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ABSTRACT 

Global software development teams can collaboratively 

create Unified Modeling Language (UML) profiles, the 

primary mechanism for defining domain-specific variants 

on top of the UML. Usually, parts of UML profiles are 

separately elaborated to speed up the UML tailoring 

process, but at sometimes the parts built in parallel need to 

be brought together to construct a full UML profile. 

Although many model composition techniques have been 

proposed in the last decades, no one deals with issues 

required to combine UML profiles, e.g., matching and 

integration of UML stereotypes. Consequently, little is 

known about how to support the composition of UML 

profiles. Even worse, academia and industry have 

overlooked the elaboration of composition methods to 

support the integration of UML profiles, as well as the 

formal representation of such methods. This study, 

therefore, presents a composition mechanism, as well as 

introduces a lightweight UML extension to support the 

specification of composition relationships between UML 

profiles. The semantics of the extension and mechanism 

proposed was carefully represented in Alloy, a formal 

modeling language based on first-order logic. Then, we 

used the Alloy Analyzer to check the specification 

generated in Alloy for some specific algebraic properties, 

including idempotency, uniqueness, commutativity, and 

associativity. 

 

Keywords: Alloy, Model Composition, UML, UML profile. 

1. INTRODUCTION 

The Unified Modeling Language (UML) is a general 

purpose visual modeling language for specifying, 

constructing and documenting the artifacts of software 

systems that can be used with all major application 

domains and implementation platforms [1]. It has been 

widely used and adopted by both industry and academia as 

a standard the modeling language for describing software 

systems. In [2], Chaudron and colleagues reveal that the 

UML is the de facto standard for object-oriented software, 

and has been widely used for representing design designs 

through a multi-view approach. According to [1], the 

UML seeks to advance the state of the industry by 

enabling object visual modeling tool interoperability. For 

this, the UML specification provides a set of the human-

readable notation elements, as well as providing 

lightweight mechanisms to fit it into particular domain 

application. 

Specific platform and domain application need 

terminology, different notations, constraints and semantics 

in which the UML is often unable to represent them using 

its default elements. Thus, UML provides extension 

mechanisms, e.g., UML profiles, that come up with 

capabilities that allow metaclasses to be extended to adapt 

them for different purposes [1], including the ability to 

tailor the UML metamodel for different platforms (such as 

Python or NodeJS) or domains (such as Health care, 

Educational, finance, or even real-time, data-intensive 

applications). 

In practice, UML profiles are formed by a set of 

stereotypes, tagged values, and constraints, which are able 

to tailor UML elements to fit the needs of specific 

platform or domain, preserving the semantics of the 

default elements. Examples of UML would be: RE-UML, 

a profile for component-based system requirements 

analysis [3]; SysML, a general-purpose modeling language 

for systems engineering [4]; UML2TP, a profile for 

designing, visualizing, specifying, analyzing, constructing, 

and documenting the artifacts for model-based testing 

approaches [5]. 

Profile composition can be defined as a set of activities to 

be performed over two input profiles, PA (the receiving 

profile) and PB (the merged profile) to produce an output-

composed model, PAB, the resulting profile. In other words, 

the composition of PA and PB can be understood as the 

integration of the content of PA and PB so that PAB can be 

produced. 

In global software development context, for example, 

separate development teams may concurrently work on 
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partial views of an overall UML profile for allowing team 

members to concentrate on the parts more relevant to them. 

However, at sometimes the parts created in parallel need to 

bring together to create a full UML profile. For this reason, 

many model composition techniques have been proposed 

in the last decades [6, 7], e.g., Epsilon [8], MATA [9, 10], 

MoCoTo [11], and Kompose [12]. Nevertheless, none of 

them deals with issues required to combine UML profiles, 

e.g., matching and integration of UML stereotypes. 

Although the use of UML profile has widely increased in 

different research areas (e.g., [5, 13, 14, 15]), a formal 

semantics is still severally lacking. 

Consequently, little is known about how to support the 

composition of UML profiles. Even worse, academia and 

industry have overlooked the elaboration of composition 

methods to support the integration of UML profiles, as 

well as the formal representation of such methods. In [16], 

the authors reinforce that while model transformation has 

been researched and well documented and achieved 

important results in the field of model-driven software 

development, model composition needs further 

investigations and efforts to support the composition of 

domain-specific languages. In addition, given that profile 

composition can been as an operation, nothing has been 

done to evaluate whether it holds some algebraic 

properties This study, therefore, presents a composition 

mechanism, as well as introduces a lightweight UML 

extension to support the specification of composition 

relationships between UML profiles. The semantics of the 

extension and mechanism proposed was carefully 

represented in Alloy [17, 18], a formal modeling language 

based on first-order logic. That is, we explain how UML 

profile metamodel can be specified in Alloy. Then, we 

used the Alloy Analyzer3 to check the specification 

generated in Alloy for some specific algebraic properties, 

including idempotency, uniqueness, commutativity, and 

associativity. We have chosen the Alloy language because 

is based on set theory, first order logic, and is strongly in 

influenced by object-oriented modeling notations. It is the 

input language to Alloy Analyzer (the tool support), which 

has embodied an over-the-shelf SAT solver. The Alloy 

Analyzer is a constraint solver, which translates 

constraints to be solved from Alloy into 3Alloy Analyzer: 

http://alloy.mit.edu/alloy/boolean constraints [18, 17]. 

Additionally, the Alloy language and its tool support have 

been successfully used for modeling: (i) aspect oriented 

models [19]; (ii) composition of UML models [20]; (iii) 

formalization of object oriented models [21, 22]; (iv) 

modeling critical system, including air-traffic control [23] 

and a proton therapy machine [24]. 

Contributions of this Study. Formal specification and 

automated analysis of UML profile metamodel and profile 

composition mechanism involve answering several 

questions. What criteria should we use for analyzing them? 

How can we analyze these criteria? Once UML profile 

metamodel is defined using natural language, how can we 

define it formally? How can we identify correspond parts 

between input profiles? What activities should we perform 

to merge profiles? Our contributions are derived from the 

answers of these questions. In particular, some 

contributions are listed as follows: 
 

1. A extension of UML profile metamodel. We 

provide a simple extension, inserting some specific 

constructs into UML metamodel to support the 

expression of composition relationship. These 

constructors allow assigning composable features 

to profile metamodel constructs. 

2. A formal semantic for UML profile metamodel. We 

translate UML profile specification in Alloy. Since 

we can analyze UML profile based on the 

metamodel level, our analysis can be extended to 

other profiles. 

3. A profile composition mechanism and its 

formalization. We provide a composition 

mechanism based on strategies, including matching 

and composition one. Moreover, we verify some 

algebraic properties of this relationship. Thus, 

readers can make use of this mechanism knowing 

its properties and using it in better way. 
 

The remainder of the paper is organized as follows. 

Section 2 describes Alloy modeling language. Section 3 

describes the proposed extension of the UML profile 

metamodel. Section 4 presents the modeling of the 

proposed composition mechanism of UML Profiles with 

Alloy. Section 5 contrasts our work with the current 

literature. Finally, Section 6 presents some concluding 

remarks and future work. 

2. ALLOY LANGUAGE IN A NUTSHELL 

Alloy is a formal modeling language strongly typed, based 

on first-order logic, and set theory. It was deeply inspired 

on formal language Z [25] and influenced by object 

modeling notations logic. With Alloy and Alloy Analyzer, 

it is possible to represent models through graphical and 

textural structures. The Alloy Analyzer can generate a 

model diagram from an Alloy textual model, so we can use 

this feature to help understand large models, or to see how 

a model grows as new signatures are added. An Alloy 

model consists of the following elements [19, 17]: 
 

1. Signature. It defines a set of atoms and can have a 

collection of declaration of relations represented as 

fields over defined sets of signatures. It is similar to 

classes in object-oriented language. Signature can 

extend other signature and has fields (attributes in 

object orientation paradigm). It is used for defining 

new types. 

http://alloy.mit.edu/alloy/boolean
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2. Facts. The constraints of a model that should be 

always held are recorded as facts. In other words, 

they are constraints on fields and signature. A model 

can have any number of facts, being identified by the 

keyword fact. For instance, the constraints defined in 

UML metamodel may be expressed by facts. 

3. Functions. They are similar to methods in object-

oriented language. Thus, they have zero or more 

declarations for parameters, and a declaration to 

specify the types of return parameter. 

4. Predicates. They are actually functions zero or more 

declarations for parameters, which can return only 

Boolean values. They are used for expressing 

constraints, which can be applied for a model when 

needed. With predicates, we can check whether 

instances of a model satisfy their built-in constraints. 

5. Assertions. An assertion is a constraint that is 

intended to be valid. The Alloy Analyzer checks 

whether this constraint is always held. Otherwise, the 

Alloy Analyzer returns a counterexample, in which 

the constraint does not hold. Using assertion, for 

instance, we can check whether the composition can 

produce a profile as a result.  

6. Module. The Alloy models can be grouped into 

modules. These modules are similar to package in 

object-oriented language. Once a module has been 

defined, it can import other modules to access their 

contents. 
 

The Alloy Analyzer is a constraint solver, which translates 

constraints to be solved from Alloy into Boolean 

constraints, as aforementioned. It makes two kinds of 

analyses, such as: (i) check for satisfying instance of the 

model (i.e., once defined a profile, does it represent a 

sound UML profile metamodel instance?); (ii) search for 

scenarios in which assertions are not held. Due to the 

undecidability of such analysis, they are parameterized by 

a scope, which limits the size of instances considered. 

Since the search for a solution is limited by a scope, the 

absence of an instance does not automatically show that a 

formula is inconsistent [17]. 

3. EXTENDING THE UML METAMODEL 

The UML profile metamodel is defined according to the 

UML metamodeling approach. Thus, a metamodel is used 

for specifying its syntax and semantics. The typical role of 

a metamodel is to define the semantics for how the 

elements of UML profiles get instantiated. In this work, 

we present a simple extension for UML metamodel and 

consider a simplified version of the UML profile 

metamodel shown in Figure 1. The simplification and 

UML extension are both explained, as follows:  

1. Alloy can express multiple inheritances. In the UML 

metamodel, the classes Property and Parameter have 

an inheritance relationship with MultiplicityElement 

and TypedElement. To simply, we combined 

MultiplicityElement and TypedElement, creating a 

new metaclass, so-called TypedMultiplicityElement 

[20]. 

2. Alloy does not support recursion. This implies, for 

example, that we cannot represent classes contained 

by other classes; likewise, profiles that are contained 

by other profiles. 

3. We extend the UML metamodel to denote our 

approach. For this, ComposableElement extends 

Element (from UML) and represents the profile 

elements that can participate of a composition 

relationship. They are Class, Association, 

Enumeration, Parameter, Stereotype, Package, among 

others. For each ComposableElement is defined a 

merge rule, which is responsible for merging it. 

CompositeElement represents the 

ComposableElement that contains another 

ComposableElement. For instance, Profile contains: 

(i) ownedMembers, that are CompositeElement; (ii) 

ownedStereotypes, that are Stereotypes. The 

extension is based on the Composite pattern that 

allows you to build complex objects by recursively 

composing similar objects in a three-like manner. 

This pattern was previously described by Erich 

Gamma and colleagues in [26].  
 

This simplification is due to Alloy suffers from poor 

performance when analyzing models with many signatures 

and fields. Because the problem is NP-complete one. We 

do not remove too much detail in order to ensure that our 

analysis produces meaningful results. Moreover, the small 

scope hypothesis" [17] asserts that if an assertion is invalid, 

it probably has a small counterexample (in a small scope). 

4. MODELLING ALLOY 

This section presents the modeling of UML profile 

composition using Alloy. For this, Section 4.1 introduces 

the modeling UML profile metamodel in Alloy. Next, 

Section 4.2 describes the composition mechanism in Alloy. 

Then, Section 4.3 discusses the analysis of the 

composition mechanism using Alloy. 

4.1 Modelling UML Profile in Alloy 

We represent the meaning of the elements of UML profile 

metamodel using Alloy models. After mapping the 

proposed UML profile metamodel (Figure 1) into the 

Alloy constructs (described in 2), an automatic analysis 

might be done using Alloy Analyzer. Due to space 

constraints, we show only part of the modeling. The 

multiplicities 1, 0..1, 0..* and 1..* found in UML were 

mapped to the following Alloy key-words one, lone, set 
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and some, respectively. The associations between UML 

profile metamodel elements are translated into relations 

(fields) in Alloy. The modeling of stereotype and profile is 

showed as follows. 

 

 

 

 

Fig. 1. Simplified UML profile metamodel and an extension for UML metamodel. 

  

 

Stereotype. It is modeled (see Code 1) as a signature that 

extends the signature Class (line 1). The field icon 

represents the association between Stereotype and Image 

(line 2). We denote some constraints applied to Stereotype, 

as follows: (i) a Stereotype may only generalize or 

specialize another Stereotype (lines 3); (ii) so that all 

Image owned by a Stereotype to be distinguishable, they 

must have unique content, location and format (lines 4-5); 

(iii) each Stereotype must be owned by exactly one profile 

(line 6); (iv) Stereotype names should not clash with 

keyword names for the extended model element (lines 7-8). 

 

 

 

 

1 sig Stereotype extends Class { 
2   icon: set Image }{ 
3   all a: Stereotype | this.superClass in Stereotype 
4    all a, b: icon | (a.@content = b.@content && 

5      b.location = b.location && a.format = b.format) => a = b 
6    one p: Profile | this in p.ownedStereotypes 
7    all a: Element, b:Stereotype | 
8     (a not in Stereotype) => (b.@name = a.@name) 
9  } 

Code 1 : Stereotype in Alloy 

 

 

 

 

 

 

 

Profile. It is modeled (see Code 2) as a signature that 

extends the signature Package (line 1) and has three fields: 

the ownedStereotypes represents the association between 

Profile and Stereotype (line 2); ownedMembers and 

profileApplication that are inherited from Package. One or 

more profiles may be applied at will to a package that is 
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created from the same metamodel, which is extended by 

the profile. For this, profileApplication defines each profile 

that is applied to a Package [1]. So, each profile, that is 

applied to a Package, must be owned by exactly one 

profile (line 4). 
 

1  sig Profile extends Package { 
2    ownedStereotypes: set Stereotype 
3  }{ 
4    one p: ProfileApplication | this in p.appliedProfile 
5  } 

Code 2: Profile in Alloy 

4.2 Composition Mechanism in Alloy 

For merging two profiles is needed to: analyzing the input 

profile elements in order to verify if they are models of 

valid type (Step 1); defining what profile elements are 

equivalent (Step 2); merging the equivalent profile 

elements based on a match strategy and composition 

strategy (Step 3).  

Step 1. The input profile elements are basically checked if 

they are some ComposableElement valid. For example, in 

the matchOperator predicate (see Code 3) is checked if a 

and b are ComposableElement (line 1). 

Step 2. Composition requires that two 

ComposableElements are equivalent, thus we created the 

matchOperator (see Code 3) for computing such 

equivalence. It takes two ComposableElements and one 

match strategy as parameters, and returns true if, and only 

if, they are equivalent. We define three kinds of match 

strategy that contrast between them by the number of 

syntactic properties of UML profile metamodel elements, 

which they take into account during the comparison of two 

elements, such as: default, only name of elements is 

considered; (ii) partial, a set of syntax property is 

considered; (ii) complete, all syntax property is considered. 

The matchOperator predicate has three parameters (line 

1{2), if c is instance of DefaultMatchStrategy, then a and b 

will be passed as parameter to the predicate 

defaultMatchStrategy (line 3). In line 4 and 5, it acts 

similarly. 
 

 

1  pred matchOperator(a: ComposableElement, b: ComposableElement, 
2    c: MatchStrategy){ 
3    (c in DefaultMatchStrategy && defaultMatchStrategy[a, b]) || 
4    (c in PartialMatchStrategy && partialMatchStrategy[a, b]) || 
5    (c in CompleteMatchStrategy && completeMatchStrategy[a, b]) 
6  } 

 
Code 3: Verifying equivalence 

Step 3. We use composition strategy for determining how 

the composition must be performed. For each defined 

composition strategy, there is a set of merge rules that 

merge the profile elements according to the strategy. The 

strategies are: override, union, and merge. (i) (override 

specifies that every receiving profile element must 

override their equivalents in the merged profile. Each 

merged profile element that does not have equivalent in 

the receiving profile are copied to output model without 

modification; (ii) union defines that every receiving and 

merged profile elements must be added to output model; 

(iii) merge defines that every equivalent profile elements 

must be combined to obtain a integrated view of them. We 

present only override strategy in Alloy. The predicate, 

overrideStrategyMerge (see Code 4), has three 

ComposableElement as parameters: a is the receiving 

profile element; b is the merged profile element; c 

represents the resulting profile element, the result of 

merging between a and b (line 1-2). The predicate returns 

true if, and only if, the input profile elements are Class, 

Association, Stereotype, Enumeration, or Interface, and 

their merge rules return true (e.g., stereotypeOSMergeRule 

would be a stereotype merge rule). 

 
1  pred overrideStrategyMerge(a: ComposableElement, 
2    b: ComposableElement, c: ComposableElement){ 
3    (a in Stereotype  && b in Stereotype && 
4       stereotypeOSMergeRule[a, b, c]) || 
5    (a in Class && b in Class && 
6       classOSMergeRule[a, b, c]) || 
7    (a in Association && b in Association && 
8       associationOSMergeRule[a, b, c])  || 
9    (a in Enumeration && b in Enumeration && 
10      enumerationOSMergeRule[a, b, c]) || 
11   (a in Interface   && b in Interface   && 
12      interfaceOSMergeRule[a, b, c]) 
13 } 

 

Code 4: Override strategy in Alloy 

Moreover, the compositionRelationship predicate (see 

code 5) is responsible for merging receiving and merged 

profile according to particular composition strategy. It 

returns true if, and only if, the composition is valid. 

Otherwise, it returns false. For this, the merge predicate 

(line 6) must return true. 

4.2 Alloy Analysis of Model Composition 

Mechanism 

Each analysis performed involves solving a constraint, 

finding an instance or a counterexample. An instance is a 

scenario in which both the facts and the predicates hold. 

On the other hand, a counterexample is an instance in 

which the facts hold, but the assertion does not, or the facts 

1  pred compositionRelationship( 
2    receiving: CompositeElement, 
3    merged: CompositeElement, 
4    resulting: CompositeElement, 
5    strategy: CompositionStrategy ){ 
6    merge[receiving, merged, resulting, strategy] 
7  } 

Code 5: Composition relationship in Alloy 
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do not hold, so assertion fails to follow from the facts. For 

finding an instance or a counterexample, the Alloy 

Analyzer assigns values to the variables of the constraint, 

and then evaluates for true or false. 

Checking the algebraic properties. Having translated 

UML extension for model composition and the model 

composition operators in terms of the objects manipulated, 

we now check some algebraic properties. We may create 

some expectations about the composition of UML profiles. 

For example, should composing a model with itself return 

the same model? Knowing what algebraic properties the 

composition relationship holds, it is useful information for 

software designer, as they can use composition 

relationship more systematically, rather than based on 

intuition. Thus, the goal of our analysis was verifying 

whether the composition mechanism holds some algebraic 

properties and automatically finding valid snapshots of 

models. We checked our composition mechanism for the 

following properties described below (ma, mb and mb are 

models of the same type): 
 

  receiving, merged, resulting: Profile, 

  match: MatchStrategy, 8 strategy: CompositionStategy 
merge(receiving, merged, resulting, match, strategy) = 
merge(receiving, merged, resulting, match, strategy) 
 

 

In our Alloy formalization, the property is expressed by 

the Code 6, in which mergeOperator is the predicate 

responsible for checking the composition. 

DefaultMatchStrategy and OverrideStrategy specify a 

particular match strategy and a merge strategy, 

respectively. 

Uniqueness: this property verifies if the composition of 

two models, profile A and profile B, generates one 

possible output model. The composition relationship 

should hold this property; otherwise, it indicates that there 

are some problems (e.g., improper specification of merge 

rules) in the definition of the mechanism. Applying the 

uniqueness property is possible to verify problems with the 

formal model, since any counterexample will indicate 

problems with the formal model. In our approach, this 

property is expressed in predicate logic as: 
 

  receiving, merged, resultingA, resultingB: Profile, 

  match: MatchStrategy, 8 strategy: CompositionStategy 

merge(receiving, merged, resultingA, match, strategy) ˄ 
merge(receiving, merged, resultingA, match, strategy) → 
match(resultingA, resultingB, match) 
 

In Alloy, we express it through Code 7, in which the 

mergeOperator is the predicate responsible for checking 

the composition, PartialMatchStrategy and 

OverrideStrategy specify a particular match strategy and a 

particular merge strategy, respectively. 

Commutativity: this property is a widely used 

mathematical term that refers to the ability to change the 

order of something, without changing the result produced. 

Once the property holds, the composition relationship may 

be established in any direction between the models. For a 

given binary function f:D×D->K, it is said to be 

commutative if, and only if, f(x,y) = f(y,x) for every x, y   
D. This property is expressed in predicate logic as: 
 

   receiving, merged, resulting: Profile, 

   match: MatchStrategy, 8 strategy: CompositionStategy 
merge(receiving, merged, resulting, match, strategy) = 
merge(merged, receiving, resulting, match, strategy) 
 

In Alloy, we represented it through Code 8, in which 

mergeOperator is the predicate responsible for checking 

the composition, PartialMatchStrategy and 

OverrideStrategy specify a particular match strategy and a 

particular merge strategy, respectively. 

Associativity: The associative property is closely related to 

the commutative property. In this property, the order of 

operations does not matter as long as the sequence of the 

operands is not changed. Again, this property is an 

important for composition mechanism should have, when 

it is used to build domain specific language. In short, even 

though the models were rearranged, the result of the 

composition is not altered. Formally, a binary operation f 

on a set D is associative if, and only if, it satisfies the 

associative law: f(f(x,y),z) = f(x,f(y,z)) for all x, y, z    D. 

This property is expressed in predicate logic as: 
 

   receiving, merged, mergedA, resulting, resultingA, resultingB : Profile, 

1  assert  mergeOperatorIsUnique { 
2    all receiving, merged, resultingA, resultingB: Profile | 
3    all match: PartialMatchStrategy | 
4    all strategy: OverrideStrategy | 
5    mergeOperator[receiving, merged, resultingA, 
6      match, strategy] && 
7    mergeOperator[receiving, merged, resultingB, 
8      match, strategy] => 
9    matchOperator[resultingA, resultingB, match] 
10 } 

Core 7: Uniqueness property in Alloy 

1  assert mergeOperatorIsIdempotency { 
2    all a, c : Profile | all match: DefaultMatchStrategy | 
3    all strategy: OverrideStrategy | 
4    mergeOperator[a, a, c, match, strategy] => 
5    mergeOperator[a, a, c, match, strategy] 
6  } 

Code 6: Idempotency property in Alloy 

1  assert mergeOperatorIsCommutative { 
2    all a, b, c : Profile 
3    | all match: DefaultMatchStrategy 
4    | all strategy: OverrideStrategy | 
5    mergeOperator[a, b, c, match, strategy] => 
6    mergeOperator[b, a, c, match, strategy] 
7  } 
 

Code 8: Commutative property in Alloy 
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   match: MatchStrategy, 8 strategy: CompositionStategy 
merge(merge(receiving, merged, resultingA, match, strategy),  
mergedA, resulting, match, strategy) =  
merge(receiving,  
      merge(merged, mergedA, resultingB, match, strategy),  
              resulting, match, strategy) 
 

Code 9 represented it in Alloy, in which mergeOperator is 

the predicate responsible for checking the composition, 

PartialMatchStrategy and OverrideStrategy specify a 

particular match strategy and a particular merge strategy, 

respectively. 

As the use of UML profiles for building domain specific 

languages substantially grows, so it stimulates, 

consequently, the need for manipulating them and 

encouraging the relationship for each other. For instance, 

the UML specification [1] defines some relationship such 

as: import, merge, apply, and so on. However, the lack of 

standardized formal semantics for the language does not 

stimulate the development of tools supporting automatic 

analysis and verification of the profiles. The analyses were 

performed using version 4.0 of the Alloy Analyzer. Tab. 1 

shows the result of the analysis of profile composition 

based on merge (the composition strategy) according to 

three match strategy. As good way to use Alloy Analyzer 

is to start with a small scope analysis [17], so our analysis 

was limited to scope 2. Thus, it showed that the 

composition relationship is idempotency, uniqueness, 

commutativity and associativity for the override 

composition strategy. The time execution of the analysis is 

also showed in Tab. 1. 

Nevertheless, in [15] the authors proposed an UML profile 

that provides specific components and stereotypes for 

representing data security in web applications. 

Furthermore, other studies, e.g., [44], come up with a 

general-purpose modeling language to customize the UML 

for systems engineering applications. In short, all these 

approaches supply UML meta-model extension used to 

improve the UML capability in expressing domain specific 

concepts, however, none of them take into account formal 

aspects of the extensions or use formal language to 

formalize and analyze their characteristics and limitations. 

Related approaches have been developed for similar 

purposes [45, 46].  

5. RELATED WORKS 

The model composition has a central role in the Model 

Driven Engineering being applied to address significant 

problems in many research areas such as database 

integration [27, 28], aspect oriented modeling [29, 30, 52], 

merging source code [31, 32], composition of web services 

[33, 34], UML extension for model composition [35, 36], 

model transformation [37, 38], model comparison [39, 40, 

49], model composition [11, 41, 47], model stability [48], 

and composition effort [50, 51, 53].  

Even so, it still needs more investigation and efforts to (1) 

fulfill the lack of a formalization in composition of UML 

Profiles, (2) providing systematic and clear semantics to 

compose the UML Profiles, and (3) simplify the UML 

profile metamodel. Despite of some works [7, 42] focused 

on make use of operations on the design models, i.e., the 

merge, override, and union, specifically, none of them has 

applied it in the context of composition of UML profiles. 

Instead, composition operations are utilized in [7] as 

guidelines for developers compose input models to 

measure the effort, and in [42] they were utilized to 

evaluate the developers’ comprehension.  

For this, in this work, we specify three kind of 

composition strategy [43], which are implemented by 

merge rules, and determine the lacking formal semantic for 

them. Considerable researches have been done in the area 

of domain specific language to deal with platforms (such 

as Python, Java or .Net) or application domains (such as 

business or development process modeling) at a 

abstraction high-level in order to suitably handle them. In 

[13], the authors presents an UML profile called DICE. 

This profile provides personalized components that 

enables to represent specific features of Big Data 

applications properly. Moreover, in [14] the authors 

provided a UML profile in order to support the 

development of database applications. 

 

1  assert mergeOperatorIsAssociative { 
2    all receiving, mergedA, mergedB, 
3    resulting, resultingA, resultingB: Profile | 
4    all match: DefaultMatchStrategy | 
5    all strategy: OverrideStrategy | 
6    mergeOperator[receiving, mergedA, resultingA, 
7      match, strategy] && 
8    mergeOperator[resultingA, mergedB, resulting, 
9      match, strategy] && 
10   mergeOperator[receiving, mergedB, resultingB, 
11     match, strategy] => mergeOperator[resultingB, 
12     mergedA, resulting, match, strategy] 
13 } 

Code 9: Associative property in Alloy 
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In [45], a verification approach for UML Class Diagrams 

is presented. The Alloy is applied in order to verify 

whether Class Diagrams are in compliance with UML 

metamodel properties. For this, the specifications in 

alloy are translated for enabling high-level modeling of 

object-oriented systems. However, this work does not 

define an simplified meta- model, neither composes 

UML profiles. At first glance, our approach differs from 

[46] in the sense that we model and verify UML profile 

metamodel, instead of state machines. In contrast, our 

approach specifies a formal model both of UML profile 

metamodel and profile composition mechanism. To sum 

up, none of the proposed works investigated (1) the lack 

of formalizations in the composition process of UML 

Profiles, (2) provided a clear semantics to compose the 

UML Profiles, or even (3) simplified the UML profile 

metamodel. 

5. CONCLUSION 

This paper presented an extension of UML profile 

metamodel, a composition mechanism and their 

formalization in Alloy. Some algebraic properties are 

listed and used to analyze the composition mechanism. 

Moreover, we explain how UML profiles can be 

specified in Alloy and how composition of UML profiles 

can be verified in the Alloy Analyzer. An initial UML 

extension was also presented in order to satisfy needed 

of composition mechanism. We argued that to create a 

profile is as important as to provide a mechanism that 

should be able to put together these profiles from 

different profiles by formal view. The analysis provided 

in this paper is sound but not complete. Since the form of 

analysis that underlies Alloy has limitations. As Alloy's 

relational logic is undecidable, the Alloy Analyzer is not 

able to infer, with perfect reliability, whether an 

assertion is valid for every possible assignment. For 

example, when scopes defined it limits the size of 

instances considered to make instance finding feasible. 

However, if no counterexample is found, nothing can be 

inferred. There is a considerable interest in academia, the 

numerous conferences and workshops devoted to this 

topic have increased, and industry in domain specific 

language, in particular to profiles. However, any 

initiative to create a formal approach of these UML 

variants. Alloy allowed us to formalize the UML profile 

metamodel and the composition mechanism operation. 

Some properties of the composition mechanism were 

analyzed in order to improve its knowledge and using. 

We observe that use of formal modeling language may 

pave the way towards a better formalization and 

understanding of modeling language. So, we suggest the 

definition of a semantic formal to all elements specified 

in UML metamodel. Lastly, the issues outlined 

throughout the paper may encourage other researchers to 

explore our study, as well as develop innovative 

techniques to minimize the side-effects of improper 

composition of software design models. 
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