
International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 10, October 2017

ISSN (Online): 2409-4285 www.IJCSSE.org Page: 223-232

Modeling Composition of UML Profiles with Alloy

Kleinner Farias
1
, Toacy Oliveira

2
, Lucian José Gonçales

3
 and Vinicius Bischoff

4

1, 2, 3

Post Graduate Program in Applied Computing (PPGCA), University of Vale do Rio dos Sinos (UNISINOS), São

Leopoldo, RS 93.022-750, Brazil.

4
 Computation and Systems engineering Program (PESC/COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de

Janeiro, RJ, Brazil.

1
mkleinnerfarias@unisinos.br, {

2
lucianj,

3
viniciusbishoff}@edu.unisinos.br,

4
toacy@cos.ufrj.br

ABSTRACT

Global software development teams can collaboratively

create Unified Modeling Language (UML) profiles, the

primary mechanism for defining domain-specific variants

on top of the UML. Usually, parts of UML profiles are

separately elaborated to speed up the UML tailoring

process, but at sometimes the parts built in parallel need to

be brought together to construct a full UML profile.

Although many model composition techniques have been

proposed in the last decades, no one deals with issues

required to combine UML profiles, e.g., matching and

integration of UML stereotypes. Consequently, little is

known about how to support the composition of UML

profiles. Even worse, academia and industry have

overlooked the elaboration of composition methods to

support the integration of UML profiles, as well as the

formal representation of such methods. This study,

therefore, presents a composition mechanism, as well as

introduces a lightweight UML extension to support the

specification of composition relationships between UML

profiles. The semantics of the extension and mechanism

proposed was carefully represented in Alloy, a formal

modeling language based on first-order logic. Then, we

used the Alloy Analyzer to check the specification

generated in Alloy for some specific algebraic properties,

including idempotency, uniqueness, commutativity, and

associativity.

Keywords: Alloy, Model Composition, UML, UML profile.

1. INTRODUCTION

The Unified Modeling Language (UML) is a general

purpose visual modeling language for specifying,

constructing and documenting the artifacts of software

systems that can be used with all major application

domains and implementation platforms [1]. It has been

widely used and adopted by both industry and academia as

a standard the modeling language for describing software

systems. In [2], Chaudron and colleagues reveal that the

UML is the de facto standard for object-oriented software,

and has been widely used for representing design designs

through a multi-view approach. According to [1], the

UML seeks to advance the state of the industry by

enabling object visual modeling tool interoperability. For

this, the UML specification provides a set of the human-

readable notation elements, as well as providing

lightweight mechanisms to fit it into particular domain

application.

Specific platform and domain application need

terminology, different notations, constraints and semantics

in which the UML is often unable to represent them using

its default elements. Thus, UML provides extension

mechanisms, e.g., UML profiles, that come up with

capabilities that allow metaclasses to be extended to adapt

them for different purposes [1], including the ability to

tailor the UML metamodel for different platforms (such as

Python or NodeJS) or domains (such as Health care,

Educational, finance, or even real-time, data-intensive

applications).

In practice, UML profiles are formed by a set of

stereotypes, tagged values, and constraints, which are able

to tailor UML elements to fit the needs of specific

platform or domain, preserving the semantics of the

default elements. Examples of UML would be: RE-UML,

a profile for component-based system requirements

analysis [3]; SysML, a general-purpose modeling language

for systems engineering [4]; UML2TP, a profile for

designing, visualizing, specifying, analyzing, constructing,

and documenting the artifacts for model-based testing

approaches [5].

Profile composition can be defined as a set of activities to

be performed over two input profiles, PA (the receiving

profile) and PB (the merged profile) to produce an output-

composed model, PAB, the resulting profile. In other words,

the composition of PA and PB can be understood as the

integration of the content of PA and PB so that PAB can be

produced.

In global software development context, for example,

separate development teams may concurrently work on

224

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 10, October 2017

K. Farias et. al

partial views of an overall UML profile for allowing team

members to concentrate on the parts more relevant to them.

However, at sometimes the parts created in parallel need to

bring together to create a full UML profile. For this reason,

many model composition techniques have been proposed

in the last decades [6, 7], e.g., Epsilon [8], MATA [9, 10],

MoCoTo [11], and Kompose [12]. Nevertheless, none of

them deals with issues required to combine UML profiles,

e.g., matching and integration of UML stereotypes.

Although the use of UML profile has widely increased in

different research areas (e.g., [5, 13, 14, 15]), a formal

semantics is still severally lacking.

Consequently, little is known about how to support the

composition of UML profiles. Even worse, academia and

industry have overlooked the elaboration of composition

methods to support the integration of UML profiles, as

well as the formal representation of such methods. In [16],

the authors reinforce that while model transformation has

been researched and well documented and achieved

important results in the field of model-driven software

development, model composition needs further

investigations and efforts to support the composition of

domain-specific languages. In addition, given that profile

composition can been as an operation, nothing has been

done to evaluate whether it holds some algebraic

properties This study, therefore, presents a composition

mechanism, as well as introduces a lightweight UML

extension to support the specification of composition

relationships between UML profiles. The semantics of the

extension and mechanism proposed was carefully

represented in Alloy [17, 18], a formal modeling language

based on first-order logic. That is, we explain how UML

profile metamodel can be specified in Alloy. Then, we

used the Alloy Analyzer3 to check the specification

generated in Alloy for some specific algebraic properties,

including idempotency, uniqueness, commutativity, and

associativity. We have chosen the Alloy language because

is based on set theory, first order logic, and is strongly in

influenced by object-oriented modeling notations. It is the

input language to Alloy Analyzer (the tool support), which

has embodied an over-the-shelf SAT solver. The Alloy

Analyzer is a constraint solver, which translates

constraints to be solved from Alloy into 3Alloy Analyzer:

http://alloy.mit.edu/alloy/boolean constraints [18, 17].

Additionally, the Alloy language and its tool support have

been successfully used for modeling: (i) aspect oriented

models [19]; (ii) composition of UML models [20]; (iii)

formalization of object oriented models [21, 22]; (iv)

modeling critical system, including air-traffic control [23]

and a proton therapy machine [24].

Contributions of this Study. Formal specification and

automated analysis of UML profile metamodel and profile

composition mechanism involve answering several

questions. What criteria should we use for analyzing them?

How can we analyze these criteria? Once UML profile

metamodel is defined using natural language, how can we

define it formally? How can we identify correspond parts

between input profiles? What activities should we perform

to merge profiles? Our contributions are derived from the

answers of these questions. In particular, some

contributions are listed as follows:

1. A extension of UML profile metamodel. We

provide a simple extension, inserting some specific

constructs into UML metamodel to support the

expression of composition relationship. These

constructors allow assigning composable features

to profile metamodel constructs.

2. A formal semantic for UML profile metamodel. We

translate UML profile specification in Alloy. Since

we can analyze UML profile based on the

metamodel level, our analysis can be extended to

other profiles.

3. A profile composition mechanism and its

formalization. We provide a composition

mechanism based on strategies, including matching

and composition one. Moreover, we verify some

algebraic properties of this relationship. Thus,

readers can make use of this mechanism knowing

its properties and using it in better way.

The remainder of the paper is organized as follows.

Section 2 describes Alloy modeling language. Section 3

describes the proposed extension of the UML profile

metamodel. Section 4 presents the modeling of the

proposed composition mechanism of UML Profiles with

Alloy. Section 5 contrasts our work with the current

literature. Finally, Section 6 presents some concluding

remarks and future work.

2. ALLOY LANGUAGE IN A NUTSHELL

Alloy is a formal modeling language strongly typed, based

on first-order logic, and set theory. It was deeply inspired

on formal language Z [25] and influenced by object

modeling notations logic. With Alloy and Alloy Analyzer,

it is possible to represent models through graphical and

textural structures. The Alloy Analyzer can generate a

model diagram from an Alloy textual model, so we can use

this feature to help understand large models, or to see how

a model grows as new signatures are added. An Alloy

model consists of the following elements [19, 17]:

1. Signature. It defines a set of atoms and can have a

collection of declaration of relations represented as

fields over defined sets of signatures. It is similar to

classes in object-oriented language. Signature can

extend other signature and has fields (attributes in

object orientation paradigm). It is used for defining

new types.

http://alloy.mit.edu/alloy/boolean

225

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 10, October 2017

K. Farias et. al

2. Facts. The constraints of a model that should be

always held are recorded as facts. In other words,

they are constraints on fields and signature. A model

can have any number of facts, being identified by the

keyword fact. For instance, the constraints defined in

UML metamodel may be expressed by facts.

3. Functions. They are similar to methods in object-

oriented language. Thus, they have zero or more

declarations for parameters, and a declaration to

specify the types of return parameter.

4. Predicates. They are actually functions zero or more

declarations for parameters, which can return only

Boolean values. They are used for expressing

constraints, which can be applied for a model when

needed. With predicates, we can check whether

instances of a model satisfy their built-in constraints.

5. Assertions. An assertion is a constraint that is

intended to be valid. The Alloy Analyzer checks

whether this constraint is always held. Otherwise, the

Alloy Analyzer returns a counterexample, in which

the constraint does not hold. Using assertion, for

instance, we can check whether the composition can

produce a profile as a result.

6. Module. The Alloy models can be grouped into

modules. These modules are similar to package in

object-oriented language. Once a module has been

defined, it can import other modules to access their

contents.

The Alloy Analyzer is a constraint solver, which translates

constraints to be solved from Alloy into Boolean

constraints, as aforementioned. It makes two kinds of

analyses, such as: (i) check for satisfying instance of the

model (i.e., once defined a profile, does it represent a

sound UML profile metamodel instance?); (ii) search for

scenarios in which assertions are not held. Due to the

undecidability of such analysis, they are parameterized by

a scope, which limits the size of instances considered.

Since the search for a solution is limited by a scope, the

absence of an instance does not automatically show that a

formula is inconsistent [17].

3. EXTENDING THE UML METAMODEL

The UML profile metamodel is defined according to the

UML metamodeling approach. Thus, a metamodel is used

for specifying its syntax and semantics. The typical role of

a metamodel is to define the semantics for how the

elements of UML profiles get instantiated. In this work,

we present a simple extension for UML metamodel and

consider a simplified version of the UML profile

metamodel shown in Figure 1. The simplification and

UML extension are both explained, as follows:

1. Alloy can express multiple inheritances. In the UML

metamodel, the classes Property and Parameter have

an inheritance relationship with MultiplicityElement

and TypedElement. To simply, we combined

MultiplicityElement and TypedElement, creating a

new metaclass, so-called TypedMultiplicityElement

[20].

2. Alloy does not support recursion. This implies, for

example, that we cannot represent classes contained

by other classes; likewise, profiles that are contained

by other profiles.

3. We extend the UML metamodel to denote our

approach. For this, ComposableElement extends

Element (from UML) and represents the profile

elements that can participate of a composition

relationship. They are Class, Association,

Enumeration, Parameter, Stereotype, Package, among

others. For each ComposableElement is defined a

merge rule, which is responsible for merging it.

CompositeElement represents the

ComposableElement that contains another

ComposableElement. For instance, Profile contains:

(i) ownedMembers, that are CompositeElement; (ii)

ownedStereotypes, that are Stereotypes. The

extension is based on the Composite pattern that

allows you to build complex objects by recursively

composing similar objects in a three-like manner.

This pattern was previously described by Erich

Gamma and colleagues in [26].

This simplification is due to Alloy suffers from poor

performance when analyzing models with many signatures

and fields. Because the problem is NP-complete one. We

do not remove too much detail in order to ensure that our

analysis produces meaningful results. Moreover, the small

scope hypothesis" [17] asserts that if an assertion is invalid,

it probably has a small counterexample (in a small scope).

4. MODELLING ALLOY

This section presents the modeling of UML profile

composition using Alloy. For this, Section 4.1 introduces

the modeling UML profile metamodel in Alloy. Next,

Section 4.2 describes the composition mechanism in Alloy.

Then, Section 4.3 discusses the analysis of the

composition mechanism using Alloy.

4.1 Modelling UML Profile in Alloy

We represent the meaning of the elements of UML profile

metamodel using Alloy models. After mapping the

proposed UML profile metamodel (Figure 1) into the

Alloy constructs (described in 2), an automatic analysis

might be done using Alloy Analyzer. Due to space

constraints, we show only part of the modeling. The

multiplicities 1, 0..1, 0..* and 1..* found in UML were

mapped to the following Alloy key-words one, lone, set

226

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 10, October 2017

K. Farias et. al

and some, respectively. The associations between UML

profile metamodel elements are translated into relations

(fields) in Alloy. The modeling of stereotype and profile is

showed as follows.

Fig. 1. Simplified UML profile metamodel and an extension for UML metamodel.

Stereotype. It is modeled (see Code 1) as a signature that

extends the signature Class (line 1). The field icon

represents the association between Stereotype and Image

(line 2). We denote some constraints applied to Stereotype,

as follows: (i) a Stereotype may only generalize or

specialize another Stereotype (lines 3); (ii) so that all

Image owned by a Stereotype to be distinguishable, they

must have unique content, location and format (lines 4-5);

(iii) each Stereotype must be owned by exactly one profile

(line 6); (iv) Stereotype names should not clash with

keyword names for the extended model element (lines 7-8).

1 sig Stereotype extends Class {
2 icon: set Image }{
3 all a: Stereotype | this.superClass in Stereotype
4 all a, b: icon | (a.@content = b.@content &&

5 b.location = b.location && a.format = b.format) => a = b
6 one p: Profile | this in p.ownedStereotypes
7 all a: Element, b:Stereotype |
8 (a not in Stereotype) => (b.@name = a.@name)
9 }

Code 1 : Stereotype in Alloy

Profile. It is modeled (see Code 2) as a signature that

extends the signature Package (line 1) and has three fields:

the ownedStereotypes represents the association between

Profile and Stereotype (line 2); ownedMembers and

profileApplication that are inherited from Package. One or

more profiles may be applied at will to a package that is

227

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 10, October 2017

K. Farias et. al

created from the same metamodel, which is extended by

the profile. For this, profileApplication defines each profile

that is applied to a Package [1]. So, each profile, that is

applied to a Package, must be owned by exactly one

profile (line 4).

1 sig Profile extends Package {
2 ownedStereotypes: set Stereotype
3 }{
4 one p: ProfileApplication | this in p.appliedProfile
5 }

Code 2: Profile in Alloy

4.2 Composition Mechanism in Alloy

For merging two profiles is needed to: analyzing the input

profile elements in order to verify if they are models of

valid type (Step 1); defining what profile elements are

equivalent (Step 2); merging the equivalent profile

elements based on a match strategy and composition

strategy (Step 3).

Step 1. The input profile elements are basically checked if

they are some ComposableElement valid. For example, in

the matchOperator predicate (see Code 3) is checked if a

and b are ComposableElement (line 1).

Step 2. Composition requires that two

ComposableElements are equivalent, thus we created the

matchOperator (see Code 3) for computing such

equivalence. It takes two ComposableElements and one

match strategy as parameters, and returns true if, and only

if, they are equivalent. We define three kinds of match

strategy that contrast between them by the number of

syntactic properties of UML profile metamodel elements,

which they take into account during the comparison of two

elements, such as: default, only name of elements is

considered; (ii) partial, a set of syntax property is

considered; (ii) complete, all syntax property is considered.

The matchOperator predicate has three parameters (line

1{2), if c is instance of DefaultMatchStrategy, then a and b

will be passed as parameter to the predicate

defaultMatchStrategy (line 3). In line 4 and 5, it acts

similarly.

1 pred matchOperator(a: ComposableElement, b: ComposableElement,
2 c: MatchStrategy){
3 (c in DefaultMatchStrategy && defaultMatchStrategy[a, b]) ||
4 (c in PartialMatchStrategy && partialMatchStrategy[a, b]) ||
5 (c in CompleteMatchStrategy && completeMatchStrategy[a, b])
6 }

Code 3: Verifying equivalence

Step 3. We use composition strategy for determining how

the composition must be performed. For each defined

composition strategy, there is a set of merge rules that

merge the profile elements according to the strategy. The

strategies are: override, union, and merge. (i) (override

specifies that every receiving profile element must

override their equivalents in the merged profile. Each

merged profile element that does not have equivalent in

the receiving profile are copied to output model without

modification; (ii) union defines that every receiving and

merged profile elements must be added to output model;

(iii) merge defines that every equivalent profile elements

must be combined to obtain a integrated view of them. We

present only override strategy in Alloy. The predicate,

overrideStrategyMerge (see Code 4), has three

ComposableElement as parameters: a is the receiving

profile element; b is the merged profile element; c

represents the resulting profile element, the result of

merging between a and b (line 1-2). The predicate returns

true if, and only if, the input profile elements are Class,

Association, Stereotype, Enumeration, or Interface, and

their merge rules return true (e.g., stereotypeOSMergeRule

would be a stereotype merge rule).

1 pred overrideStrategyMerge(a: ComposableElement,
2 b: ComposableElement, c: ComposableElement){
3 (a in Stereotype && b in Stereotype &&
4 stereotypeOSMergeRule[a, b, c]) ||
5 (a in Class && b in Class &&
6 classOSMergeRule[a, b, c]) ||
7 (a in Association && b in Association &&
8 associationOSMergeRule[a, b, c]) ||
9 (a in Enumeration && b in Enumeration &&
10 enumerationOSMergeRule[a, b, c]) ||
11 (a in Interface && b in Interface &&
12 interfaceOSMergeRule[a, b, c])
13 }

Code 4: Override strategy in Alloy

Moreover, the compositionRelationship predicate (see

code 5) is responsible for merging receiving and merged

profile according to particular composition strategy. It

returns true if, and only if, the composition is valid.

Otherwise, it returns false. For this, the merge predicate

(line 6) must return true.

4.2 Alloy Analysis of Model Composition

Mechanism

Each analysis performed involves solving a constraint,

finding an instance or a counterexample. An instance is a

scenario in which both the facts and the predicates hold.

On the other hand, a counterexample is an instance in

which the facts hold, but the assertion does not, or the facts

1 pred compositionRelationship(
2 receiving: CompositeElement,
3 merged: CompositeElement,
4 resulting: CompositeElement,
5 strategy: CompositionStrategy){
6 merge[receiving, merged, resulting, strategy]
7 }

Code 5: Composition relationship in Alloy

228

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 10, October 2017

K. Farias et. al

do not hold, so assertion fails to follow from the facts. For

finding an instance or a counterexample, the Alloy

Analyzer assigns values to the variables of the constraint,

and then evaluates for true or false.

Checking the algebraic properties. Having translated

UML extension for model composition and the model

composition operators in terms of the objects manipulated,

we now check some algebraic properties. We may create

some expectations about the composition of UML profiles.

For example, should composing a model with itself return

the same model? Knowing what algebraic properties the

composition relationship holds, it is useful information for

software designer, as they can use composition

relationship more systematically, rather than based on

intuition. Thus, the goal of our analysis was verifying

whether the composition mechanism holds some algebraic

properties and automatically finding valid snapshots of

models. We checked our composition mechanism for the

following properties described below (ma, mb and mb are

models of the same type):

 receiving, merged, resulting: Profile,

 match: MatchStrategy, 8 strategy: CompositionStategy
merge(receiving, merged, resulting, match, strategy) =
merge(receiving, merged, resulting, match, strategy)

In our Alloy formalization, the property is expressed by

the Code 6, in which mergeOperator is the predicate

responsible for checking the composition.

DefaultMatchStrategy and OverrideStrategy specify a

particular match strategy and a merge strategy,

respectively.

Uniqueness: this property verifies if the composition of

two models, profile A and profile B, generates one

possible output model. The composition relationship

should hold this property; otherwise, it indicates that there

are some problems (e.g., improper specification of merge

rules) in the definition of the mechanism. Applying the

uniqueness property is possible to verify problems with the

formal model, since any counterexample will indicate

problems with the formal model. In our approach, this

property is expressed in predicate logic as:

 receiving, merged, resultingA, resultingB: Profile,

 match: MatchStrategy, 8 strategy: CompositionStategy

merge(receiving, merged, resultingA, match, strategy) ˄
merge(receiving, merged, resultingA, match, strategy) →
match(resultingA, resultingB, match)

In Alloy, we express it through Code 7, in which the

mergeOperator is the predicate responsible for checking

the composition, PartialMatchStrategy and

OverrideStrategy specify a particular match strategy and a

particular merge strategy, respectively.

Commutativity: this property is a widely used

mathematical term that refers to the ability to change the

order of something, without changing the result produced.

Once the property holds, the composition relationship may

be established in any direction between the models. For a

given binary function f:D×D->K, it is said to be

commutative if, and only if, f(x,y) = f(y,x) for every x, y
D. This property is expressed in predicate logic as:

 receiving, merged, resulting: Profile,

 match: MatchStrategy, 8 strategy: CompositionStategy
merge(receiving, merged, resulting, match, strategy) =
merge(merged, receiving, resulting, match, strategy)

In Alloy, we represented it through Code 8, in which

mergeOperator is the predicate responsible for checking

the composition, PartialMatchStrategy and

OverrideStrategy specify a particular match strategy and a

particular merge strategy, respectively.

Associativity: The associative property is closely related to

the commutative property. In this property, the order of

operations does not matter as long as the sequence of the

operands is not changed. Again, this property is an

important for composition mechanism should have, when

it is used to build domain specific language. In short, even

though the models were rearranged, the result of the

composition is not altered. Formally, a binary operation f

on a set D is associative if, and only if, it satisfies the

associative law: f(f(x,y),z) = f(x,f(y,z)) for all x, y, z D.

This property is expressed in predicate logic as:

 receiving, merged, mergedA, resulting, resultingA, resultingB : Profile,

1 assert mergeOperatorIsUnique {
2 all receiving, merged, resultingA, resultingB: Profile |
3 all match: PartialMatchStrategy |
4 all strategy: OverrideStrategy |
5 mergeOperator[receiving, merged, resultingA,
6 match, strategy] &&
7 mergeOperator[receiving, merged, resultingB,
8 match, strategy] =>
9 matchOperator[resultingA, resultingB, match]
10 }

Core 7: Uniqueness property in Alloy

1 assert mergeOperatorIsIdempotency {
2 all a, c : Profile | all match: DefaultMatchStrategy |
3 all strategy: OverrideStrategy |
4 mergeOperator[a, a, c, match, strategy] =>
5 mergeOperator[a, a, c, match, strategy]
6 }

Code 6: Idempotency property in Alloy

1 assert mergeOperatorIsCommutative {
2 all a, b, c : Profile
3 | all match: DefaultMatchStrategy
4 | all strategy: OverrideStrategy |
5 mergeOperator[a, b, c, match, strategy] =>
6 mergeOperator[b, a, c, match, strategy]
7 }

Code 8: Commutative property in Alloy

229

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 10, October 2017

K. Farias et. al

 match: MatchStrategy, 8 strategy: CompositionStategy
merge(merge(receiving, merged, resultingA, match, strategy),
mergedA, resulting, match, strategy) =
merge(receiving,
 merge(merged, mergedA, resultingB, match, strategy),
 resulting, match, strategy)

Code 9 represented it in Alloy, in which mergeOperator is

the predicate responsible for checking the composition,

PartialMatchStrategy and OverrideStrategy specify a

particular match strategy and a particular merge strategy,

respectively.

As the use of UML profiles for building domain specific

languages substantially grows, so it stimulates,

consequently, the need for manipulating them and

encouraging the relationship for each other. For instance,

the UML specification [1] defines some relationship such

as: import, merge, apply, and so on. However, the lack of

standardized formal semantics for the language does not

stimulate the development of tools supporting automatic

analysis and verification of the profiles. The analyses were

performed using version 4.0 of the Alloy Analyzer. Tab. 1

shows the result of the analysis of profile composition

based on merge (the composition strategy) according to

three match strategy. As good way to use Alloy Analyzer

is to start with a small scope analysis [17], so our analysis

was limited to scope 2. Thus, it showed that the

composition relationship is idempotency, uniqueness,

commutativity and associativity for the override

composition strategy. The time execution of the analysis is

also showed in Tab. 1.

Nevertheless, in [15] the authors proposed an UML profile

that provides specific components and stereotypes for

representing data security in web applications.

Furthermore, other studies, e.g., [44], come up with a

general-purpose modeling language to customize the UML

for systems engineering applications. In short, all these

approaches supply UML meta-model extension used to

improve the UML capability in expressing domain specific

concepts, however, none of them take into account formal

aspects of the extensions or use formal language to

formalize and analyze their characteristics and limitations.

Related approaches have been developed for similar

purposes [45, 46].

5. RELATED WORKS

The model composition has a central role in the Model

Driven Engineering being applied to address significant

problems in many research areas such as database

integration [27, 28], aspect oriented modeling [29, 30, 52],

merging source code [31, 32], composition of web services

[33, 34], UML extension for model composition [35, 36],

model transformation [37, 38], model comparison [39, 40,

49], model composition [11, 41, 47], model stability [48],

and composition effort [50, 51, 53].

Even so, it still needs more investigation and efforts to (1)

fulfill the lack of a formalization in composition of UML

Profiles, (2) providing systematic and clear semantics to

compose the UML Profiles, and (3) simplify the UML

profile metamodel. Despite of some works [7, 42] focused

on make use of operations on the design models, i.e., the

merge, override, and union, specifically, none of them has

applied it in the context of composition of UML profiles.

Instead, composition operations are utilized in [7] as

guidelines for developers compose input models to

measure the effort, and in [42] they were utilized to

evaluate the developers’ comprehension.

For this, in this work, we specify three kind of

composition strategy [43], which are implemented by

merge rules, and determine the lacking formal semantic for

them. Considerable researches have been done in the area

of domain specific language to deal with platforms (such

as Python, Java or .Net) or application domains (such as

business or development process modeling) at a

abstraction high-level in order to suitably handle them. In

[13], the authors presents an UML profile called DICE.

This profile provides personalized components that

enables to represent specific features of Big Data

applications properly. Moreover, in [14] the authors

provided a UML profile in order to support the

development of database applications.

1 assert mergeOperatorIsAssociative {
2 all receiving, mergedA, mergedB,
3 resulting, resultingA, resultingB: Profile |
4 all match: DefaultMatchStrategy |
5 all strategy: OverrideStrategy |
6 mergeOperator[receiving, mergedA, resultingA,
7 match, strategy] &&
8 mergeOperator[resultingA, mergedB, resulting,
9 match, strategy] &&
10 mergeOperator[receiving, mergedB, resultingB,
11 match, strategy] => mergeOperator[resultingB,
12 mergedA, resulting, match, strategy]
13 }

Code 9: Associative property in Alloy

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 10, October 2017

ISSN (Online): 2409-4285 www.IJCSSE.org Page: 223-232

Tab 1: The result of algebraic properties analysis

In [45], a verification approach for UML Class Diagrams

is presented. The Alloy is applied in order to verify

whether Class Diagrams are in compliance with UML

metamodel properties. For this, the specifications in

alloy are translated for enabling high-level modeling of

object-oriented systems. However, this work does not

define an simplified meta- model, neither composes

UML profiles. At first glance, our approach differs from

[46] in the sense that we model and verify UML profile

metamodel, instead of state machines. In contrast, our

approach specifies a formal model both of UML profile

metamodel and profile composition mechanism. To sum

up, none of the proposed works investigated (1) the lack

of formalizations in the composition process of UML

Profiles, (2) provided a clear semantics to compose the

UML Profiles, or even (3) simplified the UML profile

metamodel.

5. CONCLUSION

This paper presented an extension of UML profile

metamodel, a composition mechanism and their

formalization in Alloy. Some algebraic properties are

listed and used to analyze the composition mechanism.

Moreover, we explain how UML profiles can be

specified in Alloy and how composition of UML profiles

can be verified in the Alloy Analyzer. An initial UML

extension was also presented in order to satisfy needed

of composition mechanism. We argued that to create a

profile is as important as to provide a mechanism that

should be able to put together these profiles from

different profiles by formal view. The analysis provided

in this paper is sound but not complete. Since the form of

analysis that underlies Alloy has limitations. As Alloy's

relational logic is undecidable, the Alloy Analyzer is not

able to infer, with perfect reliability, whether an

assertion is valid for every possible assignment. For

example, when scopes defined it limits the size of

instances considered to make instance finding feasible.

However, if no counterexample is found, nothing can be

inferred. There is a considerable interest in academia, the

numerous conferences and workshops devoted to this

topic have increased, and industry in domain specific

language, in particular to profiles. However, any

initiative to create a formal approach of these UML

variants. Alloy allowed us to formalize the UML profile

metamodel and the composition mechanism operation.

Some properties of the composition mechanism were

analyzed in order to improve its knowledge and using.

We observe that use of formal modeling language may

pave the way towards a better formalization and

understanding of modeling language. So, we suggest the

definition of a semantic formal to all elements specified

in UML metamodel. Lastly, the issues outlined

throughout the paper may encourage other researchers to

explore our study, as well as develop innovative

techniques to minimize the side-effects of improper

composition of software design models.

ACKNOWLEDGMENTS

Insert acknowledgment, if any. The preferred spelling of

the word “acknowledgment” in American English is

without an “e” after the “g.” Use the singular heading

even if you have many acknowledgments. Avoid

expressions such as “One of us (S.B.A.) would like to

thank” Instead, write “F. A. Author thanks”

Sponsor and financial support acknowledgments are also

placed here.

REFERENCES

[1] OMG. Unified Modeling Language: Infrastructure,

version 2.5. USA: Object Management Group, 2015.

[2] M. Chaudron, W. Heijstek, and A. Nugroho, "How

effective is UML modeling?", Software and Systems

Modeling, Vol. 11, 2012, pp. 571-580.

[3] S. Mahmood, and R. Lai, "Re-UML: a component

based system requirements analysis language", The

Computer Journal, Vol. 56, No. 7, 2012, pp. 901-922.

[4] OMG. Systems Modeling Language, version 1.4. USA:

Object Management Group, 2015.

[5] OMG. UML Testing Profile, version 1.2., USA: Object

Management Group, 2013.

[6] K. Farias, "Empirical Evaluation of Effort on

Composing Design Models". PhD thesis, Department of

Informatics, PUC-Rio, Rio de Janeiro, Brazil, 2012.

[7] K. Farias, A. Garcia, K. Whittle, C. Flacha Garcia

Chavez, and C. Lucena, "Evaluating the effort of

231

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 10, October 2017

A. B. Santoso et. al

composing design models: a controlled experiment",

Software & Systems Modeling, Vol. 14, pp. 1349-1365,

2014.

[8] D. Kolovos, L. Rose, A. García-Domínguez, and R.

Paige, The Epsilon Book, URL:

http://eclipse.org/epsilon/doc/book/, 2015.

[9] J. Whittle P. and Jayaraman, "Synthesizing hierarchical

state machines from expressive scenario descriptions",

ACM Transactions on Software Engineering

Methodology, Vol. 19, No. 3, pp. 8:45, 2010.

[10] J. Whittle, P. Jayaraman, A. Elkhodary, and J. A. Ana

Moreira, "Mata: A unified approach for composing

UML aspect models based on graph transformation",

Transactions on Aspect-Oriented Software

Development, 2009.

[11] K. Farias, L. Gonçales, M. Scholl, T. Oliveira, and M.

Veronez, "Toward an Architecture for Model

Composition Techniques." in 27th International

Conference on Software Engineering and Knowledge

Engineering, 2015, pp. 656-659.

[12] F. Fleurey, R. Reddy, R. France, B. Baudry, S. Ghosh,

and M. Clavreul "Kompose : A generic model

composition tool", 2015.

[13] A. Gómez, J. Merseguer, E. Di Nitto, and D. A.

Tamburri, "Towards a UML profile for data intensive

applications" in proceedings of the 2nd International

Workshop on Quality-Aware DevOps, 2016, pp. 18-23.

[14] P. Oleynik, and V. I. Gurianov, "Uml-profile for

metamodel-driven design of database applications",

Journal of Computer Science, Vol. 3, No. 11, 2016.

[15] T. Basso, L. Montecchi, R. Moraes, M. Jino, and A.

Bondavalli, " Towards a uml profile for privacy aware

applications", in IEEE International Conference on

Computer and Information Technology,2015 , pp. 371-

378.

[16] J. Bézivin, S. Bouzitouna, M. Fabro, M. P. Gervais, F.

Jouault, and D. Kolovos, "A Canonical Scheme for

Model Composition." in European Conference on

Model Driven Architecture - Foundations and

Applications, 2006, pp. 346-360.

[17] D. Jackson, Software Abstraction: Logic, Language,

and Analysis. MIT Press, 2006.

[18] D. Jackson. "Alloy: a Lightweight Object Modelling

Notation", ACM Transactions on Software Engineering

and Methodology, Vol. 11, pp. 256-290, 2002.

[19] F. Mostefaoui, and J. Vachon. "Verification of aspect-

uml models using alloy", in proceedings of the 10th

International Workshop on Aspect-Oriented Modeling,

2007, pp. 41-48.

[20] A. Zito, J. Dingel, "Modeling uml 2 package merge

with alloy", in proceedings of the 1st Alloy Workshop,

2006, pp. 154-164

[21] T. Massoni, R. Gheyi, and P. Borba, "A UML Class

Diagram Analyzer", in Third Workshop on Critical

Systems Development with UML, 2004, pp. 100-114.

[22] R. Bourdeau, and B. Cheng, "A Formal Semantics for

Object Model Diagrams". IEEE Transactions on

Software Engineering, 1995, pp. 799-821.

[23] G. Dennis, "TSAFE: Building a Trusted Computing

Base for Air Traffic Control Software". M.S. thesis,

MIT, USA, 2003.

[24] G. Dennis, R. Seater, R. Rayside, and D. Jackson,

"Automating Commutativity Analysis at the Design

Level", in proceedings of ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2004,

pp. 165-174.

[25] ISO, Information Technology - Z Formal Specification

Notation - Syntax, Type System and Semantics.

International Standard ISO/IEC 13568, 2002.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.

[27] P. A. Bernstein, M. Jacob, J. Pérez, G. Rull, and J. F.

Terwilliger, "Incremental mapping compilation in an

object-to-relational mapping system", in proceedings of

the 2013 ACM SIGMOD International Conference on

Management of Data, 2013, pp. 1269-1280.

[28] P. Shvaiko, and J. Euzenat, "Ontology matching: State

of the art and future challenges", IEEE Transactions on

Knowledge and Data Engineering, Vol. 25, No. 1,

2013, pp. 158-176.

[29] M. Wimmer, A. Schauerhuber, G. Kappel, W.

Retschitzegger, W. Schwinger, and E. Kapsammer. "A

survey on UML-based aspect-oriented design

modeling" ACM Computing Surveys, Vol. 43, No. 4,

2011, pp.28-33.

[30] K. Oba, H. Wada, and J. Suzuki, "Leveraging early

aspects in end-to-end model driven development for

non-functional properties in service oriented

architecture" Journal of Database Management, Vol.

22, 2011, pp.93-123.

[31] T.C. Lethbridge, V. Abdelzad, M. Husseini Orabi, A.

Husseini Orabi, and O. Adesina, "Merging Modeling

and Programming Using Umple", In Margaria, T. and

Steffen, B. (eds.), Leveraging Applications of Formal

Methods, Verification and Validation: Discussion,

Dissemination, Applications: 7th International

Symposium, 2016, p. 187-197.

[32] Y. Nishimura, and K. Maruyama, "Supporting merge

conflict resolution by using fine-grained code change

history" in IEEE 23rd International Conference on

Software Analysis, Evolution, and Reengineering,

2016, pp. 661-664.

[33] D. Wang, Y. Yang, and Z. Mi, "A genetic based

approach to web service composition in geodistributed

cloud environment", Computers & Electrical

Engineering, Vol. 43, 2015, pp. 129-141.

[34] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad,

"A survey on trust and reputation models for web

services: Single, composite, and communities",

Decision Support Systems, Vol. 74, 2015, pp. 121-134.

[35] A. N. Perez, B. Rumpe, S. Volkel, and A. Wortmann,

"Composition of heterogeneous modeling languages",

in Model-Driven Engineering and Software

Development: Third International Conference,

MODELSWARD, pp. 45-66, 2015.

[36] M. Misbhauddin, and M. Alshayeb, "Extending the uml

use case metamodel with behavioral information to

232

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 6, Issue 10, October 2017

A. B. Santoso et. al

facilitate model analysis and interchange", Software &

Systems Modeling, Vol. 14, No. 2, 2015, pp. 813-838.

[37] D. Strüber, J. Rubin, T. Arendt, M. Chechik, G.

Taentzer, and J. Plöger, "Rulemerger: automatic

construction of variability-based model transformation

rules", in International Conference on Fundamental

Approaches to Software Engineering, 2016, pp. 122-

140.

[38] K. Lano, and S. Kolahdouz-Rahimi,

"Modeltransformation design patterns", IEEE

Transactions on Software Engineering, Vol. 40, No. 12,

2014, pp. 1224-1259.

[39] L. Goncales, K. Farias, M. Scholl, T.C. Oliveira, and

M. Veronez, "Model comparison: a systematic mapping

study", in The 27th International Conference on

Software Engineering and Knowledge Engineering,

2015, pp.546-551.

[40] L. Goncales, K. Farias, M. Scholl, M. Veronez, and

T.C. Oliveira, "Comparison of design models: A

systematic mapping study.", in International Journal of

Software Engineering and Knowledge Engineering,

Vol. 25, 2015, pp. 1765-1770.

[41] J. Rubin, and M. Chechik, "N-way model merging", in

proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, 2013, pp.301-

311.

[42] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and

M. Ceccato, "How developers' experience and ability

influence web application comprehension tasks

supported by uml stereotypes: A series of four

experiments", IEEE Transactions on Software

Engineering, Vol. 36, No. 1, 2010, pp. 96-118.

[43] S. Clarke, "Composition of Object-Oriented Software

Design Models", PhD thesis, School of Computer

Applications, Dublin City University, Dublin, Irland,

2001.

[44] S. Friedenthal, A. Moore, and R. Steiner, A practical

guide to SysML: the systems modeling language,

Morgan Kaufmann, 2014.

[45] A. Cunha, A. Garis, and D. Riesco, "Translating

between alloy specifications and UML class diagrams

annotated with OCL", Software & Systems Modeling,

Vol. 14, No. 1, 2015, pp. 5-25.

[46] A. Garis, A. C. R Paiva, A. Cunha, and D. Riesco,

"Specifying UML Protocol State Machines in Alloy". in

Integrated Formal Methods: 9th International

Conference, 2012, pp-312-326.

[47] K. Farias, "Composição de UML Profiles", Faculdade

de Informática, Pontifícia Universidade Católica do Rio

Grande do Sul (PUC-RS), Rio Grande do Sul, Brasil.

[48] K Farias, A Garcia, C. Lucena, Effects of Stability on

Model Composition Effort: an Exploratory Study,

Software & Systems Modeling, 13(4):1473-1494, 2014.

[49] K. Oliveira, T. Oliveira, "Model Comparison: A

Strategy-Based Approach", 20th International

Conference on Software Engineering and Knowledge

Engineering, pages 912-917, 2008.

[50] K. Farias, Empirical Evaluation of Effort on

Composing Design Models, 32nd ACM/IEEE

International Conference on Software Engineering-

Volume 2, pages 405-408, 2010.

[51] K. Farias, A. Garcia, J. Whittle, C. Lucena, Analyzing

the Effort of Composing Design Models of Large-Scale

Software in Industrial Case Studies, In: Proceedings of

the 16th International Conference on Model-Driven

Engineering Languages and Systems (MODELS'13),

pages 639-655, Miami, USA, September 2013.

[52] E. Guimaraes, A. Garcia, K. Farias, On the Impact of

Obliviousness and Quantification on Model

Composition Effort, In: Proceedings of the 29th

Symposium On Applied Computing (SAC.14),

Gyeongju, Korea, March, 2014.

[53] K. Farias, Analyzing the Effort on Composing Design

Models in Industrial Case Studies, In: 10th International

Conference on Aspect-Oriented Software Development

Companion (AOSD'11), pages 79-80, Porto de

Galinhas, Brazil, 2011.

	Tab 1: The result of algebraic properties analysis

