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ABSTRACT 
Context: Nowadays, the prediction of source code design problems plays an essential role in the software development 
industry, identifying defective architectural modules in advance. For this reason, some studies explored this subject in 
the last decade. Researchers and practitioners often need to create an overview of such studies considering the 
predictors of design problems, their pivotal contributions, the used prediction techniques, and research methods. 
Problem: However, the current literature lacks studies introducing a detailed mapping of published works. Objective: 
This article, therefore, aims at classifying the current literature, and pinpointing trends and challenges worth investigating 
in this research field. Method: We run a systematic mapping study following well-known guidelines. We applied a careful 
filtering process from a corpus of 894 candidate studies. In total, 35 primary studies were selected, analyzed, and 
categorized. Results: The main results are that a majority of the primary studies (1) explore Bloater bad smells, (2) use 
code complexity and size as predictors, (3) apply machine learning techniques to generate predictions, and (4) present 
a prediction proposal without an extensive empirical assessment. Conclusions: Predicting design problems is still in its 
infancy, showing plenty of room for future works. Finally, our findings can serve as a starting point for upcoming studies. 
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1. Introduction 
 
Design problems are internal structures of source 
code that challenge design principles or rules 
(Sharma et al., 2018; Oizumi et al., 2016; 
Suryanarayana et al., 2014). Typically, they arise 
when the source code of applications undergoes 
constant changes, for example, to accommodate 
new features or even evolve existing ones. These 
changes can lead to improper changes 
characterized by the scattering and tangling of 
software concerns, violating design principles such 
as the single-responsibility principle. The violation of 
rules and design principles gives rise to symptoms 
of poor design (Palomba et al., 2017) due to the 
presence of code anomalies, also popularly known 
as bad smells (Oizumi et al., 2016).  
 
Previous empirical studies (Oizumi et al., 2016; 
Palomba et al., 2018a; Palomba et al., 2017) point 
out that bad smells indicate design problems. 
Couplers and bloaters are examples of bad smells 
(Suryanarayana et al., 2014), which represent 

excessive coupling, and large proportions of source 
code elements, respectively. As a result, 
maintenance tasks become error-prone. 
Documenting architectural decisions through UML 
models (Petre, 2014; Júnior et al., 2021) could help 
identifying such design problems. In practice, UML 
models end up not being created or updated, 
making it difficult to identify and resolve code 
anomalies. As a result, developers tend to rely on 
tacit knowledge to prevent further violations of 
design principles. 
 
In this context, predicting design problems can play 
an essential role, especially identifying defective 
architectural modules in advance. The greater the 
forecast of the appearance of design problems, the 
greater the anticipation capacity to address such 
problems. An alternative would be to generate 
predictions of design problems, for example, based 
on size, complexity, coupling, and cohesion as the 
source code is modified on-demand. Today, the 
literature lacks studies that provide an overview of 
the state of the art on the subject of predicting 
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source code design problems. Having a literature 
mapping would help software developers to identify 
potential techniques as well as researchers to 
explore gaps in the state of the art. The absence of 
this mapping leads developers, for example, to 
adopt techniques considering the opinion of 
experts. 
 
This article, therefore, proposes a systematic 
mapping of the literature to fill this gap. We classify 
the current literature and pinpoint trends and 
challenges worth investigating in this research field. 
Our mapping study follows well-known practical 
guidelines (Petersen et al., 2008; Petersen et al., 
2015). Moreover, it is based on the authors’ 
experience in carrying out previous mapping studies 
(Carbonera et al., 2020; Menzen et al., 2021; Vieira 
& Farias, 2020; Bischoff et al., 2021). In total, 35 
primary studies were selected, analyzed, and 
categorized after applying a careful filtering process 
to a sample of 894 candidate studies to answer six 
research questions. 
 
The main results show that (1) 54.29% (19/35) of 
the primary studies use machine learning 
techniques, and (2) the majority of the primary 
studies explored Bloaters (62.86%, 22/35), 
Architectural Problems (54.29%, 19/35), and 
Couplers (42.86%, 15/35). Our findings also 
indicate that predicting design problems is still in an 
incipient field of research, showing plenty of room 
for future works. Lacking techniques that can 
proactively anticipate the appearance of design 
problems, allowing for an early refactoring action to 
preserve the internal quality indicators of source 
code. Lastly, this article reports worth investigating 
challenges regarding the prediction of design 
models that can proactively influence the source 
code’s quality. Rather than exhausting this topic, 
our article seeks to serve as a starting point for 
future investigations. 
 
We outline the main concepts discussed throughout 
the article, and compare our article with similar 
ones, highlighting their differences and 
commonalities (Section 2). In addition, we present 
the study protocol (Section 3) and introduce the 
procedures adopted to filter potentially relevant 
studies (Section 4). After that, we present the 
collected results (Section 5) and outline additional 
discussions and future directions (Section 6). Lastly, 

we discuss some limitations and threats to validity 
(Section 7) and draw some conclusions (Section 8). 
 
2. Background and Related Work 
 
2.1 Design problems 
 
Design problems are indicators of situations that 
improperly affect software quality attributes such as 
understandability, testability, extensibility, 
reusability, and maintainability in general. Improving 
maintainability is one of the cornerstones of making 
software evolution easier (Alkharabsheh et al., 
2019). A design problem does not produce compile-
time or run-time errors, but it does negatively affect 
the system quality attributes, such as 
understandability, testability, extensibility, 
reusability, or maintainability in general (Garcia, 
2011; Yamashita et al., 2013). Design problems are 
indicators of refactoring opportunity (Bavota et al., 
2015) or even signs that can lead to software design 
failure (Budgen et al., 2008). 
 
According to Fowler and Kent (Fowler, 2018), code 
smells can be defined as a potential indication of 
problems in the source code of information systems. 
Thus, it is important to define new approaches to 
spot them whenever possible. Some systematic 
literature reviews (SLRs) have been conducted in 
the area of bad smells (Al-Shaaby et al., 2020; de 
Paulo et al., 2018; Fernandes et al., 2016; Lacerda 
et al., 2020; Rasool et al., 2015; Sabir et al., 2019; 
Santos et al., 2018). The code smell detection 
process has motivated many researchers to propose 
different methods to deal with the occurrence of 
code smells in systems. Nowadays, machine 
learning techniques are utilized to address code 
smell issues with promising results (Al-Shaaby et al., 
2020; Alkharabsheh et al., 2018; Di Nucci et al., 
2018; Fontana et al., 2016). A machine learning 
classifier needs first to be trained using a set of code 
smell examples to generate a model. The generated 
models are then used to identify or detect code 
smells in unseen or new instances (Al-Shaaby et al., 
2020). 
 
However, the volume of research in the domain has 
multiplied over more than 17 years of activity in the 
field. This has led to the need for critical integration 
and evaluation of the available research in design 
smell detection. In our opinion, understanding this 
area is important because, nowadays, a 
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considerable number of software projects have large 
dimensions, so manual design smell detection is not 
a realistic task. Problems are latent in code; 
detection usually occurs very late, and then, the 
solutions are very complex. As a consequence, the 
software quality is negatively affected and technical 
debt increases, so redoing the software becomes 
the most realistic option. We believe, in a 
comparative perspective, that while refactoring has 
been extensively adopted by the software industry. 
Design smell detection is far from that reality 
(Alkharabsheh et al., 2019). 
 
2.2 Prediction of design problems 
 
The prediction of design problems is an attempt to 
anticipate design problems based on metrics using 
specific techniques. Some techniques analyze 
software project histories, trying to guess the 
behavior of the software in the future with respect to 
its coding (Kaur & Mittal, 2017; Kim et al., 2008; 
Palomba et al., 2018; Palomba et al., 2018b; Rani et 
al., 2017). Predicting the location can increase the 
chances of identifying possible anomalies in the 
source code, in addition to assisting in testing 
activities, which aim to identify possible problems 
with the quality of the software. There are several 
benefits of prediction, such as support and planning 
for software testing, identification of code snippets 
where improvements are needed, reduction of code 
defects, and mainly planning of future efforts within 
the software project, software developers in 
prioritizing their work on the most severe smells 
(Alkharabsheh et al., 2018). 
 
2.3 Related work 
 
Current studies pay close attention to empirical 
studies’ elaboration to produce evidence-based 
knowledge and use purely statistical methods to 
predict the quality of the source code. However, little 
has been done to create a systematic map of studies 
published in recent decades. There are studies in 
the literature that also point to problems that impact 
the final quality of the software, (Alenezi et al., 2016; 
Boehm et al., 2019; Chen et al., 2018; Ibarra et al., 
2018; Martínez-Fernández et al., 2019; Wong, 
2018), these studies mainly deal with the final quality 
of the software. The team involved in the software 
design must have version control of the artifacts and 
the software itself, a prerequisite for its modeling and 

construction to identify possible failures that may 
occur. 
 
Moreover, works are developed in the area of 
Software Analytics (Abbes et al., 2011; Barbosa et 
al., 2013), tooling supports, and good development 
practices for improved source code quality. Barbosa 
et al. (2020) report that software design quality 
degradation can be avoided, reduced, or 
accelerated depending on the developers’ 
communication dynamics and the specific roles 
performed within the software project. 
Understanding the role of communication dynamics 
and the content involved in the discussion is 
important to avoid software design anomalies. 
Social metrics can also be indicators of design decay 
when analyzing the two aspects together. 
 
It is appointed in (Uchôa et al., 2021; Uchôa et al., 
2021a) that existing studies tend to analyze the 
degradation of the software design and consider 
unique events like introducing a single design 
problem or simply analyzing the rate of degradation. 
However, understanding how design degradation 
evolves between reviews is still challenging. The 
impact of modern code review on the evolution of 
project degradation is analyzed. Since the code 
review also aims to improve the quality of design and 
evaluations can be expected to gradually reduce 
over time various symptoms of software 
degradation. To this end, they have investigated 
retrospectively 14.971 code reviews of seven 
software systems belonging to two large open 
source communities. Design degradation 
characteristics were analyzed in revisions and within 
reviews. How design discussions tend to impact 
design degradation. 
 
The paper (Alkharabsheh et al., 2019) presents a 
systematic mapping, focusing on all types of Design 
Smell (Bad Smell, Anti-patterns, Disharmonies, 
using Design Smell as a unifying term) and, on the 
other hand, on the detection activity and some other 
related activities, such as specification, correcting 
(refactoring), and prioritization. 
 
Providing an overview and discussing the use of 
machine learning approaches in the field of bad 
smell work (Azeem et al., 2019) presents a 
Systematic Literature Review (SLR) on Machine 
Learning Techniques for Smell Detection Code. It is 
considered articles published between 2000 and 
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2017. Starting from an initial set of 2.456 articles, 
only 15 of them took machine learning approaches. 
These studies address four different perspectives: (i) 
considered code smells, (ii) configuring machine 
learning approaches, (iii) design of evaluation 
strategies, and (iv) a meta-analysis of the 
performance achieved by the models hitherto 
proposed. 
 
The analyzes performed show that Class of God and 
Long Method and Functional Decomposition and 
Spaghetti Code have been widely considered in the 
literature. Decision trees and support vector 
machines are more machine learning algorithms 
commonly used to code smell detection. Models 
based on large set of variables had a great 
performance. JRip and Random Forest are the 
classifiers more effective in terms of performance. 
The analyzes also reveal the existence of several 
open questions and challenges that the research 
community should focus on the future. Providing an 
overview and discussing the use of machine learning 
approaches in the field of design problems. 
 
This paper presents a systematic mapping that 
differs from the previously mentioned studies by 
focusing, on the one hand, on all types of Code 
Smell and Design Smell (Bad Smell, Anti-patterns, 
Disharmonies, among others, using Design Smell 
and Code Smell as a unifying term) and, on the other 
hand, on the detection activity. Consequently, the 
main goal of our systematic mapping study is to 
collect and organize the knowledge on Design Smell 
Detection in general (approaches, tools, techniques, 
datasets, and quality factors) and not just tools, as is 
the case of some related work. 
 
 
3. Planning 
 
This section introduces an outline of the research 
protocol used to carry out our mapping study. 
Section 3.1 presents the central objective and 
research questions of our study. Section 3.2 defines 
the search strategy for selecting works already 
published. Section 3.3 explains how the search 
string was defined and the electronic databases 
were chosen. Section 4.4 describes the exclusion 
and inclusion criteria used to filter works.  
 
Figure 1 introduces the planning followed to run our 
study. This protocol addresses the steps and 

guidelines for conducting systematic mapping 
studies in software engineering (Keele, 2007; 
Kitchenham et al., 2011; Petersen et al., 2008; 
Petersen et al., 2015). Additionally, our protocol was 
also inspired on our previous mapping studies 
(Carbonera et al., 2020; Menzen et al., 2021; Vieira 
& Farias, 2020; Bischoff et al., 2021) 

 

 
Figure 1. The systematic mapping process used in our 

study (adapted from (Petersen et al., 2008)). 
 
 
3.1 Objective and research questions 
 
The main objective of this mapping study is to 
introduce a broad and careful view of previous works 
considering the theme of predicting design 
problems. In particular, this work aims to provide an 
overview of the current literature by filtering (Section 
4) and classify articles (Section 5), pointing out gaps, 
open challenges and research opportunities that are 
worth exploring by the scientific community (Section 
6).  
 
We formulated six research questions, described in 
Table 1, to address this objective. These questions 
seek to explore some pivotal issues, including the 
types of design problems most commonly 
investigated, the prediction aspects considered to 
predict design problems, the prediction techniques 
used to anticipate the future occurrence of design 
problems, the main contribution reported in each 
selected study, the research methods applied to run 
the research and the research venue chosen to 
publish the articles. 
 

Research Question Motivation Variable 
RQ1: What are the design 
problems explored by 
prediction techniques? 

Reveal the 
most 

common 
explored 
types of 
design 

problems. 

Types of 
design 

problems 
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RQ2: What aspects are 
considered for predicting 
design problems? 

Understand 
the different 
aspects 
considered 
for predicting 
software 
design 
problems. 

Prediction 
aspect 

RQ3: Which techniques 
have been used to predict 
design problems? 

Pinpoint the 
most used 
prediction 
techniques. 

 

Prediction 
technique 

RQ4: What is the main 
contribution of the primary 
studies? 

Identify the 
explored 

contributions. 

Main 
contribution 

RQ5: What are the 
empirical methods used to 
evaluate the prediction of 
design problems? 

Identify the 
research 
methods 
used to 

evaluate the 
prediction. 

Research 
method 

RQ6: Where have the 
studies been published? 

Reveal the 
target 
venues used 
to report the 
results. 

Research 
venue 

 
Table 1. Research questions explore in this article. 
 
 
3.2 Search strategy  
 
Based on the research questions, we determined a 
set of key terms to support searching for potentially 
relevant articles. Key terms were defined based on 
well-known empirical guidelines (Al-Qudah et al., 
2015; Petersen et al., 2008; Wohlin, 2012). Table 2 
shows the main terms and alternative terms. The 
selection of these terms considered their relevance 
to the research field, as well as strategies used and 
validated in previous works (Bischoff et al., 2021; 
Luz & Farias, 2020; Menzen et al., 2021). 
 

Main Term Alternative Term 
Design problem Bad smell, Code smell, code 

anomaly 
Predict Forecast, Foresee, Anticipate 
Maintenance Evolution, Development, 

Review, Refactoring 
 

Table 2.  The major terms and their alternative 
terms used. 

 
3.3 Elaboration of the search string  
 

Steps to defined the search strings. The main 
steps followed to define the search string were: (1) 
Identify candidate keywords, reading studies (e.g., 
(Fowler, 2018; Oizumi et al., 2016; Palomba et al., 
2017; Sharma et al., 2018; Suryanarayana et al., 
2014) chosen by relevance and convenience to 
pinpoint the main terms; (2) Identify closely related 
words and alternative terms or synonyms related to 
the candidate keywords; (3) Check through an initial 
search if the terms are in articles widely known in the 
field — an interactive and incremental process run 
by the authors; and (4) Join the alternative terms 
using logical operator “OR”, and the main terms 
using logical operators “AND”. Previous works 
(Petersen et al., 2015; Wohlin, 2012) were also 
considered to formulate the search string. The 
combinations that produced the most significant 
results are shown as follows: 
 
(design problem OR bad smell OR code smell OR 
code anomaly or design smell) AND (prediction OR 
forecast OR foresee OR anticipate) AND 
(maintenance OR evolution OR development OR 
review OR refactoring) 
 
Electronic databases. After determining our search 
string, the next step was to identify the electronic 
databases and retrieve potentially relevant studies. 
Table 3 details the electronic databases used to 
search for studies for preparing the systematic 
mapping. These electronic databases were selected 
for three reasons. First, these databases have a 
large and representative number of articles 
published related to the research topic explored in 
our mapping. Second, they have been used 
extensively in systematic mapping studies, pointing 
out their usefulness and effectiveness. Third, 
previous studies (El Koutbi et al., 2016; 
(Kitchenham, 2012; Kitchenham et al., 2011; 
Petersen et al., 2015; Kuutila et al., 2020), have 
demonstrated the effectiveness of such electronic 
databases used to perform literature reviews. 
 

Source Electronic Address 
ACM DL dl.acm.org 
IEEE ieeexplore.ieee.org 
Science Direct www.sciencedirect.com 
Scopus www.scopus.com 
Elsevier www.elsevier.com 
Google Scholar scholar.google.com 

 
Table 3.  List of the used search engine. 
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3.4 Exclusion and inclusion criteria  
 
We apply a set of inclusion and exclusion criteria to 
the returned articles after applying the search string 
to the digital libraries. These criteria establish rules 
to make the filtering as objective and auditable as 
possible, avoiding biases usually found in manual 
tasks performed by humans. The inclusion criteria 
(CI) considered were: 

• CI1: Published articles, journals, in an event 
or periodical that deals with the evaluation 
of prediction techniques, or source code 
design problems, whether general-purpose 
or not;  

• CI2: Studies published between 2005 to 
2020;  

• CI3: Studies published in Portuguese or 
English. We agree that the most relevant 
research in the computing area is published 
in English-language vehicles, although 
there are exceptions; and  

• CI4: Studies that contain key terms: 
Prediction, Bad Smell, Software, or Design. 

 
The exclusion criteria (CE) considered were: 

• CE1: The title, summary or even its content 
without relation to the search string;  

• CE2: Short studies (up to 4 pages) written in 
another language, other than Portuguese or 
English;  

• CE3: Duplicate studies;  
• CE4: Abstract did not address any aspect of 

the research questions;  
• CE5: Older versions of published studies 

prior to 2005;  
• CE6: Studies that are narrowly related to 

Software Engineering, Software 
Development and/or contrary to research 
questions; and  

• CE7: The full text did not address issues 
considering the prediction of design models; 

 
3.5 Data extraction  
 
The data extraction procedures consist of a careful 
reading of each selected work and storing the 
extracted data in an on-line Google Spreadsheet. 
This spreadsheet served as a basis for the collection 
and synchronization of data extraction actions by the 
authors. Each primary study was carefully read and 
its data extracted to answer the research questions 

formulated. The extraction process was iterative and 
incremental, aiming that the authors could collect 
and audit the data. This made it possible to align the 
way data was collected and to detect any incorrect 
collection procedures.  
 
In particular, the articles were classified according to 
the type of study performed (Petersen et al., 2015): 
(1) Evaluation study: a specific problem is defined, 
proposing a solution and conducting empirical 
analysis, to point out the advantages and 
disadvantages; (2) Philosophical studies: a 
taxonomy or conceptual framework is proposed as a 
way to outline a research area; (3) Experience 
article: An experience report on the theme of 
prediction of design problems. Typically, these 
studies explain what and how something was done 
in practice; (4) Opinion article: Someone’s personal 
opinion about predicting design problems. The 
report does not have a clear methodology, nor 
related work, focusing on the opinion itself; (5) 
Solution proposal: A proposed solution for a given 
problem is presented. The evaluation sticks to the 
execution of examples or the elaboration of 
prototypes, rarely to the execution of robust 
empirical studies; and (6) Validation search: Studies 
that typically perform experimental studies to 
evaluate solutions, approaches, techniques or 
processes that have not yet been used in real-world 
settings. 
 
4. Study Filtering 
 
With the search string and the exclusion and 
inclusion criteria defined, the next step is to define 
the article search strategy. The filtering process was 
made up of five steps performed sequentially. The 
focus was on selecting a sample of representative 
studies from a sample of potentially relevant ones. 
Figure 2 illustrates the results collected from the 
execution of each step. Each step is described as 
follows: 
 

• Step 1: Initial search. It gathers the initial 
results obtained after applying the search 
string in the electronic databases (Table 3). 
In total, 894 candidate studies were 
recovered. 

• Step 2: Exclusion criteria. Three 
exclusion criteria (EC1, EC2, and EC3) 
were applied to remove impurities. Some 
studies were withdrawn due to the absence 
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of any semantic relationship to its title, 
abstract, or even content, considering the 
theme investigated in this research (that is, 
out of scope). In addition, studies that were 
not written in English or Portuguese were 
also discarded. In total, 180 studies 
(20.13%) continued in the next stage, while 
714 works were discarded. Calls for 
conference articles, special issues of 
journals, patent specifications, research 
reports, and no peer-reviewed material 
were examples of discarded materials. 

• Step 3: Filter by similarity. This step also 
discarded the studies that were selected by 
the search string, however, their content 
was not closely related to the research 
questions, or they had no close relationship 
with the study area, e.g., software 
development and prediction of design 
problems. The CE5 and CE6 were applied. 
For that, 38.33% (69 out of 180) of the 
studies were filtered. 

• Step 4: Filter by abstract. Exclusion 
criteria (CE4 and CE7) were applied to 
remove the studies considering their 
abstract, and after their full text. In total, 39 
studies were removed, leaving 30 studies 
(43.47%) for the next step. 

• Step 5: Addition by snowballing. Some 
studies may not have been located, 
although the search engines used are 
widely qualified. To mitigate this threat, 
studies have been added using the 
snowballing method (both backward and 
forward) (Jalali & Wohlin, 2012; Wohlin, 
2014). After selecting the studies in step 04, 
a manual analysis of the references and 
citations of the hitherto filtered studies was 
performed. Five studies were incorporated. 
The snowball method in this paper is run 
three times to add new selected articles. 

 
The search was performed in the first two months of 
2021. Finally, 35 studies were filtered as the most 
representative, hereinafter called primary studies 
(Table 4). The number of citations shown in Table 4 
was found in Google Scholar and retrieved in 
January 2021. 
 

 
Figure 2. The filtering process. 

 
ID Title Year #Cit #Ref 

A1 Identifying Architectural Problems through Prioritization of Code 
Smells (Vidal et al., 2016) 2016 17 25 

A2 Are SonarQube Rules Inducing Bugs? (Lenarduzzi et al., 2020) 2020 02 32 

A3 Do Code Smells Impact the Effort of Different Maintenance 
Programming Activities? (Soh et al., 2016) 2016 28 40 

A4 Code smells detection 2.0: Crowdsmelling and visualization (dos 
Reis et al., 2017) 2017 3 50 

A5 Code-Smell Detection as a Bilevel Problem (Sahin et al., 2014) 2014 56 73 

A6 LDFR: Learning deep feature representation for software defect 
prediction [(Xu et al., 2019)] 2019 0 118 

A7 
Static Code Analysis of IEC 61131-3 Programs: Comprehensive 
Tool Support and Experiences from Large-Scale Industrial 
Application (Prähofer et al., 2016) 2017 20 25 

A8 BDTEX: A GQM-based Bayesian approach for the detection of 
antipatterns (Khomh et al., 2011) 2011 106 33 

A9 Schedule of Bad Smell Detection and Resolution: A New Way to 
Save Effort (Liu et al., 2011) 2012 106 54 

A10 Improving Design Smell Detection for Adoption in Industry 
(Alkharabsheh et al., 2018) 2018 02 28 

A11 Detecting Code Smells using Deep Learning (Das et al., 2019) 2019 0 27 

A12 Deviance from perfection is a better criterion than closeness to 
evil when identifying risky code (Kessentini et al., 2010) 2010 73 28 

A13 Evolution of legacy system comprehensibility through automated 
refactoring (Griffith et al., 2011) 2011 13 30 

A14 Automatically classifying source code using tree-based 
approaches (Petersen et al., 2018) 2016 8 42 

A15 Detecting Android Smells Using Multi-Objective Genetic 
Programming (Kessentini & Ouni, 2017) 2017 13 36 

A16 A hierarchical method for detecting codeclone (Devi et al., 2011) 2011 1 20 

A17 
Are automatically-detected code anomalies relevant to 
architectural modularity?: an exploratory analysis of evolving 
systems (Macia et al., 2012) 2012 93 49 

A18 On the Relation between External Software Quality and Static 
Code Analysis (Plosch et al., 2008) 2008 14 19 

A19 Do code smells reflect important maintainability aspects? 
(Yamashita et al., 2012) 2012 165 40 

A20 Adaptive Detection of Design Flaws (Kreimer, 2005) 2005 50 47 

A21 Detecting code smells using machine learning techniques: Are 
we there yet? (Di Nucci et al., 2018) 2018 43 90 

A22 An empirical study to improve software security through the 
application of code refactoring (Mumtaz et al., 2018) 2018 12 86 

A23 Automatically identifying code features for software defect 
prediction: Using AST N-grams (Shippey et al., 2019) 2019 8 81 

A24 Code smell severity classification using machine learning 
techniques (Alkharabsheh et al., 2018) 2017 34 42 

A25 Change Prediction through Coding Rules Violations (Tollin et al., 
2017) 2017 6 12 

A26 Visual Indicator Component Software to Show Component 
Design Quality and Characteristic (Irwanto, 2010) 2010 2 11 

A27 Iterative software fault prediction with a hybrid approach (Erturk 
et al., 2016) 2016 28 64 

A28 Using (Bio)Metrics to Predict Code Quality Online (Müller et al., 
2016) 2016 32 77 

A29 Less is more: Minimizing code reorganization using XTREE 
(Krishna et al., 2017) 2017 15 68 

A30 Bad-smell prediction from software design model using machine 
learning techniques (Maneerat et al., 2011) 2011 40 14 

A31 On the criteria for prioritizing code anomalies to identify 
architectural problems (Vidal et al., 2016a) 2016 8 9 

A32 Software Defect Prediction via Convolutional Neural Network (Li 
et al., 2017) 2017 84 50 

A33 A Hybrid Approach To Detect Code Smells using Deep Learning 
(Hadj-Kacem et al., 2018) 2018 5 37 

A34 Predicting Design Impactful Changes in Modern Code Review: A 
Large-Scale Empirical Study (Uchôa et al., 2021) 2021 0 76 

A35 JSpIRIT: A Flexible Tool for the Analysis of Code (Vidal et al., 
2015) 2015 47 20 
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Legend: 
#Cit: Number of citations 
#Ref: Nuber of references 

 
Table 4. List of the selected studies. 

 
 
5. Results 
 
This section presents the results obtained after 
classifying the primary studies (Table 4) to answer 
the formulated research questions (Table 1). 
 
5.1 Objective and research questions 
 
Table 5 presents the design problems investigated 
by the primary studies. The main feature is that the 
majority of the primary studies explored Bloaters 
(62.86%, 22/35), Architectural Problems (54.29%, 
19/35), and Couplers (42.86%, 15/35). The 
classification in Table 5 is based on the work of 
(Mantyla et al., 2003) categorized all of Fowler’s 
code smells except for Incomplete Library Class 
and Comments smells into five categories: Bloaters, 
Object Orientation Abusers, Change Preventers, 
Dispensables, Encapsulators, and Couplers. The 
study outlines the existence of several correlations 
among smells belonging to the same category. 
Moha & Guéhéneuc (2007) propose a taxonomy of 
smells and describe some correlations among 
design smells, such as Blob and (many) Data Class, 
or Blob and (Large Class and Low Cohesion). The 
categories of code smells we considered are based 
on the classification proposed in (Mäntylä et al., 
2006), where the smells are classified according to 
some of the common concepts shared by the smells 
within one category. 
 
There are two interesting findings when comparing 
this result with studies already published. First, 
there may be a relationship between the most 
frequently explored design problems with the 
diffuseness of design smells. Previous empirical 
studies (Palomba et al., 2018a; Sjøberg et al., 2012) 
revealed a relationship between the diffusion of bad 
smells and the size and complexity of the source 
code. Palomba et al. (2018a) point out that the 
smelly diffuseness is associated with the size and 
complexity of the source code.  
 
This smelly diffuseness typically addresses bloater 
smells, including Long Method, Large Class, 
Primitive Obsession, Long Parameter List, among 
others. Typically, these smells appear gradually 

throughout the source code, as the source code 
undergoes frequent evolution or maintenance tasks, 
remaining in the absence of a refactoring effort to 
eradicate them. Sjoberg et al. (2012) reveal that the 
size of classes often impacts maintainability more 
than the presence of bad smells. The result 
highlights a higher frequency of studies concerned 
with predicting the appearance of Bloaters. This 
concern makes sense when empirical findings have 
already revealed their harmful effect on 
maintainability. 
 
The second finding would be that unlike exploring 
specific design problems, the primary studies 
explored more than one. On average, the primary 
studies investigated at least two design problems. 
Previous empirical findings already point out that 
the presence of multiple code smells in classes 
tends to increase the change- and fault-proneness 
(Khomh et al., 2012; Palomba et al., 2018a), and 
design problems can arise from this clustering of 
code smells (Oizumi et al., 2016). In this sense, 
exploring more than one design problem makes 
sense and would be supported by the findings 
already reported in the literature. 
 

Classification  Amount    Percentage List of primary studies 

Bloaters 22/35 62.86% 
[A4], [A5], [A8], [A9], [A11-15], 
[A17-18], [A20-22], [A24-25], [A28-
30], [A32-33], [A35] 

Architectural 19/35 54.29% [A1], [A3-7], [A9], [A11-20], [A31], 
[A33], 

Problems   [A20-22], [A24-25], [A28-30], [A32-
33], [A35] 

Couplers 15/35 42.86% [A3], [A5-6], [A9], [A15], [A17-18], 
[A20-22], [A29-30], [A32-33], [A34] 

Dispensables 12/35 34.29% [A5], [A16], [A19], [A21-23], [A29-
30], [A32-33], [A34-35] 

Object-Orientation 
Abusers 6/35 17.14% [A1], [A23], [A26-27], [A30], [A35] 
Change Preventers 4/35 11.43% [A5], [A19], [A22], [A29] 
Technical Debt 1/35 2.86% [A2] 

 
Table 5. Classification of the primary studies based 

on their design problems (RQ1). 
 
 
5.2 RQ2: What aspects are considered for 
predicting design problems? 
 
Table 6 presents the commonly used aspects for 
predicting design problems in the primary studies. 
Understanding the considered aspects of the source 
code is essential to pinpoint which features are 
relevant, for example, to anticipate design problems. 
The collected results indicate a tendency to use 
structural properties that can be calculated by 
metrics, including Code complexity (77.14%, 27/35), 
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Size (77.14%, 27/35), Inheritance (60%, 21/35), 
Coupling (51.43%, 18/35), Cohesion (40%, 14/35), 
and Agglomerations (8.57%, 3/35) in a smaller 
amount. These results corroborate with previous 
studies, revealing that such structural properties can 
be predictors of design problems and bugs (Moha et 
al., 2009; Nagappan et al., 2006; Palomba et al., 
2017; Yamashita et al., 2007). Palomba et al. (2017) 
use structural properties of source code to propose 
a smell-aware bug prediction model, including code 
complexity, coupling, cohesion, lines of code, 
coupling dispersion, among others. Zimmerman et 
al. (2007) indicate a positive correlation between 
code complexity and bugs. Nagappan et al. (2006) 
also examined the use of metrics to predict buggy 
components across 5 Microsoft projects. 
 
Moreover, the primary studies explored source code 
design problems computed from pure object-
oriented code, e.g., pure Java code. However, real-
world applications rarely have pure object-oriented 
code. Typically, software systems are built from the 
composition of pure object-oriented code together 
with numerous annotations of frameworks and 
architectural styles, such as @RestController and 
@PostMapping from Spring Platform — i.e., 
annotations for REST web controller and mapping 
HTTP requests onto specific handler methods, 
respectively. Thus, computing and predicting design 
problems from semantically enriched code would 
require understanding the meaning of annotations. 
For example, predicting design problems in source 
code with Spring Boot platform annotations would 
require dealing with semantic and structural aspects 
— a challenging and ever-present problem, since 
semantic information related to annotations is rarely 
formally specified. 
 

Classification Amount Percentage List of primary studies 

Code complexity 27/35 77.14% [A2], [A5], [A7-9], [A11-15], [A17], 
[A19-30], [A32-33], [A34-35] 

Size 27/35 77.14% [A2], [A5], [A7-9], [A12-25], [A27-30], 
A32-33], [A34-35] 

Inheritance 21/35 60% 
[A5], [A7-9], [A11-13], [A15], [A17-18], 
[A21-24], [A26-27], [A29-30],  
[A32-33], [A35] 

Coupling 18/35 51.43% [A1], [A3], [A5], [A15-18], [A20-24], 
[A26-27], [A29-30], [A32], [A35] 

Cohesion 14/35 40% [A11-13], [A15], [A18-22], [A24], [A27], 
[A29], [A32], [A35] 

Agglomerations 3/35 8.57% [A1], [A31] 
Others 11/35 31.43% [A4-8], [A10], [A12-14], [A28], [A34] 

 
Table 6: Classification of the primary studies based 

on their prediction aspects (RQ2). 
 
 

5.3 RQ3: Which techniques have been used to 
predict design problems? 
 
Table 7 introduces the collected data related to the 
techniques used to predict bad smell problems 
investigated by the selected studies. The main 
feature is that most primary studies used Machine 
Learning Techniques (54.29%, 19/35). The overall 
ranking accuracy of Machine Learning (ML) models 
is used to measure the performance of different 
methods and approaches. On the other hand, ML 
algorithms can be divided into 3 categories: 
supervised learning, unsupervised learning, and 
reinforcement learning (Chinnamgari et al., 2019; 
Dharmadhikari et al., 2011).  
 
Among the selected works, we highlight the use of 
algorithms with a supervised learning classification 
and regression method. Decision Tree (20%, 7/35) 
and Random Forest (20%, 7/35), followed by 
Rules/Heuristics (17.14%, 6/35) and Prioritization 
Criteria (17.14%, 6/35) and Linear Regression 
(11.43%, 4/35) and Logistic Regression (8.57%, 
3/35) and Bagging (5.71%, 2/35) and Others (20%, 
7/35). Note that primary studies generally explored 
Machine Learning and used algorithms for training 
problem prediction models. It is essential to highlight 
and compare this result with the published study that 
notes that further studies are needed to consider the 
use of cluster learning, multi-classing and resource 
selection techniques for code smells detection (Al-
Shaaby et al., 2020). 
 
In an attempt to anticipate the location of defects in 
an application through the use of specific 
techniques, the primary studies explored more than 
one bad smell according to the classification in Table 
5, evaluating the results present in Table 7, we can 
say that apprenticeship is proposed to improve the 
performance of software problem classifiers, 
combining different classifiers and methods in defect 
prediction. 
 

Classification Amount Percentage List of primary studies 

Machine Learning 19/35 54.29% 
[A2-4], [A6], [A8], [A11-12], [A14], 
[A20-21], [A23-25], [A27-28], [A30], 
[A32-33], [A34] 

Decision tree 7/35 20% [A2], [A6], [A14], [A23-25], [A34] 

Random forest 7/35 20% [A2], [A6], [A21], [A24-25], [A30], 
[A35] 

Rules/Heuristics 6/35 17.14% [A5], [A8], [A11-12], [A14-15] 
Prioritization Criteria 6/35 17.14% [A1-2], [A6], [A12], [A24], [A31] 

Linear regression 4/35 11.43% [A2], [A24], [A11] 
Logistic regression 3/35 8.57% [A2-3], [A24], [A30] 

Bagging 2/35 5.71% [A2], [A8] 
Others 7/35 20% [A1], [A5-7], [A10], [A34] 
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Table 7: Classification of the primary studies based 

on their prediction techniques (RQ3). 
 
The results indicate that the use of Learning 
Techniques is part of an in-depth analysis of the 
performance index of software bug prediction 
models. Therefore, future efforts will be dedicated to 
analyzing the contribution of information related to 
the detection of bad smell in the context of models. 
Prediction of local learning bug. Finally, the future 
research agenda includes the definition of new 
factors that influence the performance of forecasting 
models (Palomba et al., 2017).  
 
The vast majority of selected primary studies use the 
practice prioritizing bad smells. Several automated 
approaches are proposed to generate rules that can 
detect bad smells in static software codes. A rule is 
a combination of quality metrics and their threshold 
values to detect a specific type of Bad Smells. The 
use of static code analysis tools coupled with 
machine learning is used to compare the power of 
prediction of failure propensity for software quality 
violations, applying several models for comparing 
the predictive power of bad smells or possible 
violations software quality related to the pre-defined 
metrics in each selected primary study. 
 
5.4 RQ4: What is the main contribution of the 
primary studies? 
 
The collected results indicate a tendency to use 
techniques machine learning in Table 7, used the 
practice of prioritizing bad smells as described in 
Table 5, the use of analysis combined with machine 
learning is used to compare the power of prediction 
of failures of software quality violations according to 
the results present in Table 6 where the main 
contributions of the selected primary studies are 
classified in Process (34.28% 12/35), Method 
(31.42% 11/35), Model (28.57% 10/35), Metric 
(2.85% 1/35) and Tool (2.85% 1/35). We can affirm 
that the results are directly linked to the results 
present in the previous Section 5.3, in Table 8, since 
a classification of contribution adopted in (Petersen 
et al., 2008; Petersen et al., 2015), its great majority 
by the selected primary studies are related to the 
links that propose a solution to a given problem, 
whether it is a new solution or a significant reference 
from previous studies (Petersen et al., 2015), 
highlight small examples are typically used to 

demonstrate the potential benefits and the 
applicability of the proposed solution. 
 

Classification Amount Percentage List of primary studies 
Process 12/35 34.28% [A9], [A17-18], [A23], 

   [A25], [A28], [A29], [A31-35] 
Method 11/35 31.42% [A4], [A10], [A12], [A15-16], 

   [A19-20], [A22], [A24], [A27], [A30] 
Model 10/35 28.57% [A2-3], [A5-6], [A8], [A11], 

   [A13], [A14], [A21], [A26] 
Metric 1/35 2.85% [A1] 
Tool 1/35 2.85% [A7] 

 
Table 8: Study classification by contributions (RQ4). 
 
 
5.5 RQ5: What research methods were used? 
 
Table 9 shows the relation between the primary 
studies selected and six empirical methods 
described in (Petersen et al., 2008; Wieringa et al., 
2006). Most studies (48.57%, 17/35) focused on 
proposing new solutions. This result indicates that 
the primary studies were chiefly concerned with 
bridging research gaps by proposing techniques to 
deal with design models. The primary studies 
predominantly sought to propose a new solution, 
instead of significantly extending an existing 
technique. The potential benefits and applicability of 
these solutions have been demonstrated through 
small examples or initial empirical studies supported 
by discussions and implications. Robust and 
practical studies that brought evidence about the 
effectiveness of the solutions have not been 
identified. Case studies in the industry considering 
context variables have not been reported. This may 
be indicative of an area still maturing and expanding. 
 
Some studies (25%, 9/35) were classified as 
validation research, which proposed some new 
techniques, but have not yet been implemented in 
practice, being evaluated through empirical studies 
in laboratories. Müller and Fritz [A28] show through 
an empirical study that biometrics can be used to 
predict quality concerns of parts of the code while a 
developer is working on. 
 
The results indicate that little has been done to 
discuss the problems identified with prediction 
techniques. Most studies make only notes for 
identifying anomalies, security, and vulnerability 
issues as examples. Finally, the lack of a massive 
amount of empirical studies may indicate that the 
evaluation of prediction techniques may be based 
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mainly on experts’ reflection, not on empirical 
evidence. 
 
Classification Amount Percentage List of primary studies 

Solution 
Proposal 17/35 48.57% [A4-9], [A12], [A14-16], [A20], [A23], [A26-

27], [A29], [A32], [A35] 
Evaluation 9/35 25.71% [A1-3], [A18-19], [A21-22], [A25], [A34] 

Validation 9/35 25.71% [A10-11], [A13], [A17], [A24], [A30-31], 
[A33] 

 
Table 9: Study classification by research methods 

(RQ5). 
 
 
5.6 RQ6: Where have the studies been published? 
 
This section investigates when and where primary 
studies were published to accurately pinpoint trends 
in publication. Figure 3 presents the primary studies 
chronologically, organizes them by type of 
publication and shows the number of studies 
published per year. 
 
Number and venue of publications. The blue 
dashed line in Figure 3 counts the number of articles 
published per year. The results indicate that 62.86% 
(22/35) of the primary studies were published in 
conferences, while 34.29% (12/35) in journal, 
showing a predominance of publications in venues 
that encourage synchronous discussion by 
researchers. Based on the premise that articles 
published in journals are more robust, this may 
indicate a new or maturing area of research. The 
publications were more concentrated from 2016 to 
2019. Such research on the prediction of design 
problems may have gained momentum for two 
reasons: (1) the maturation of the research area 
itself. that brought well-established concepts about 
catalogs of code anomalies and refactorings, as well 
as empirical knowledge about how certain code or 
social characteristics impact the incidence of design 
problems; and (2) machine learning techniques are 
being widely explored to solve practical software 
development problems. 
 
Trends. Although there is not yet a consistent 
upward trend, the number of published studies has 
been growing. After the first publication in 2005, four 
and seven articles were published in 2011 and 2017, 
respectively, representing the tops reached over the 
years. This growth is accompanied by strong 
fluctuations, alternating with periods with a 
maximum of two published articles (2005 to 2009 
and 2013 to 2015) to nine or more published articles 

(2010 to 2012 and 2016 to 2019). In addition, 2017 
stood out with a greater number of articles produced 
than other years. Articles published in premier 
conferences and journals, such as SANER, ICSE, 
ASE, MSR, ICSM, JSS, IST, TOSEM, IEEE TSE, 
show that robust research has already been carried 
out. Although many studies have been published, 
there are still challenges worth exploring, which are 
discussed in the following section. 

 
 

Figure 3. Distribution over the years. 
 
 
 
6. Discussion and Future Directions 
 
This section discusses the collected data to explore 
the main points of RQ5 and RQ6. In particular, we 
seek to reveal where the selected studies are being 
published over the years (Figure 3). The 
classification of the selected studies is based on the 
year of publication, publication type (workshops, 
conferences, newspapers, and magazines), and the 
number of studies published per year. Figure 4 
presents the obtained data based on the 37 selected 
studies, showing quantitatively the results presented 
in RQ6. 
 
6.1 Distribution of primary studies 
 
Figure 4 introduces a bubble chart that organizes the 
primary studies in three dimensions (d1, d2, d3), 
where d1 represents the main contributions (RQ4), 
d2 is the adopted research method (RQ5), and d3 is 
the explored design problems (RQ1). Each bubble 
has values assigned to d1, d2, and d3. This bubble 
chart helps grasp relations among the main 
contributions (RQ4), the research methods (RQ5), 
and the design problems (RQ1). It shows how 
primary studies have made a triangulation between 
RQ1, RQ4, and RQ5. 
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It is observed that prediction techniques for source 
code design, even though it is a recent research 
area, have many studies published since 2014 and 
continue to grow. This result shows that this area of 
research has been very active in recent years. After 
identifying the type of publication of these studies, it 
is revealed that the researchers who contributed 
most to the subject made their publications in recent 
years at conferences, represented by a total of 
51.35% of the selected studies. 
 
The results did not present statistical qualifiers and 
were not compared with other results studied since 
research on this topic has not been developed by 
other researchers previously. Some 
recommendations for future research would be: 
increase the breadth of analysis of selected studies, 
refine research on fundamental software quality 
issues; conduct systematic review literature to 
examine best practices related to source code 
analysis approaches, technologies or tools, and 
comparative analysis information. Also, this work 
may be the first step towards an ambitious agenda 
on how to advance the current literature on 
techniques for predicting source code design 
problems.  
 

 
 

Figure 4. Bubble chart relating three variables. 
 
 
6.2 Future challenges 
 
(1) Good quality management in software 
projects. It is important to identify the main software 

quality guides most used in the current market, amid 
a tougher economic climate, organizations turned to 
ML for automation and efficiency gains. This allows 
many of them to massively expand their operations 
while reallocating their human capital. The search for 
quality to meet customer needs is no longer a 
differential competitive, but an obligation for any 
business to survive in the market. The increase in 
quality in a company generates positive effects on 
the company’s processes, management, customer 
service, and strategic planning. Therefore, it is 
imperative to know which quality tools or techniques 
of ML, will provide an effective and clear 
improvement in software projects. 
 
(2) How to quantify software metrics and their 
quality. Learning analysis appears as a possibility to 
address this challenge, recognize the difficulties in 
generating quantitative security, vulnerability, and 
design metrics. It will be possible to quantify and 
predict the impacts on the final quality of the 
software. It is not easy to quantify the maintainability 
of software. This measure’s primary metric is the 
time spent on maintenance, considering the time of 
recognition of the problem, analysis of the problem, 
specification of changes, modification, tests, and the 
total time. 
 
(3) How to extract critical features for knowledge 
discovery. Machine learning is essential for 
predicting source-code problems. Training machine 
learning models demand well-designed data sets. 
The construction of a data set is challenging due to 
the various sources and lack of structured data. 
Moreover, source code only may not be sufficient to 
obtain good results, in artificial intelligence projects, 
especially Machine Learning, a large amount of data 
is needed, which will participate in the training of the 
algorithm.  
 
So, a lot of the work on an ML project is finding the 
perfect data set for your needs. However, it is not 
always possible to find an option according to its 
ambition. Therefore, another challenge is how to 
consider the developers’ experience in the training 
process of the machine learning models. Current 
literature fails to deal with these challenges, leading 
to great research opportunities. 
 
 
7. Threats to Validity 
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The validity of the results achieved in the systematic 
mapping depends on some factors present in its 
structure. The main threats to the validation of this 
study and the factors used to mitigate them are 
presented and analyzed: 
  
Selection and quality of primary studies: To 
guarantee an impartial and comprehensive 
systematic mapping process and the quality of 
studies considered relevant, research questions, 
inclusion criteria, and exclusion criteria were defined 
by a group of researchers. 
 
The researchers and responsibilities: To review 
the process of carrying out systematic mapping, 
conducted by the master student, and to clarify his 
doubts, while he performed the data ex- traction 
process. In this way, studies with a broad overview 
were obtained. 
 
The number of studies selected: To obtain a wide 
range of results and necessary data, the search was 
carried out in six repositories of widely known 
scientific studies (IEEE Explorer, ACM Digital 
Library, Scopus, Science Direct, Scopus, and 
Google Scholar). 
 
Possibility of a relevant study to be ignored: 
Although it is plausible that possible relevant studies 
were ignored in the survey of primary studies, we 
opted only to read the abstract, title, and keywords 
in the application of the criteria inclusion and 
exclusion. However, in step 05, manual search 
procedures were performed using snowballing 
techniques to find possible relevant studies in the 
references of the studies selected in the previous 
step. An interesting method to expand the 
possibilities of returning articles relevant to the 
review research topic is the snowball method. This 
one method consists of searching the references of 
articles included in the work to identify works that are 
of interest to the research. This method can be used, 
for example, at the end of the automatic search 
where a set of articles is already included in the 
review. Thus, from this set, this technique can be 
used to find more relevant studies. 
 
8. Conclusions and Future Work 
 
This article sought to grasp and classify the current 
literature and pinpoint trends and challenges worth 
investigating in the field of design problems. A 

systematic mapping study was designed and run 
based on well-established practical guidelines. In 
total, six research questions were formulated and 
answered after carefully analyzing 35 primary 
studies. This study fills a current gap in the literature 
considering the variables explored in the research 
questions, as well as serving as a basis for 
researchers and students to develop future work on 
the subject. Our results indicated that a majority of 
the primary studies explored Bloater bad smells, 
used code complexity and size as predictors, applied 
machine learning techniques to generate 
predictions, and presented a prediction proposal 
without an extensive empirical assessment. 
 
Finally, we hope that the collected data and insights 
presented throughout this study can encourage 
researchers and practitioners to explore upcoming 
challenges regarding the prediction of design 
problems. Moreover, this work can be seen as the 
first step for a more robust agenda on how to 
advance the current literature on the prediction of 
design problems. 
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