore some pivotal issues, including the
types of design problems most commonly
investigated, the prediction aspects considered to
predict design problems, the prediction techniques
used to anticipate the future occurrence of design
problems, the main contribution reported in each
selected study, the research methods applied to run
the research and the research venue chosen to
publish the articles.

Research Question Motivation Variable
RQ1: What are the design
problems explored by
prediction techniques?

Reveal the
most

common
explored
types of
design

problems.

Types of
design

problems

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 5

RQ2: What aspects are
considered for predicting
design problems?

Understand
the different
aspects
considered
for predicting
software
design
problems.

Prediction
aspect

RQ3: Which techniques
have been used to predict
design problems?

Pinpoint the
most used
prediction
techniques.

Prediction
technique

RQ4: What is the main
contribution of the primary
studies?

Identify the
explored

contributions.

Main
contribution

RQ5: What are the
empirical methods used to
evaluate the prediction of
design problems?

Identify the
research
methods
used to

evaluate the
prediction.

Research
method

RQ6: Where have the
studies been published?

Reveal the
target
venues used
to report the
results.

Research
venue

Table 1. Research questions explore in this article.

3.2 Search strategy

Based on the research questions, we determined a
set of key terms to support searching for potentially
relevant articles. Key terms were defined based on
well-known empirical guidelines (Al-Qudah et al.,
2015; Petersen et al., 2008; Wohlin, 2012). Table 2
shows the main terms and alternative terms. The
selection of these terms considered their relevance
to the research field, as well as strategies used and
validated in previous works (Bischoff et al., 2021;
Luz & Farias, 2020; Menzen et al., 2021).

Main Term Alternative Term
Design problem Bad smell, Code smell, code

anomaly
Predict Forecast, Foresee, Anticipate
Maintenance Evolution, Development,

Review, Refactoring

Table 2. The major terms and their alternative
terms used.

3.3 Elaboration of the search string

Steps to defined the search strings. The main
steps followed to define the search string were: (1)
Identify candidate keywords, reading studies (e.g.,
(Fowler, 2018; Oizumi et al., 2016; Palomba et al.,
2017; Sharma et al., 2018; Suryanarayana et al.,
2014) chosen by relevance and convenience to
pinpoint the main terms; (2) Identify closely related
words and alternative terms or synonyms related to
the candidate keywords; (3) Check through an initial
search if the terms are in articles widely known in the
field — an interactive and incremental process run
by the authors; and (4) Join the alternative terms
using logical operator “OR”, and the main terms
using logical operators “AND”. Previous works
(Petersen et al., 2015; Wohlin, 2012) were also
considered to formulate the search string. The
combinations that produced the most significant
results are shown as follows:

(design problem OR bad smell OR code smell OR
code anomaly or design smell) AND (prediction OR
forecast OR foresee OR anticipate) AND
(maintenance OR evolution OR development OR
review OR refactoring)

Electronic databases. After determining our search
string, the next step was to identify the electronic
databases and retrieve potentially relevant studies.
Table 3 details the electronic databases used to
search for studies for preparing the systematic
mapping. These electronic databases were selected
for three reasons. First, these databases have a
large and representative number of articles
published related to the research topic explored in
our mapping. Second, they have been used
extensively in systematic mapping studies, pointing
out their usefulness and effectiveness. Third,
previous studies (El Koutbi et al., 2016;
(Kitchenham, 2012; Kitchenham et al., 2011;
Petersen et al., 2015; Kuutila et al., 2020), have
demonstrated the effectiveness of such electronic
databases used to perform literature reviews.

Source Electronic Address
ACM DL dl.acm.org
IEEE ieeexplore.ieee.org
Science Direct www.sciencedirect.com
Scopus www.scopus.com
Elsevier www.elsevier.com
Google Scholar scholar.google.com

Table 3. List of the used search engine.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 6

3.4 Exclusion and inclusion criteria

We apply a set of inclusion and exclusion criteria to
the returned articles after applying the search string
to the digital libraries. These criteria establish rules
to make the filtering as objective and auditable as
possible, avoiding biases usually found in manual
tasks performed by humans. The inclusion criteria
(CI) considered were:

• CI1: Published articles, journals, in an event
or periodical that deals with the evaluation
of prediction techniques, or source code
design problems, whether general-purpose
or not;

• CI2: Studies published between 2005 to
2020;

• CI3: Studies published in Portuguese or
English. We agree that the most relevant
research in the computing area is published
in English-language vehicles, although
there are exceptions; and

• CI4: Studies that contain key terms:
Prediction, Bad Smell, Software, or Design.

The exclusion criteria (CE) considered were:

• CE1: The title, summary or even its content
without relation to the search string;

• CE2: Short studies (up to 4 pages) written in
another language, other than Portuguese or
English;

• CE3: Duplicate studies;
• CE4: Abstract did not address any aspect of

the research questions;
• CE5: Older versions of published studies

prior to 2005;
• CE6: Studies that are narrowly related to

Software Engineering, Software
Development and/or contrary to research
questions; and

• CE7: The full text did not address issues
considering the prediction of design models;

3.5 Data extraction

The data extraction procedures consist of a careful
reading of each selected work and storing the
extracted data in an on-line Google Spreadsheet.
This spreadsheet served as a basis for the collection
and synchronization of data extraction actions by the
authors. Each primary study was carefully read and
its data extracted to answer the research questions

formulated. The extraction process was iterative and
incremental, aiming that the authors could collect
and audit the data. This made it possible to align the
way data was collected and to detect any incorrect
collection procedures.

In particular, the articles were classified according to
the type of study performed (Petersen et al., 2015):
(1) Evaluation study: a specific problem is defined,
proposing a solution and conducting empirical
analysis, to point out the advantages and
disadvantages; (2) Philosophical studies: a
taxonomy or conceptual framework is proposed as a
way to outline a research area; (3) Experience
article: An experience report on the theme of
prediction of design problems. Typically, these
studies explain what and how something was done
in practice; (4) Opinion article: Someone’s personal
opinion about predicting design problems. The
report does not have a clear methodology, nor
related work, focusing on the opinion itself; (5)
Solution proposal: A proposed solution for a given
problem is presented. The evaluation sticks to the
execution of examples or the elaboration of
prototypes, rarely to the execution of robust
empirical studies; and (6) Validation search: Studies
that typically perform experimental studies to
evaluate solutions, approaches, techniques or
processes that have not yet been used in real-world
settings.

4. Study Filtering

With the search string and the exclusion and
inclusion criteria defined, the next step is to define
the article search strategy. The filtering process was
made up of five steps performed sequentially. The
focus was on selecting a sample of representative
studies from a sample of potentially relevant ones.
Figure 2 illustrates the results collected from the
execution of each step. Each step is described as
follows:

• Step 1: Initial search. It gathers the initial
results obtained after applying the search
string in the electronic databases (Table 3).
In total, 894 candidate studies were
recovered.

• Step 2: Exclusion criteria. Three
exclusion criteria (EC1, EC2, and EC3)
were applied to remove impurities. Some
studies were withdrawn due to the absence

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 7

of any semantic relationship to its title,
abstract, or even content, considering the
theme investigated in this research (that is,
out of scope). In addition, studies that were
not written in English or Portuguese were
also discarded. In total, 180 studies
(20.13%) continued in the next stage, while
714 works were discarded. Calls for
conference articles, special issues of
journals, patent specifications, research
reports, and no peer-reviewed material
were examples of discarded materials.

• Step 3: Filter by similarity. This step also
discarded the studies that were selected by
the search string, however, their content
was not closely related to the research
questions, or they had no close relationship
with the study area, e.g., software
development and prediction of design
problems. The CE5 and CE6 were applied.
For that, 38.33% (69 out of 180) of the
studies were filtered.

• Step 4: Filter by abstract. Exclusion
criteria (CE4 and CE7) were applied to
remove the studies considering their
abstract, and after their full text. In total, 39
studies were removed, leaving 30 studies
(43.47%) for the next step.

• Step 5: Addition by snowballing. Some
studies may not have been located,
although the search engines used are
widely qualified. To mitigate this threat,
studies have been added using the
snowballing method (both backward and
forward) (Jalali & Wohlin, 2012; Wohlin,
2014). After selecting the studies in step 04,
a manual analysis of the references and
citations of the hitherto filtered studies was
performed. Five studies were incorporated.
The snowball method in this paper is run
three times to add new selected articles.

The search was performed in the first two months of
2021. Finally, 35 studies were filtered as the most
representative, hereinafter called primary studies
(Table 4). The number of citations shown in Table 4
was found in Google Scholar and retrieved in
January 2021.

Figure 2. The filtering process.

ID Title Year #Cit #Ref

A1 Identifying Architectural Problems through Prioritization of Code
Smells (Vidal et al., 2016) 2016 17 25

A2 Are SonarQube Rules Inducing Bugs? (Lenarduzzi et al., 2020) 2020 02 32

A3 Do Code Smells Impact the Effort of Different Maintenance
Programming Activities? (Soh et al., 2016) 2016 28 40

A4 Code smells detection 2.0: Crowdsmelling and visualization (dos
Reis et al., 2017) 2017 3 50

A5 Code-Smell Detection as a Bilevel Problem (Sahin et al., 2014) 2014 56 73

A6 LDFR: Learning deep feature representation for software defect
prediction [(Xu et al., 2019)] 2019 0 118

A7
Static Code Analysis of IEC 61131-3 Programs: Comprehensive
Tool Support and Experiences from Large-Scale Industrial
Application (Prähofer et al., 2016) 2017 20 25

A8 BDTEX: A GQM-based Bayesian approach for the detection of
antipatterns (Khomh et al., 2011) 2011 106 33

A9 Schedule of Bad Smell Detection and Resolution: A New Way to
Save Effort (Liu et al., 2011) 2012 106 54

A10 Improving Design Smell Detection for Adoption in Industry
(Alkharabsheh et al., 2018) 2018 02 28

A11 Detecting Code Smells using Deep Learning (Das et al., 2019) 2019 0 27

A12 Deviance from perfection is a better criterion than closeness to
evil when identifying risky code (Kessentini et al., 2010) 2010 73 28

A13 Evolution of legacy system comprehensibility through automated
refactoring (Griffith et al., 2011) 2011 13 30

A14 Automatically classifying source code using tree-based
approaches (Petersen et al., 2018) 2016 8 42

A15 Detecting Android Smells Using Multi-Objective Genetic
Programming (Kessentini & Ouni, 2017) 2017 13 36

A16 A hierarchical method for detecting codeclone (Devi et al., 2011) 2011 1 20

A17
Are automatically-detected code anomalies relevant to
architectural modularity?: an exploratory analysis of evolving
systems (Macia et al., 2012) 2012 93 49

A18 On the Relation between External Software Quality and Static
Code Analysis (Plosch et al., 2008) 2008 14 19

A19 Do code smells reflect important maintainability aspects?
(Yamashita et al., 2012) 2012 165 40

A20 Adaptive Detection of Design Flaws (Kreimer, 2005) 2005 50 47

A21 Detecting code smells using machine learning techniques: Are
we there yet? (Di Nucci et al., 2018) 2018 43 90

A22 An empirical study to improve software security through the
application of code refactoring (Mumtaz et al., 2018) 2018 12 86

A23 Automatically identifying code features for software defect
prediction: Using AST N-grams (Shippey et al., 2019) 2019 8 81

A24 Code smell severity classification using machine learning
techniques (Alkharabsheh et al., 2018) 2017 34 42

A25 Change Prediction through Coding Rules Violations (Tollin et al.,
2017) 2017 6 12

A26 Visual Indicator Component Software to Show Component
Design Quality and Characteristic (Irwanto, 2010) 2010 2 11

A27 Iterative software fault prediction with a hybrid approach (Erturk
et al., 2016) 2016 28 64

A28 Using (Bio)Metrics to Predict Code Quality Online (Müller et al.,
2016) 2016 32 77

A29 Less is more: Minimizing code reorganization using XTREE
(Krishna et al., 2017) 2017 15 68

A30 Bad-smell prediction from software design model using machine
learning techniques (Maneerat et al., 2011) 2011 40 14

A31 On the criteria for prioritizing code anomalies to identify
architectural problems (Vidal et al., 2016a) 2016 8 9

A32 Software Defect Prediction via Convolutional Neural Network (Li
et al., 2017) 2017 84 50

A33 A Hybrid Approach To Detect Code Smells using Deep Learning
(Hadj-Kacem et al., 2018) 2018 5 37

A34 Predicting Design Impactful Changes in Modern Code Review: A
Large-Scale Empirical Study (Uchôa et al., 2021) 2021 0 76

A35 JSpIRIT: A Flexible Tool for the Analysis of Code (Vidal et al.,
2015) 2015 47 20

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 8

Legend:
#Cit: Number of citations
#Ref: Nuber of references

Table 4. List of the selected studies.

5. Results

This section presents the results obtained after
classifying the primary studies (Table 4) to answer
the formulated research questions (Table 1).

5.1 Objective and research questions

Table 5 presents the design problems investigated
by the primary studies. The main feature is that the
majority of the primary studies explored Bloaters
(62.86%, 22/35), Architectural Problems (54.29%,
19/35), and Couplers (42.86%, 15/35). The
classification in Table 5 is based on the work of
(Mantyla et al., 2003) categorized all of Fowler’s
code smells except for Incomplete Library Class
and Comments smells into five categories: Bloaters,
Object Orientation Abusers, Change Preventers,
Dispensables, Encapsulators, and Couplers. The
study outlines the existence of several correlations
among smells belonging to the same category.
Moha & Guéhéneuc (2007) propose a taxonomy of
smells and describe some correlations among
design smells, such as Blob and (many) Data Class,
or Blob and (Large Class and Low Cohesion). The
categories of code smells we considered are based
on the classification proposed in (Mäntylä et al.,
2006), where the smells are classified according to
some of the common concepts shared by the smells
within one category.

There are two interesting findings when comparing
this result with studies already published. First,
there may be a relationship between the most
frequently explored design problems with the
diffuseness of design smells. Previous empirical
studies (Palomba et al., 2018a; Sjøberg et al., 2012)
revealed a relationship between the diffusion of bad
smells and the size and complexity of the source
code. Palomba et al. (2018a) point out that the
smelly diffuseness is associated with the size and
complexity of the source code.

This smelly diffuseness typically addresses bloater
smells, including Long Method, Large Class,
Primitive Obsession, Long Parameter List, among
others. Typically, these smells appear gradually

throughout the source code, as the source code
undergoes frequent evolution or maintenance tasks,
remaining in the absence of a refactoring effort to
eradicate them. Sjoberg et al. (2012) reveal that the
size of classes often impacts maintainability more
than the presence of bad smells. The result
highlights a higher frequency of studies concerned
with predicting the appearance of Bloaters. This
concern makes sense when empirical findings have
already revealed their harmful effect on
maintainability.

The second finding would be that unlike exploring
specific design problems, the primary studies
explored more than one. On average, the primary
studies investigated at least two design problems.
Previous empirical findings already point out that
the presence of multiple code smells in classes
tends to increase the change- and fault-proneness
(Khomh et al., 2012; Palomba et al., 2018a), and
design problems can arise from this clustering of
code smells (Oizumi et al., 2016). In this sense,
exploring more than one design problem makes
sense and would be supported by the findings
already reported in the literature.

Classification Amount Percentage List of primary studies

Bloaters 22/35 62.86%
[A4], [A5], [A8], [A9], [A11-15],
[A17-18], [A20-22], [A24-25], [A28-
30], [A32-33], [A35]

Architectural 19/35 54.29% [A1], [A3-7], [A9], [A11-20], [A31],
[A33],

Problems [A20-22], [A24-25], [A28-30], [A32-
33], [A35]

Couplers 15/35 42.86% [A3], [A5-6], [A9], [A15], [A17-18],
[A20-22], [A29-30], [A32-33], [A34]

Dispensables 12/35 34.29% [A5], [A16], [A19], [A21-23], [A29-
30], [A32-33], [A34-35]

Object-Orientation
Abusers 6/35 17.14% [A1], [A23], [A26-27], [A30], [A35]
Change Preventers 4/35 11.43% [A5], [A19], [A22], [A29]
Technical Debt 1/35 2.86% [A2]

Table 5. Classification of the primary studies based

on their design problems (RQ1).

5.2 RQ2: What aspects are considered for
predicting design problems?

Table 6 presents the commonly used aspects for
predicting design problems in the primary studies.
Understanding the considered aspects of the source
code is essential to pinpoint which features are
relevant, for example, to anticipate design problems.
The collected results indicate a tendency to use
structural properties that can be calculated by
metrics, including Code complexity (77.14%, 27/35),

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 9

Size (77.14%, 27/35), Inheritance (60%, 21/35),
Coupling (51.43%, 18/35), Cohesion (40%, 14/35),
and Agglomerations (8.57%, 3/35) in a smaller
amount. These results corroborate with previous
studies, revealing that such structural properties can
be predictors of design problems and bugs (Moha et
al., 2009; Nagappan et al., 2006; Palomba et al.,
2017; Yamashita et al., 2007). Palomba et al. (2017)
use structural properties of source code to propose
a smell-aware bug prediction model, including code
complexity, coupling, cohesion, lines of code,
coupling dispersion, among others. Zimmerman et
al. (2007) indicate a positive correlation between
code complexity and bugs. Nagappan et al. (2006)
also examined the use of metrics to predict buggy
components across 5 Microsoft projects.

Moreover, the primary studies explored source code
design problems computed from pure object-
oriented code, e.g., pure Java code. However, real-
world applications rarely have pure object-oriented
code. Typically, software systems are built from the
composition of pure object-oriented code together
with numerous annotations of frameworks and
architectural styles, such as @RestController and
@PostMapping from Spring Platform — i.e.,
annotations for REST web controller and mapping
HTTP requests onto specific handler methods,
respectively. Thus, computing and predicting design
problems from semantically enriched code would
require understanding the meaning of annotations.
For example, predicting design problems in source
code with Spring Boot platform annotations would
require dealing with semantic and structural aspects
— a challenging and ever-present problem, since
semantic information related to annotations is rarely
formally specified.

Classification Amount Percentage List of primary studies

Code complexity 27/35 77.14% [A2], [A5], [A7-9], [A11-15], [A17],
[A19-30], [A32-33], [A34-35]

Size 27/35 77.14% [A2], [A5], [A7-9], [A12-25], [A27-30],
A32-33], [A34-35]

Inheritance 21/35 60%
[A5], [A7-9], [A11-13], [A15], [A17-18],
[A21-24], [A26-27], [A29-30],
[A32-33], [A35]

Coupling 18/35 51.43% [A1], [A3], [A5], [A15-18], [A20-24],
[A26-27], [A29-30], [A32], [A35]

Cohesion 14/35 40% [A11-13], [A15], [A18-22], [A24], [A27],
[A29], [A32], [A35]

Agglomerations 3/35 8.57% [A1], [A31]
Others 11/35 31.43% [A4-8], [A10], [A12-14], [A28], [A34]

Table 6: Classification of the primary studies based

on their prediction aspects (RQ2).

5.3 RQ3: Which techniques have been used to
predict design problems?

Table 7 introduces the collected data related to the
techniques used to predict bad smell problems
investigated by the selected studies. The main
feature is that most primary studies used Machine
Learning Techniques (54.29%, 19/35). The overall
ranking accuracy of Machine Learning (ML) models
is used to measure the performance of different
methods and approaches. On the other hand, ML
algorithms can be divided into 3 categories:
supervised learning, unsupervised learning, and
reinforcement learning (Chinnamgari et al., 2019;
Dharmadhikari et al., 2011).

Among the selected works, we highlight the use of
algorithms with a supervised learning classification
and regression method. Decision Tree (20%, 7/35)
and Random Forest (20%, 7/35), followed by
Rules/Heuristics (17.14%, 6/35) and Prioritization
Criteria (17.14%, 6/35) and Linear Regression
(11.43%, 4/35) and Logistic Regression (8.57%,
3/35) and Bagging (5.71%, 2/35) and Others (20%,
7/35). Note that primary studies generally explored
Machine Learning and used algorithms for training
problem prediction models. It is essential to highlight
and compare this result with the published study that
notes that further studies are needed to consider the
use of cluster learning, multi-classing and resource
selection techniques for code smells detection (Al-
Shaaby et al., 2020).

In an attempt to anticipate the location of defects in
an application through the use of specific
techniques, the primary studies explored more than
one bad smell according to the classification in Table
5, evaluating the results present in Table 7, we can
say that apprenticeship is proposed to improve the
performance of software problem classifiers,
combining different classifiers and methods in defect
prediction.

Classification Amount Percentage List of primary studies

Machine Learning 19/35 54.29%
[A2-4], [A6], [A8], [A11-12], [A14],
[A20-21], [A23-25], [A27-28], [A30],
[A32-33], [A34]

Decision tree 7/35 20% [A2], [A6], [A14], [A23-25], [A34]

Random forest 7/35 20% [A2], [A6], [A21], [A24-25], [A30],
[A35]

Rules/Heuristics 6/35 17.14% [A5], [A8], [A11-12], [A14-15]
Prioritization Criteria 6/35 17.14% [A1-2], [A6], [A12], [A24], [A31]

Linear regression 4/35 11.43% [A2], [A24], [A11]
Logistic regression 3/35 8.57% [A2-3], [A24], [A30]

Bagging 2/35 5.71% [A2], [A8]
Others 7/35 20% [A1], [A5-7], [A10], [A34]

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 10

Table 7: Classification of the primary studies based

on their prediction techniques (RQ3).

The results indicate that the use of Learning
Techniques is part of an in-depth analysis of the
performance index of software bug prediction
models. Therefore, future efforts will be dedicated to
analyzing the contribution of information related to
the detection of bad smell in the context of models.
Prediction of local learning bug. Finally, the future
research agenda includes the definition of new
factors that influence the performance of forecasting
models (Palomba et al., 2017).

The vast majority of selected primary studies use the
practice prioritizing bad smells. Several automated
approaches are proposed to generate rules that can
detect bad smells in static software codes. A rule is
a combination of quality metrics and their threshold
values to detect a specific type of Bad Smells. The
use of static code analysis tools coupled with
machine learning is used to compare the power of
prediction of failure propensity for software quality
violations, applying several models for comparing
the predictive power of bad smells or possible
violations software quality related to the pre-defined
metrics in each selected primary study.

5.4 RQ4: What is the main contribution of the
primary studies?

The collected results indicate a tendency to use
techniques machine learning in Table 7, used the
practice of prioritizing bad smells as described in
Table 5, the use of analysis combined with machine
learning is used to compare the power of prediction
of failures of software quality violations according to
the results present in Table 6 where the main
contributions of the selected primary studies are
classified in Process (34.28% 12/35), Method
(31.42% 11/35), Model (28.57% 10/35), Metric
(2.85% 1/35) and Tool (2.85% 1/35). We can affirm
that the results are directly linked to the results
present in the previous Section 5.3, in Table 8, since
a classification of contribution adopted in (Petersen
et al., 2008; Petersen et al., 2015), its great majority
by the selected primary studies are related to the
links that propose a solution to a given problem,
whether it is a new solution or a significant reference
from previous studies (Petersen et al., 2015),
highlight small examples are typically used to

demonstrate the potential benefits and the
applicability of the proposed solution.

Classification Amount Percentage List of primary studies
Process 12/35 34.28% [A9], [A17-18], [A23],

 [A25], [A28], [A29], [A31-35]
Method 11/35 31.42% [A4], [A10], [A12], [A15-16],

 [A19-20], [A22], [A24], [A27], [A30]
Model 10/35 28.57% [A2-3], [A5-6], [A8], [A11],

 [A13], [A14], [A21], [A26]
Metric 1/35 2.85% [A1]
Tool 1/35 2.85% [A7]

Table 8: Study classification by contributions (RQ4).

5.5 RQ5: What research methods were used?

Table 9 shows the relation between the primary
studies selected and six empirical methods
described in (Petersen et al., 2008; Wieringa et al.,
2006). Most studies (48.57%, 17/35) focused on
proposing new solutions. This result indicates that
the primary studies were chiefly concerned with
bridging research gaps by proposing techniques to
deal with design models. The primary studies
predominantly sought to propose a new solution,
instead of significantly extending an existing
technique. The potential benefits and applicability of
these solutions have been demonstrated through
small examples or initial empirical studies supported
by discussions and implications. Robust and
practical studies that brought evidence about the
effectiveness of the solutions have not been
identified. Case studies in the industry considering
context variables have not been reported. This may
be indicative of an area still maturing and expanding.

Some studies (25%, 9/35) were classified as
validation research, which proposed some new
techniques, but have not yet been implemented in
practice, being evaluated through empirical studies
in laboratories. Müller and Fritz [A28] show through
an empirical study that biometrics can be used to
predict quality concerns of parts of the code while a
developer is working on.

The results indicate that little has been done to
discuss the problems identified with prediction
techniques. Most studies make only notes for
identifying anomalies, security, and vulnerability
issues as examples. Finally, the lack of a massive
amount of empirical studies may indicate that the
evaluation of prediction techniques may be based

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 11

mainly on experts’ reflection, not on empirical
evidence.

Classification Amount Percentage List of primary studies

Solution
Proposal 17/35 48.57% [A4-9], [A12], [A14-16], [A20], [A23], [A26-

27], [A29], [A32], [A35]
Evaluation 9/35 25.71% [A1-3], [A18-19], [A21-22], [A25], [A34]

Validation 9/35 25.71% [A10-11], [A13], [A17], [A24], [A30-31],
[A33]

Table 9: Study classification by research methods

(RQ5).

5.6 RQ6: Where have the studies been published?

This section investigates when and where primary
studies were published to accurately pinpoint trends
in publication. Figure 3 presents the primary studies
chronologically, organizes them by type of
publication and shows the number of studies
published per year.

Number and venue of publications. The blue
dashed line in Figure 3 counts the number of articles
published per year. The results indicate that 62.86%
(22/35) of the primary studies were published in
conferences, while 34.29% (12/35) in journal,
showing a predominance of publications in venues
that encourage synchronous discussion by
researchers. Based on the premise that articles
published in journals are more robust, this may
indicate a new or maturing area of research. The
publications were more concentrated from 2016 to
2019. Such research on the prediction of design
problems may have gained momentum for two
reasons: (1) the maturation of the research area
itself. that brought well-established concepts about
catalogs of code anomalies and refactorings, as well
as empirical knowledge about how certain code or
social characteristics impact the incidence of design
problems; and (2) machine learning techniques are
being widely explored to solve practical software
development problems.

Trends. Although there is not yet a consistent
upward trend, the number of published studies has
been growing. After the first publication in 2005, four
and seven articles were published in 2011 and 2017,
respectively, representing the tops reached over the
years. This growth is accompanied by strong
fluctuations, alternating with periods with a
maximum of two published articles (2005 to 2009
and 2013 to 2015) to nine or more published articles

(2010 to 2012 and 2016 to 2019). In addition, 2017
stood out with a greater number of articles produced
than other years. Articles published in premier
conferences and journals, such as SANER, ICSE,
ASE, MSR, ICSM, JSS, IST, TOSEM, IEEE TSE,
show that robust research has already been carried
out. Although many studies have been published,
there are still challenges worth exploring, which are
discussed in the following section.

Figure 3. Distribution over the years.

6. Discussion and Future Directions

This section discusses the collected data to explore
the main points of RQ5 and RQ6. In particular, we
seek to reveal where the selected studies are being
published over the years (Figure 3). The
classification of the selected studies is based on the
year of publication, publication type (workshops,
conferences, newspapers, and magazines), and the
number of studies published per year. Figure 4
presents the obtained data based on the 37 selected
studies, showing quantitatively the results presented
in RQ6.

6.1 Distribution of primary studies

Figure 4 introduces a bubble chart that organizes the
primary studies in three dimensions (d1, d2, d3),
where d1 represents the main contributions (RQ4),
d2 is the adopted research method (RQ5), and d3 is
the explored design problems (RQ1). Each bubble
has values assigned to d1, d2, and d3. This bubble
chart helps grasp relations among the main
contributions (RQ4), the research methods (RQ5),
and the design problems (RQ1). It shows how
primary studies have made a triangulation between
RQ1, RQ4, and RQ5.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 12

It is observed that prediction techniques for source
code design, even though it is a recent research
area, have many studies published since 2014 and
continue to grow. This result shows that this area of
research has been very active in recent years. After
identifying the type of publication of these studies, it
is revealed that the researchers who contributed
most to the subject made their publications in recent
years at conferences, represented by a total of
51.35% of the selected studies.

The results did not present statistical qualifiers and
were not compared with other results studied since
research on this topic has not been developed by
other researchers previously. Some
recommendations for future research would be:
increase the breadth of analysis of selected studies,
refine research on fundamental software quality
issues; conduct systematic review literature to
examine best practices related to source code
analysis approaches, technologies or tools, and
comparative analysis information. Also, this work
may be the first step towards an ambitious agenda
on how to advance the current literature on
techniques for predicting source code design
problems.

Figure 4. Bubble chart relating three variables.

6.2 Future challenges

(1) Good quality management in software
projects. It is important to identify the main software

quality guides most used in the current market, amid
a tougher economic climate, organizations turned to
ML for automation and efficiency gains. This allows
many of them to massively expand their operations
while reallocating their human capital. The search for
quality to meet customer needs is no longer a
differential competitive, but an obligation for any
business to survive in the market. The increase in
quality in a company generates positive effects on
the company’s processes, management, customer
service, and strategic planning. Therefore, it is
imperative to know which quality tools or techniques
of ML, will provide an effective and clear
improvement in software projects.

(2) How to quantify software metrics and their
quality. Learning analysis appears as a possibility to
address this challenge, recognize the difficulties in
generating quantitative security, vulnerability, and
design metrics. It will be possible to quantify and
predict the impacts on the final quality of the
software. It is not easy to quantify the maintainability
of software. This measure’s primary metric is the
time spent on maintenance, considering the time of
recognition of the problem, analysis of the problem,
specification of changes, modification, tests, and the
total time.

(3) How to extract critical features for knowledge
discovery. Machine learning is essential for
predicting source-code problems. Training machine
learning models demand well-designed data sets.
The construction of a data set is challenging due to
the various sources and lack of structured data.
Moreover, source code only may not be sufficient to
obtain good results, in artificial intelligence projects,
especially Machine Learning, a large amount of data
is needed, which will participate in the training of the
algorithm.

So, a lot of the work on an ML project is finding the
perfect data set for your needs. However, it is not
always possible to find an option according to its
ambition. Therefore, another challenge is how to
consider the developers’ experience in the training
process of the machine learning models. Current
literature fails to deal with these challenges, leading
to great research opportunities.

7. Threats to Validity

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 13

The validity of the results achieved in the systematic
mapping depends on some factors present in its
structure. The main threats to the validation of this
study and the factors used to mitigate them are
presented and analyzed:

Selection and quality of primary studies: To
guarantee an impartial and comprehensive
systematic mapping process and the quality of
studies considered relevant, research questions,
inclusion criteria, and exclusion criteria were defined
by a group of researchers.

The researchers and responsibilities: To review
the process of carrying out systematic mapping,
conducted by the master student, and to clarify his
doubts, while he performed the data ex- traction
process. In this way, studies with a broad overview
were obtained.

The number of studies selected: To obtain a wide
range of results and necessary data, the search was
carried out in six repositories of widely known
scientific studies (IEEE Explorer, ACM Digital
Library, Scopus, Science Direct, Scopus, and
Google Scholar).

Possibility of a relevant study to be ignored:
Although it is plausible that possible relevant studies
were ignored in the survey of primary studies, we
opted only to read the abstract, title, and keywords
in the application of the criteria inclusion and
exclusion. However, in step 05, manual search
procedures were performed using snowballing
techniques to find possible relevant studies in the
references of the studies selected in the previous
step. An interesting method to expand the
possibilities of returning articles relevant to the
review research topic is the snowball method. This
one method consists of searching the references of
articles included in the work to identify works that are
of interest to the research. This method can be used,
for example, at the end of the automatic search
where a set of articles is already included in the
review. Thus, from this set, this technique can be
used to find more relevant studies.

8. Conclusions and Future Work

This article sought to grasp and classify the current
literature and pinpoint trends and challenges worth
investigating in the field of design problems. A

systematic mapping study was designed and run
based on well-established practical guidelines. In
total, six research questions were formulated and
answered after carefully analyzing 35 primary
studies. This study fills a current gap in the literature
considering the variables explored in the research
questions, as well as serving as a basis for
researchers and students to develop future work on
the subject. Our results indicated that a majority of
the primary studies explored Bloater bad smells,
used code complexity and size as predictors, applied
machine learning techniques to generate
predictions, and presented a prediction proposal
without an extensive empirical assessment.

Finally, we hope that the collected data and insights
presented throughout this study can encourage
researchers and practitioners to explore upcoming
challenges regarding the prediction of design
problems. Moreover, this work can be seen as the
first step for a more robust agenda on how to
advance the current literature on the prediction of
design problems.

Acknowledgements

This work was partially supported by the Conselho
Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) under Grant 314248/2021-8.

References

Abbes, M., Khomh, F., Gueheneuc, Y. G., & Antoniol,
G. (2011, March). An empirical study of the impact of two
antipatterns, blob and spaghetti code, on program
comprehension. In 15th European conference on software
maintenance and reengineering (pp. 181-190). IEEE.

Al-Qudah, S., Meridji, K., & Al-Sarayreh, K. T. (2015,

November). A comprehensive survey of software
development cost estimation studies. In International
conference on intelligent information processing, security
and advanced communication (pp. 1-5).

Al-Shaaby, A., Aljamaan, H., & Alshayeb, M. (2020).

Bad smell detection using machine learning techniques: a
systematic literature review. Arabian Journal for Science
and Engineering, 45(4), 2341-2369.

Alenezi, M., Akour, M., Hussien, A., & Al-Saad, M. Z.

(2016, December). Test suite effectiveness: an indicator
for open source software quality. In 2016 2nd International

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 14

Conference on Open Source Software Computing
(OSSCOM) (pp. 1-5). IEEE.

Alkharabsheh, K., Crespo, Y., Manso, E., & Taboada, J.

A. (2019). Software design smell detection: a systematic
mapping study. Software Quality Journal, 27(3), 1069-
1148.

Alkharabsheh, K., Taboada, J. A., Crespo, Y., & Alzu'bi,

T. (2018, July). Improving design smell detection for
adoption in industry. In 2018 8th International Conference
on Computer Science and Information Technology (CSIT)
(pp. 213-218). IEEE.

Azeem, M. I., Palomba, F., Shi, L., & Wang, Q. (2019).

Machine learning techniques for code smell detection: A
systematic literature review and meta-analysis.
Information and Software Technology, 108, 115-138.

Barbosa, C., Uchôa, A., Coutinho, D., Falcão, F., Brito,

H., Amaral, G., ... & Sousa, L. (2020, October). Revealing
the social aspects of design decay: A retrospective study
of pull requests. In Proceedings of the 34th Brazilian
Symposium on Software Engineering (pp. 364-373).

Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., &

Palomba, F. (2015). An experimental investigation on the
innate relationship between quality and refactoring.
Journal of Systems and Software, 107, 1-14.

Boehm, B., Rosenberg, D., & Siegel, N. (2019, July).

Critical quality factors for rapid, scalable, agile
development. In 2019 IEEE 19th International Conference
on Software Quality, Reliability and Security Companion
(QRS-C) (pp. 514-515). IEEE.

Boussaa, M., Kessentini, W., Kessentini, M., Bechikh,

S., & Ben Chikha, S. (2013, August). Competitive
coevolutionary code-smells detection. In International
Symposium on Search Based Software Engineering (pp.
50-65). Springer, Berlin, Heidelberg.

Bischoff, V., Farias, K., Menzen, J. P., & Pessin, G.

(2021). Technological support for detection and prediction
of plant diseases: A systematic mapping study. Computers
and Electronics in Agriculture, 181, 105922.

Budgen, D., Bailey, J., Turner, M., Kitchenham, B.,

Brereton, P., & Charters, S. (2008, June). Lessons from a
cross-domain investigation of empirical practices. In 12th
International Conference on Evaluation and Assessment
in Software Engineering (EASE) 12 (pp. 1-12).

Carbonera, C. E., Farias, K., & Bischoff, V. (2020).

Software development effort estimation: A systematic
mapping study. IET Software, 14(4), 328-344.

Chen, C., Lin, S., Shoga, M., Wang, Q., & Boehm, B.
(2018, July). How do defects hurt qualities? an empirical
study on characterizing a software maintainability ontology
in open source software. In 2018 IEEE International
Conference on Software Quality, Reliability and Security
(QRS) (pp. 226-237). IEEE.

Chinnamgari, S. K. (2019). R Machine Learning

Projects: Implement supervised, unsupervised, and
reinforcement learning techniques using R 3.5. Packt
Publishing Ltd.

Das, A. K., Yadav, S., & Dhal, S. (2019, October).

Detecting code smells using deep learning. In TENCON
2019-2019 IEEE Region 10 Conference (TENCON) (pp.
2081-2086). IEEE.

de Paulo Sobrinho, E. V., De Lucia, A., & de Almeida

Maia, M. (2018). A systematic literature review on bad
smells–5 w's: which, when, what, who, where. IEEE
Transactions on Software Engineering, 47(1), 17-66.

Devi, D. G., & Punithavalli, M. (2011, April). A

hierarchical method for detecting codeclone. In 2011 3rd
International Conference on Electronics Computer
Technology (Vol. 1, pp. 126-128). IEEE.

Dharmadhikari, S. C., Ingle, M., & Kulkarni, P. (2011).

Empirical studies on machine learning based text
classification algorithms. Advanced Computing, 2(6), 161.

Di Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik,

A., & De Lucia, A. (2018, March). Detecting code smells
using machine learning techniques: are we there yet?. In
2018 ieee 25th international conference on software
analysis, evolution and reengineering (saner) (pp. 612-
621). IEEE.

dos Reis, J. P., e Abreu, F. B., & Carneiro, G. D. F.

(2017, June). Code smells detection 2.0: Crowdsmelling
and visualization. In 2017 12th Iberian Conference on
Information Systems and Technologies (CISTI) (pp. 1-4).
IEEE.

El Koutbi, S., Idri, A., & Abran, A. (2016, August).

Systematic mapping study of dealing with error in software
development effort estimation. In 2016 42th Euromicro
Conference on Software Engineering and Advanced
Applications (SEAA) (pp. 140-147). IEEE.

Erturk, E., & Sezer, E. A. (2016). Iterative software fault

prediction with a hybrid approach. Applied Soft
Computing, 49, 1020-1033.

Fernandes, E., Oliveira, J., Vale, G., Paiva, T., &

Figueiredo, E. (2016, June). A review-based comparative
study of bad smell detection tools. In Proceedings of the

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 15

20th International Conference on Evaluation and
Assessment in Software Engineering (pp. 1-12).

Fontana, F. A., & Zanoni, M. (2017). Code smell severity

classification using machine learning techniques.
Knowledge-Based Systems, 128, 43-58.

Arcelli Fontana, F., Mäntylä, M. V., Zanoni, M., &

Marino, A. (2016). Comparing and experimenting machine
learning techniques for code smell detection. Empirical
Software Engineering, 21(3), 1143-1191.

Fowler, M. (2018). Refactoring: improving the design of

existing code. Addison-Wesley Professional.

Garcia, J. P. (2011). Refactoring planning for design

smell correction in Object-oriented software.

Griffith, I., Wahl, S., & Izurieta, C. (2011, November).

Evolution of legacy system comprehensibility through
automated refactoring. In Proceedings of the International
Workshop on Machine Learning Technologies in Software
Engineering (pp. 35-42).

Hadj-Kacem, M., & Bouassida, N. (2018, March). A

Hybrid Approach To Detect Code Smells using Deep
Learning. In ENASE (pp. 137-146).

Ibarra, S., & Muñoz, M. (2018, October). Support tool

for software quality assurance in software development. In
2018 7th International Conference On Software Process
Improvement (CIMPS) (pp. 13-19). IEEE.

Irwanto, D. (2010, December). Visual Indicator

Component Software to Show Component Design Quality
and Characteristic. In 2010 Second International
Conference on Advances in Computing, Control, and
Telecommunication Technologies (pp. 50-54). IEEE.

Jalali, S., & Wohlin, C. (2012, September). Systematic

literature studies: database searches vs. backward
snowballing. In Proceedings of the 2012 ACM-IEEE
international symposium on empirical software
engineering and measurement (pp. 29-38). IEEE.

Júnior, E., Farias, K., & Silva, B. (2021, September). A

Survey on the Use of UML in the Brazilian Industry. In
Brazilian Symposium on Software Engineering (pp. 275-
284).

Kaur, P., & Mittal, P. (2017). Impact of Clones

Refactoring on External Quality Attributes of Open Source
Softwares. International Journal of Advanced Research in
Computer Science, 8(5).

Keele, S. (2007). Guidelines for performing systematic
literature reviews in software engineering (Vol. 5).
Technical report, Ver. 2.3 EBSE Technical Report. EBSE.

Kessentini, M., & Ouni, A. (2017, May). Detecting

android smells using multi-objective genetic programming.
In 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft) (pp.
122-132). IEEE.

Kessentini, M., Vaucher, S., & Sahraoui, H. (2010,

September). Deviance from perfection is a better criterion
than closeness to evil when identifying risky code. In
Proceedings of the IEEE/ACM international conference on
Automated software engineering (pp. 113-122).

Khomh, F., Penta, M. D., Guéhéneuc, Y. G., & Antoniol,

G. (2012). An exploratory study of the impact of
antipatterns on class change-and fault-proneness.
Empirical Software Engineering, 17(3), 243-275.

Khomh, F., Vaucher, S., Guéhéneuc, Y. G., & Sahraoui,

H. (2011). BDTEX: A GQM-based Bayesian approach for
the detection of antipatterns. Journal of Systems and
Software, 84(4), 559-572.

Kim, S., Whitehead, E. J., & Zhang, Y. (2008).

Classifying software changes: Clean or buggy?. IEEE
Transactions on Software Engineering, 34(2), 181-196.

Kitchenham, B. A. (2012, September). Systematic

review in software engineering: where we are and where
we should be going. In Proceedings of the 2nd
international workshop on Evidential assessment of
software technologies (pp. 1-2).

Kitchenham, B. A., Budgen, D., & Brereton, O. P.

(2011). Using mapping studies as the basis for further
research–a participant-observer case study. Information
and Software Technology, 53(6), 638-651.

Kreimer, J. (2005). Adaptive detection of design flaws.

Electronic Notes in Theoretical Computer Science, 141(4),
117-136.

Krishna, R., Menzies, T., & Layman, L. (2017). Less is

more: Minimizing code reorganization using XTREE.
Information and Software Technology, 88, 53-66.

Kuutila, M., Mäntylä, M., Farooq, U., & Claes, M. (2020).

Time pressure in software engineering: A systematic
review. Information and Software Technology, 121,
106257.

Lacerda, G., Petrillo, F., Pimenta, M., & Guéhéneuc, Y.

G. (2020). Code smells and refactoring: A tertiary
systematic review of challenges and observations. Journal
of Systems and Software, 167, 110610.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 16

Lenarduzzi, V., Lomio, F., Huttunen, H., & Taibi, D.

(2020, February). Are sonarqube rules inducing bugs?. In
2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER) (pp. 501-
511). IEEE.

Li, J., He, P., Zhu, J., & Lyu, M. R. (2017, July). Software

defect prediction via convolutional neural network. In 2017
IEEE International Conference on Software Quality,
Reliability and Security (QRS) (pp. 318-328). IEEE.

Luz, M. A. D., & Farias, K. (2020, November). The Use

of Blockchain in Financial Area: A Systematic Mapping
Study. In XVI Brazilian Symposium on Information
Systems (pp. 1-8).

Liu, H., Ma, Z., Shao, W., & Niu, Z. (2011). Schedule of

bad smell detection and resolution: A new way to save
effort. IEEE transactions on Software Engineering, 38(1),
220-235.

Macia, I., Garcia, J., Popescu, D., Garcia, A.,

Medvidovic, N., & von Staa, A. (2012, March). Are
automatically-detected code anomalies relevant to
architectural modularity? An exploratory analysis of
evolving systems. In Proceedings of the 11th annual
international conference on Aspect-oriented Software
Development (pp. 167-178).

Maneerat, N., & Muenchaisri, P. (2011, May). Bad-smell

prediction from software design model using machine
learning techniques. In 2011 Eighth international joint
conference on computer science and software
engineering (JCSSE) (pp. 331-336). IEEE.

Mantyla, M., Vanhanen, J., & Lassenius, C. (2003,

September). A taxonomy and an initial empirical study of
bad smells in code. In International Conference on
Software Maintenance, 2003. ICSM 2003. Proceedings.
(pp. 381-384). IEEE.

Mäntylä, M. V., & Lassenius, C. (2006). Subjective

evaluation of software evolvability using code smells: An
empirical study. Empirical Software Engineering, 11(3),
395-431.

Martínez-Fernández, S., Vollmer, A. M., Jedlitschka, A.,

Franch, X., López, L., Ram, P., ... & Partanen, J. (2019).
Continuously assessing and improving software quality
with software analytics tools: a case study. IEEE access,
7, 68219-68239.

Menzen, J. P., Farias, K., & Bischoff, V. (2021). Using

biometric data in software engineering: a systematic
mapping study. Behaviour & Information Technology,
40(9), 880-902.

Moha, N., & Guéhéneuc, Y. G. (2007, November).
Decor: a tool for the detection of design defects. In
Proceedings of the twenty-second IEEE/ACM
international conference on Automated software
engineering (pp. 527-528).

Moha, N., Guéhéneuc, Y. G., Duchien, L., & Le Meur,

A. F. (2009). Decor: A method for the specification and
detection of code and design smells. IEEE Transactions
on Software Engineering, 36(1), 20-36.

Müller, S. C., & Fritz, T. (2016, May). Using (bio) metrics

to predict code quality online. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE)
(pp. 452-463). IEEE.

Mumtaz, H., Alshayeb, M., Mahmood, S., & Niazi, M.

(2018). An empirical study to improve software security
through the application of code refactoring. Information
and Software Technology, 96, 112-125.

Nagappan, N., Ball, T., & Zeller, A. (2006, May). Mining

metrics to predict component failures. In Proceedings of
the 28th international conference on Software engineering
(pp. 452-461).

Oizumi, W., Garcia, A., Sousa, L. D. S., Cafeo, B., &

Zhao, Y. (2016, May). Code anomalies flock together:
Exploring code anomaly agglomerations for locating
design problems. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE) (pp. 440-
451). IEEE.

Palomba, F., Bavota, G., Di Penta, M., Fasano, F.,

Oliveto, R., & De Lucia, A. (2018). A large-scale empirical
study on the lifecycle of code smell co-occurrences.
Information and Software Technology, 99, 1-10.

Palomba, F., Bavota, G., Penta, M. D., Fasano, F.,

Oliveto, R., & Lucia, A. D. (2018). On the diffuseness and
the impact on maintainability of code smells: a large scale
empirical investigation. Empirical Software Engineering,
23(3), 1188-1221.

Palomba, F., Zaidman, A., & De Lucia, A. (2018,

September). Automatic test smell detection using
information retrieval techniques. In 2018 IEEE
International Conference on Software Maintenance and
Evolution (ICSME) (pp. 311-322). IEEE.

Palomba, F., Zanoni, M., Fontana, F. A., De Lucia, A.,

& Oliveto, R. (2017). Toward a smell-aware bug prediction
model. IEEE Transactions on Software Engineering,
45(2), 194-218.

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M.

(2008, June). Systematic mapping studies in software
engineering. In 12th International Conference on

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 17

Evaluation and Assessment in Software Engineering
(EASE) 12 (pp. 1-10).

Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015).

Guidelines for conducting systematic mapping studies in
software engineering: An update. Information and
software technology, 64, 1-18.

Petre, M. (2014). “No shit” or “Oh, shit!”: responses to

observations on the use of UML in professional practice.
Software & Systems Modeling, 13(4), 1225-1235.

Phan, A. V., Chau, P. N., Le Nguyen, M., & Bui, L. T.

(2018). Automatically classifying source code using tree-
based approaches. Data & Knowledge Engineering, 114,
12-25.

Plosch, R., Gruber, H., Hentschel, A., Pomberger, G., &

Schiffer, S. (2008, October). On the relation between
external software quality and static code analysis. In 2008
32nd Annual IEEE Software Engineering Workshop (pp.
169-174). IEEE.

Prähofer, H., Angerer, F., Ramler, R., & Grillenberger,

F. (2016). Static code analysis of IEC 61131-3 programs:
Comprehensive tool support and experiences from large-
scale industrial application. IEEE Transactions on
Industrial Informatics, 13(1), 37-47.

Rani, A., & Chhabra, J. K. (2017, April). Evolution of

code smells over multiple versions of softwares: An
empirical investigation. In 2017 2nd International
Conference for Convergence in Technology (I2CT) (pp.
1093-1098). IEEE.

Rasool, G., & Arshad, Z. (2015). A review of code smell

mining techniques. Journal of Software: Evolution and
Process, 27(11), 867-895.

Sabir, F., Palma, F., Rasool, G., Guéhéneuc, Y. G., &

Moha, N. (2019). A systematic literature review on the
detection of smells and their evolution in object-oriented
and service-oriented systems. Software: Practice and
Experience, 49(1), 3-39.

Sahin, D., Kessentini, M., Bechikh, S., & Deb, K. (2014).

Code-smell detection as a bilevel problem. ACM
Transactions on Software Engineering and Methodology
(TOSEM), 24(1), 1-44.

Santos, J. A. M., Rocha-Junior, J. B., Prates, L. C. L.,

do Nascimento, R. S., Freitas, M. F., & de Mendonça, M.
G. (2018). A systematic review on the code smell effect.
Journal of Systems and Software, 144, 450-477.

Sharma, T., & Spinellis, D. (2018). A survey on software

smells. Journal of Systems and Software, 138, 158-173.

Shippey, T., Bowes, D., & Hall, T. (2019). Automatically

identifying code features for software defect prediction:
Using AST N-grams. Information and Software
Technology, 106, 142-160.

Sjøberg, D. I., Yamashita, A., Anda, B. C., Mockus, A.,

& Dybå, T. (2012). Quantifying the effect of code smells on
maintenance effort. IEEE Transactions on Software
Engineering, 39(8), 1144-1156.

Soh, Z., Yamashita, A., Khomh, F., & Guéhéneuc, Y. G.

(2016, March). Do code smells impact the effort of different
maintenance programming activities?. In 2016 IEEE 23rd
International Conference on Software Analysis, Evolution,
and Reengineering (SANER) (Vol. 1, pp. 393-402). IEEE.

Suryanarayana, G., Samarthyam, G., & Sharma, T.

(2014). Refactoring for software design smells: managing
technical debt. Morgan Kaufmann.

Tollin, I., Fontana, F. A., Zanoni, M., & Roveda, R.

(2017, June). Change prediction through coding rules
violations. In Proceedings of the 21st International
Conference on Evaluation and Assessment in Software
Engineering (pp. 61-64).

Uchôa, A., Barbosa, C., Coutinho, D., Oizumi, W.,

Assunçao, W. K., Vergilio, S. R., ... & Garcia, A. (2021,
May). Predicting design impactful changes in modern code
review: A large-scale empirical study. In 2021 IEEE/ACM
18th International Conference on Mining Software
Repositories (MSR) (pp. 471-482). IEEE.

Uchôa, A., Barbosa, C., Oizumi, W., Blenílio, P., Lima,

R., Garcia, A., & Bezerra, C. (2020, September). How
does modern code review impact software design
degradation? an in-depth empirical study. In 2020 IEEE
International Conference on Software Maintenance and
Evolution (ICSME) (pp. 511-522). IEEE.

Vidal, S., Guimaraes, E., Oizumi, W., Garcia, A., Pace,

A. D., & Marcos, C. (2016, September). Identifying
architectural problems through prioritization of code
smells. In 2016 X Brazilian Symposium on Software
Components, Architectures and Reuse (SBCARS) (pp.
41-50). IEEE.

Vidal, S., Guimaraes, E., Oizumi, W., Garcia, A., Pace,

A. D., & Marcos, C. (2016, April). On the criteria for
prioritizing code anomalies to identify architectural
problems. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing (pp. 1812-1814).

Vidal, S., Vazquez, H., Diaz-Pace, J. A., Marcos, C.,

Garcia, A., & Oizumi, W. (2015, November). JSpIRIT: a
flexible tool for the analysis of code smells. In 2015 34th

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. J. Sánchez, et al. 22-25

Vol. 7 No. 1 April 2019, Journal of Applied Research and Technology 18

International Conference of the Chilean Computer Science
Society (SCCC) (pp. 1-6). IEEE.

Vieira, R. D., & Farias, K. (2020, November). Usage of

psychophysiological data as an improvement in the
context of software engineering: A systematic mapping
study. In XVI Brazilian Symposium on Information
Systems (pp. 1-8).

Wieringa, R., Maiden, N., Mead, N., & Rolland, C.

(2006). Requirements engineering paper classification
and evaluation criteria: a proposal and a discussion.
Requirements engineering, 11(1), 102-107.

Wohlin, C. (2014, May). Guidelines for snowballing in

systematic literature studies and a replication in software
engineering. In Proceedings of the 18th international
conference on evaluation and assessment in software
engineering (pp. 1-10).

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C.,

Regnell, B., & Wesslén, A. (2012). Experimentation in
software engineering. Springer Science & Business
Media.

Wong, W. Y., Yu, S. W., & Too, C. W. (2018,

December). A systematic approach to software quality
assurance: the relationship of project activities within
project life cycle and system development life cycle. In
2018 IEEE Conference on Systems, Process and Control
(ICSPC) (pp. 123-128). IEEE.

Xu, Z., Li, S., Xu, J., Liu, J., Luo, X., Zhang, Y., ... &

Tang, Y. (2019). LDFR: Learning deep feature
representation for software defect prediction. Journal of
Systems and Software, 158, 110402.

Yamashita, A., & Counsell, S. (2013). Code smells as

system-level indicators of maintainability: An empirical
study. Journal of Systems and Software, 86(10), 2639-
2653.

Yamashita, A., & Moonen, L. (2012, September). Do

code smells reflect important maintainability aspects?. In
2012 28th IEEE international conference on software
maintenance (ICSM) (pp. 306-315). IEEE.

Zimmermann, T., Premraj, R., & Zeller, A. (2007, May).

Predicting defects for eclipse. In Third International
Workshop on Predictor Models in Software Engineering
(PROMISE'07: ICSE Workshops 2007) (pp. 9-9). IEEE.

