
IET Software

Research Article

UML2Merge: a UML extension for model
merging

ISSN 1751-8806
Received on 6th April 2018
Revised 16th May 2019
Accepted on 19th July 2019
E-First on 26th September 2019
doi: 10.1049/iet-sen.2018.5104
www.ietdl.org

Kleinner Farias1 , Toacy Cavalcante de Oliveira2, Lucian José Gonçales1, Vinicius Bischoff1
1Applied Computing Graduate Program (PPGCA), University of Vale do Rio dos Sinos, São Leopoldo, RS, Brazil
2COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

 E-mail: kleinnerfarias@unisinos.br

Abstract: Model merging plays a chief role in many software engineering activities, e.g. evolving Unified Modelling Language
(UML) models for adding new features. Software developers may evolve UML models using merge relationships. However,
given the growing heterogeneity of merge strategies and the UML limitations for expressing merge relationship, it is particularly
challenging for them to specify merge relationships. Consequently, developers, end up expressing improperly merge
relationships. Today, the UML can neither specify the semantics nor the order in which merge relationships must be performed.
Developers are unable to specify the semantics and order in which merge relationships must be performed. This study,
therefore, proposes UML2Merge, which is a UML extension for expressing merge relationship. The UML2Merge was evaluated
through an empirical study with 10 participants for investigating its effects on the merge effort, the correctness of merge
relationships, and the participant's acceptance. The collected data suggest that the UML2Merge is proper to express merge
relationships by requiring a low merge effort, producing elevated correctness of merge relationships, and having a high
acceptance of the participants. The results are encouraging and show the potential for using UML2Merge to express the
evolution of UML models through merge relationships.

1 Introduction
The Unified Modelling Language (UML) is the de facto standard
for object-oriented software modelling [1–3] and has been widely
used to represent evolving UML models (e.g. UML class
diagrams), especially in scenarios where model merging is
required. In collaborative software development, for example,
separate virtual teams may concurrently work on a partial model of
the overall architecture to allow developers to concentrate more
effectively on parts of the architecture relevant to them. At some
point, it is necessary to combine these models to produce a ‘big
picture’ view of the overall architecture. For this reason, a
significant body of research has been done in the field of
collaborative software modelling [4], merge conflicts [5], model
synchronisation [6], integration of heterogeneous models [7], and
integration of feature models [8].

Regardless of the application field, developers usually need to
specify how UML model elements should be combined. Bischoff
et al. [8] highlight that there may be many different ways of
combining design models. However, it is particularly challenging
to specify how to merge input models, given the growing
heterogeneity of the merge strategies, and mainly the limitations of
UML to express specific merge semantics, or even the order of
model merging. Hence, developers end up being unable to express
how the parts of the input models should be combined.

To date, the UML lacks constructs that help developers to
express merge relationships. Previous empirical studies [9, 10]
have identified a series of ambiguous and missing rules in the
UML built-in merge mechanism, namely UML package merge [3].
Although many UML extensions have been proposed over the past
years [11–13], this literature still fails, for example, to parameterise
merge relationships with specific semantics. Guessi et al. [11]
provide a thematic analysis of studies on UML extensions for
supporting aspect-oriented modelling. Still, overcoming these
challenges is crucial to address broader challenges in the context of
software development in practice. Rubin and Rinard [14] point out
some challenges related to efficient integration of software
artefacts to support ‘building a large system while controlling
interactions between all its different parts.’ Rubin and Chechik [15]

also highlight those merging design models is an NP-hard problem.
To sum up, developers end up having critical problems in
employing UML constructs to support the evolution of architecture
models using merging relationship.

This paper, therefore, presents UML2Merge, which is a UML
extension to express merge relationship. For this, we extend the
UML metamodel with a set of constructs following the open–
closed design principle [16] to ensure a conservative extension,
thereby allowing developers to extend it with specific matching
and merge semantics, e.g. override, merge, and union (but not
limited to). The UML2Merge specification is based on the UML
metamodelling standard for being more intuitive and pragmatic in
real-world settings [3]. Note that our study introduces a UML
extension rather than matching and merging strategies.

The UML2Merge was evaluated through an empirical study
with 10 participants for investigating its effects on the merge effort,
the correctness of merge relationships, and the participants’
acceptance. The collected data suggest that the UML2Merge is
appropriate to express merge relationships as it required a low
merge effort, produced a high correctness of merge relationships,
and having an elevated high acceptance of the participants. Our
initial evaluation has also shown that the extension is (i) proper to
express merge relationship and its execution order, as well as (ii)
flexible to support new match and merge strategies by making the
extension more adherent to the open–closed principle [16]. The
results are encouraging and show the potential for using
UML2Merge to express the evolution of UML models through
merge relationship.

In addition, it is important to highlight that this study is not an
attempt to address all contexts in which model merging can be
applied, since this would be extremely burdensome given the
several meanings that it can assume in different contexts, e.g.
merging of independently developed models, merging of models
with common ancestors, merge of behavioural components
(parallel and sequential merge), and weaving of aspects. Still, this
study does not seek to provide expressiveness for supporting, e.g.
join points for aspect models, even for the simple case where there
is an individual diff model. Rather, this study is motivated by the
need for specifying how UML models should be combined in

IET Softw., 2019, Vol. 13 Iss. 6, pp. 575-586
© The Institution of Engineering and Technology 2019

575

evolution scenarios. Based on this merge relationship specification,
the current tools can automate merge tasks, for instance.

The remainder of the paper is organised as follows. Section 2
introduces the main concepts and knowledge that are going to be
used and discussed throughout the paper. Section 3 presents the
proposed UML extension for representing model merging. Section
4 describes the methodology used for evaluating the UML2Merge,
and presents some results. Section 5 contrasts our work with the
current literature. Finally, Section 6 presents some concluding
remarks and future work.

2 Background
This section discusses the main terms used throughout this paper.
Section 2.1 introduces key concepts by presenting a comprehensive
example of model merging. Section 2.2 outlines the metamodelling
pattern.

2.1 Model merging

2.1.1 Merge relationship: The term merge relationship might be
briefly defined as a specification of an operation in which a set of
tasks should be performed over two input models, MA and MB, to
produce a desired merged model, MAB. MA and MB represent the
source and target of a merge relationship, respectively. MB has a
set of increments that should be accommodated into MA to
transform it into MAB. Fig. 1 illustrates a merge relationship
between MA and MB, and the role assumed by them (source and

target model). Merging MA and MB means to match MA and MB
(Section 2.1.2) for identifying their commonalities and differences.
After that, model elements of MA and MB that are equivalent
should be combined using a merge strategy (Section 2.1.3).
Evidence from previous studies (such as [17]) has shown that MA
and MB frequently suffer from conflict problems (Section 2.1.4).
Also these conflicts are often solved improperly, giving rise to
inconsistencies in the merged output model. This becomes the
practice of merging models a highly error-prone task.

2.1.2 Matching strategy: Before producing a desired merged
model, developers need to compare the input models so that the
commonalities and differences between them may be identified.
Matching strategies define the semantics about how the input
models should be compared and contrasted, identifying their
overlapping parts and differences. Developers can match the input
models in different ways, e.g. following a named-based matching
strategy [18] (default strategy), considering syntactic properties
(partial strategy), or even considering both syntactic and semantic
properties (complete strategy). To put all strategies in practice,
developers may elaborate matching rules to implement and refine
them. For example, developers might use the Epsilon Comparison
Language [19] for coding such matching rules.

After matching the input models, the next step is to put them
together. For this, merging strategies can be used. Some examples
of merging strategies are presented as follows. Note that the
definition of matching and merging strategies is beyond the scope
of this paper. This work just uses a set of merge strategies.

2.1.3 Merge strategy: Based on the overlapping points between
MA and MB, and their differences, identified by the matching
strategies, merge strategy defines how to integrate the matching
parts. We adopted (for convenience) in the proposed UML
extension (but not limited to) three merging strategies (i.e.
override, merge and union described in [20]). The matching and
merging strategies were chosen because they have been applied to
a wide range of merging scenarios [5] – evolution of design
models, ontology merging, and conceptual model merge.
Furthermore, they have been recognised as handy, helpful
heuristics in evolving architectural models (e.g. [20]). Therefore,
we present such strategies as part of the proposed UML extension
(Section 3.2). In the following, we briefly introduce these three
strategies, and assume MA and MB as the input models.

Fig. 2 illustrates an example about how the matching and
merging strategies are used to evolve a simple UML class diagram.
MA plays the role of the source model, while MB plays the role of
the target model. MB has the changes that should be inserted into
MA to produce a new version of a UML class diagram, MAB. To
generate this desired new version, MA and MB are compared to
identify their overlapping parts. The equivalence between the
model elements can be obtained by using match-by-name matching
strategies (e.g. [18, 21, 22]).

Thus, the classes MA.Researcher and MB.Researcher have
equivalent names. However, MA.Researcher is a concrete class (i.e.
Researcher.isAbstract = false), whereas MB.Researcher is an
abstract one (i.e. Researcher.isAbstract = true). The equivalent parts
and differences between model elements can be combined
following a particular merge strategy. The merge strategies
considered in our study are briefly discussed as follows:

• Override: For all pairs of corresponding elements in MA and
MB, the elements of MA should override the similar elements of
MB. The different model elements remain unchanged, i.e. they
are just inserted into the merged output model. For example,
Fig. 2 shows an example of merged model, MAB, which was
produced using the override algorithm. In this case, the class
MA.Researcher (concrete class) overrides MB.Researcher
(abstract class), producing MAB.Researcher (concrete class).

• Merge: For all pairs of corresponding elements in MA and MB,
the elements should be combined. The fusion depends on the

Fig. 1  Conceptual view of the merge relationship semantics (adapted from
[3])

Fig. 2  Illustrative example of model merging

576 IET Softw., 2019, Vol. 13 Iss. 6, pp. 575-586
© The Institution of Engineering and Technology 2019

types of model elements, i.e. the only model element of the
same type can be combined. If two model elements have same
name but different types (e.g. Component and Class), then they
cannot be merged. The model elements of MA and MB that are
not equivalent remain unchanged and are directly inserted into
the merged output model. For example, Fig. 2 depicts a merged
model, MAB, which was elaborated using the merge algorithm.
In this case, the class MA.Researcher (concrete class) and
MB.Researcher (abstract class) are merged, producing
MAB.Researcher (concrete class) with two attributes.

• Union: All pairs of corresponding elements in MA and MB are
manipulated, having their names modified, and inserted into
MAB so that their identification can be preserved. This means
that they coexist but with different identifiers or names in a
merged output model. The elements of MA and MB that are not
correspondent remain unchanged, being inserted into the merged
output model, MAB. In Fig. 2, the merged output model,
produced using union strategy, has two classes, Researcher,
which have the package name from which they come from, i.e.
MA and MB. The classes, Assistant and Professor, were just
inserted into MAB without any modification.

2.1.4 Merge conflicts and inconsistency: Merge conflicts
consist of contradictions between values assigned to the properties
of design models. Fig. 2 illustrates an example of a merge conflict.
In the source model, the class MA.Researcher is defined as a
concrete class (i.e. MA.Researcher.isAbstract = false), whereas in
the target model it is set as an abstract one (i.e.
MB.Researcher.isAbstract = true). These contradicting values
assigned to isAbstract represent a conflict that must be solved by
developers. This implies that developers should answer the
following question: should class Researcher be abstract or not?

Based on the desired merged model in Fig. 2, the correct answer
for this question would be that Researcher should be abstract – i.e.
Researcher.isAbstract = true. However, developers might assign
false. This would generate an inconsistency, which can be briefly
defined as divergences between model elements found in the
merged output model and desired merged model. Fig. 2 presents
two merged output models, which were produced using the
override strategy and merge strategy. Both models have
inconsistencies.

We can observe that the produced models using the override
and merge strategies present more problems as compared with the
desired one. First, the model produced following the override
algorithm has three inconsistencies: (i) the class Researcher is
concrete, instead of abstract; (ii) the visibility of attribute
Researcher.salary is private, instead of public; (iii) the methods
Assistant.getSalary(): int and Professor.getSalary(): float cannot
access Researcher.salary because the attribute s visibility is private.
Second, the model produced using the merge algorithm has, in
turn, two inconsistencies: (i) the class Researcher is concrete,
instead of abstract; and (ii) the method Professor.getSalary():int
cannot return a float, as would be expected.

For this, developers need to be able to specify which merge
strategy should be applied, and in which order they should be
performed when two (or more) merge relationships are defined. If
the merge semantics and its execution orders are not properly
expressed, the model merging can become an error-prone and time-
consuming task [20]. In fact, model elements of MA and MB can
conflict with each other and developers need to be able to decide
how the conflicts should be solved. Conflicts cannot be avoided at
this stage, they can only be resolved.

Unfortunately, developers tend to overlook conflict problems,
given the problem at hand. Consequently, a model with
inconsistencies, MCM, is produced instead of the desired merged
model, MAB. If MCM ≠ MAB, then developers should invest some
effort so that the inconsistencies in MCM can be repaired,
recovering MAB. In practice, developers can be aided by traditional
matching and merge strategies to produce a desired output model,
or even a merged output model close to a desired output model.

2.2 Metamodelling pattern

This section describes the UML metamodelling pattern [3] used to
specify the proposed extension. According to OMG [3], the key
role of a metamodel is to define the semantics for how model
elements in a model get instantiated. The definition of
UML2Merge (Section 3) follows the metamodelling pattern,
presented in [3], due to some reasons. First, the UML metamodel
specification pattern is the mainstream way to define the meaning
of the constructs of the current UML extensions, such as [12, 13].
Secondly, it provides practitioners and researchers with a
systematic but easy-to-read specification style [16], enabling an
improved understanding of the meanings of the proposed
extension, and reducing an inappropriate use in practice. Thirdly, it
leverages the compliance with the semantics of UML metaclasses,
their structural relationships, and constraints, thereby allowing a
seamless integration between the UML specification and the
proposed one. Finally, it is a well-established way for specifying
the syntax and semantics of metamodel [3]. This can be perceived
when reviewing the current literature (Section 5) that customises
UML metamodel constructs, mainly ones proposed and maintained
by OMG [3] in the past decade.

For this, the following concepts guide the definition of the
UML2Merge constructs:

• Abstract Syntax. It defines the metaclasses that represent the
language constructs, e.g. Class, Attribute, Association, their
relationships, multiplicity, and ordering constraints. These
constructs and their relationships are described in natural
language.

• Attributes and Associations. The attributes and associations are
enumerated along with a short explanation. The multiplicity of
the attributes is suppressed when it assumes a default value, i.e.
the value of 1 (default in UML metamodel [3]).

• Semantics. It defines the meaning of each well-formed
construct, while the static semantics defines how an instance of
a construct should be connected to other instances to be
meaningful; the dynamic semantics defines the meaning of a
well-formed construct [3]. The meaning of a created model
using the proposed extension is correctly defined, i.e. it is well-
formed if and only if it achieves the rules defined in the static
semantics.

• Well-formedness rules. It defines constraints that should be
fulfilled to get instantiated a valid and meaningful model. The
constraints concerning multiplicity and ordering are defined in
the metamodel. Thus, the rules specify constraints over
attributes and associations defined in the metamodel. For this,
OCL (Object Constraint Language) expressions [23], along with
an informal explanation of the expression, specify the proposed
invariants. However, as far as possible, the invariants are
expressed in natural language.

3 Proposed UML extension
This section presents the UML2Merge, a UML extension to
support the specification of merge relationship between UML
models. The main contribution of this work is the proposed abstract
syntax, constructors and notations to express merge relationships.
Section 3.1 pinpoints the UML and UML2Merge constructs that
may participate in a merge relationship. Section 3.2 specifies the
UML2Merge s merge relationship.

3.1 Composable and composite

Fig. 3 shows the abstract syntax of the UML2Merge regarding the
constructs that are able to participate in the merge relationship. It
shows which constructs are from UML, such as NamedElement,
Parameter, and Property, and those constructs proposed in our
extension, such as ComposableElement and CompositeElement. We
highlight that the way that UML metamodel specifies the
participants of the inheritance relationship in [3] was the basis to
describe these elements. Moreover, we have used the composite
design pattern [16] to organise the model elements. We have
chosen this pattern for the following reasons. The first would be to

IET Softw., 2019, Vol. 13 Iss. 6, pp. 575-586
© The Institution of Engineering and Technology 2019

577

represent part-whole hierarchies of objects, which might be to
participate of a merge relationship. Next, merge relationship can
treat uniformly all objects in the composite structure. Thirdly, new
constructs, extending our approach, can be supported by just
accommodating them in the composite structure; these constructs
would need to extend the CompositeElement metaclass in Fig. 3.

CompositeElement arranges the ComposableElements into tree
structures by using a whole-part relationship. Usually, merge
techniques are able to combine a set of UML diagrams, not all.
Therefore, defining the model elements that can participate in a
merge relationship is pivotal to create an alignment between the
specification and the practice to combine UML diagrams. Merge
techniques can read the specification, and then combine the input
models based on this specification.

ComposableElement. It is an abstract class and subclass of
NamedElement, a central construct in the UML metamodel. It
determines the basic semantics for constructs so that they may take
part of a merge relationship. On the other hand, the
CompositeElement is an abstract class that works as a container,
i.e. bringing together the composable constructs seamlessly. It
represents the UML constructs that contain other elements.

Some constructs need to be analysed individually during the
definition of similarity and integration of the model elements,
including Parameter, EnumerationLiteral and Property. Thus, this
extension defines construct hierarchies, which comprise primitive
and composite constructs. While the composite can be decomposed
into simpler ones, which in turn can be decomposed, recursively.
Hence, merge techniques can deal with composite and primitive
constructs indistinctly. This offers two advantages: (i) merge
techniques can have more specific matching and merge rules for
each construct, rather than generic ones, as for each model element
the merge technique should have a rule describing how they should
be combined; and (ii) the ease of adding new kinds of constructs,
as well as extending merge techniques. In the following section, we
present the merge relationship construct.

3.2 Merge relationship and its constructs

This section presents the merge relationship itself and its
constructs. Fig. 4 shows the abstract syntax of the proposed merge
relationship.

3.2.1 Merge relationship: The MergeRelationship metaclass is a
directed relationship between two CompositeElements. It extends
the DirectedRelationship metaclass from the UML metamodel, and
has two associations with the CompositeElement metaclass. This
inheritance from MergeRelationship to DirectedRelationship
represents one of the points where the UML2Merge is
accommodated into the UML metamodel. The relationship is
formed by two models – source MA and target MB –, which are
CompositeElement constructs. A merge relationship produces a
resulting merged model, or merged output model. It specifies how
the content of a source model can be extended by the target model.
The content of the target model is added to the source model to
generate a merged output model.

This relationship may be used to combine the content of
different models that should represent a same concept, or even
supply different meaning of a model element for different
purposes. Each relationship aims at accommodating increments
into the model elements found in the source model. With this in
mind, using the merge relationship developers can evolve model
elements with increments for different purposes, where each
increment is defined in a particular target model. Creating a merge
relationship means to establish a semantic interplay between the
input models. This semantics may be defined by a merge strategy
(Section 2.1.3), which can use, for example, a set of merge rules so
that a desired merged model can be produced, MAB.

By using a merge relationship, developers can mitigate a critical
problem previously mentioned – the UML incapacity of
representing multiple merge relationships. Given that it is a

Fig. 3  Constructs that participate in a merge relationship

Fig. 4  Proposed UML extension for expressing model merge

578 IET Softw., 2019, Vol. 13 Iss. 6, pp. 575-586
© The Institution of Engineering and Technology 2019

DirectedRelationship, its navigability means that the merging
should be established in a particular direction.

3.2.2 Associations: The associations of MergeRelationship are
introduced as follows:

• target: CompositeElement [1]. It specifies the target of a merge
relationship, which is the model to be combined with the source
one, the origin of the merge relationship. The multiplicity ‘1’
indicates that each merge relationship must have an instance of
CompositeElement playing the role of target model. It also
represents a subset of DirectedRelationship::target defined in
the UML metamodel.

• source: CompositeElement [1]. It determines the source of a
merge relationship. It is a CompositeElement, which is being
extended with the contents of the target CompositeElement, and
represents a subset of UML::Element::owner and

• UML::DirectedRelationship::source defined in the UML
metamodel.

• merge: Merge [1]. It specifies the merge semantics must be
applied to merge relationship. In Section 2.1.3, we suggest some
strategies available in literature.

• match: Match [1]. It specifies the match strategy should be
applied to merge relationship. The multiplicity ‘1’ determines
that each merge relationship must have an instance of Match
identifying how the input models (source and target ones)
should be compared.

• transformation: Transformation[0..1]. It specifies a set of
transformations that may be applied to resolve inconsistencies
found in the merged output models. These transformations play
an important role as they transform an output model with
inconsistencies into a desired resulting model. The multiplicity
‘0..1’ indicates that the use of transformation is optional. The
manner how these transformations are represented is out of the
scope of this paper.

3.2.3 Semantics: As previously mentioned (Section 2.1.3), a
merge strategy is responsible for determining the semantics
through which the content of the target model may be
accommodated into the source model – in the same way that a
subclass in a generalisation relationship consists of the aggregation
of all features of all of its superclasses, and not only the increments
attached by it. As a result of that, any reference to the content of
the source model means to refer to the merged output model, rather
than to the increment derived from the merged model.

Fig. 5 shows this case by demonstrating that the packages MA
and MB attach different contents to a particular model element of
the merged output model. For example, the packages MA (source
model) and MB (target model) determine different elements to the
class Researcher, identified as MA.Researcher and MB.Researcher,
respectively. Package MA merges the contents of package MB,
which means to combine MA.Researcher and MB.Researcher. The
package MC imports the contents of MA to define the subclass of
Researcher, so-called Professor.

Thus, the class MA.Researcher represents the result of merging
MB.Researcher and MA.Researcher, not just the model elements
found in MA.Researcher upfront. The package MD imports the
contents of MB. However, it refers to MB.Researcher rather than the
MA.Researcher, resulting from the merge of MA.Researcher and
MB.Researcher. As a result, the class MD.University has an
attribute -people: Researcher[1..*], where the Researcher is
derived from MB instead of MA.

In contrast, Fig. 6 exhibits two merge relationships to
demonstrate the need to express the order in which the merge
relationships should be performed. This case shows that the
execution order is de fact a problem in the field of model merge. In
this case, packages MB and ME are being merged with the package
MA. Package MD imports the content of the package MB, as
previously mentioned. However, now it is hard to determine which
content the package MC will import from the package MA, given

the different orders to merge the package MA with the packages MB
and ME. We can merge the package MA with the package MB and
after with the package ME, or even first with the package ME and
after with the package MB. In MB, the attribute Researcher.salary is
defined as int. In contrast, in ME this attribute is defined as double.
Thus, developers need to properly answer the question: should the
attribute Researcher.salary be int or double?

Given that the merge order has not been defined yet, this
conflict must be solved manually so that these attributes can be
merged. Establishing a merge order, we can specify a merge
semantics that leads, for example, Researcher.salary: int to
override Researcher.salary: double, or vice-verse. If
MC.Researcher.salary is defined as double, then the method
Researcher.calcSalary():int and Professor.reportSalary(): int
should be changed, i.e. their return types changed to double. The
desired merged model can be obtained setting Researcher.salary as
int. In case this question is not properly answered, this conflict will
be transformed into an inconsistency in the merged output model.

Fig. 5  Illustrative example of the merge relationship semantics. MA and
MB represent the source and target models of the relationship, respectively.
While MA is the source model, MB has a set of increments, which will be
accommodated into MA to transform it into MAB

Fig. 6  Example demonstrating the need to express the order of merge
relationship

IET Softw., 2019, Vol. 13 Iss. 6, pp. 575-586
© The Institution of Engineering and Technology 2019

579

3.2.4 Notation: The proposed merge relationship is represented
using a dashed line with an open arrowhead pointing from the
source model to the target model. Besides specifying the source
and target models, three keywords need to be defined, including
order, matching strategy, and merge strategy. Code 1 represents the
grammar used to define the UML2Merge notation. The first
establishes in which order the merge relationship should be
considered, avoiding the execution order problem of the merge
relationships. The second specifies the matching strategy, which
designates how the model elements should be compared. The third
determines the merge strategy, which delineates how the model
elements considered equivalent should be combined. Moreover,
keywords are displayed close to the dashed line, which are defined
as a text string according to the BNF (Backus Normal Form)
defined in Code 1.

< merge − relationship >::
= ` < <′ < order > `,′
< matching − strategy > `,′
< merge − strategy > ` > >′

< order >::= [0 − 9] ∗
< matching − strategy >::= [A − Za − z] ∗
< merge − strategy >::= [A − Za − z] ∗

(1)

Fig. 7 shows how the problem reported in Fig. 6 might be solved
using the notation proposed. Firstly, MA.Researcher is merged with
MB by using the default name-based matching strategy and the
override strategy. This is represented by the notation ≪1, default,
merge≫ over the relationship between the MA and MB, where 1 is
the execution order, default is the default match strategy, and merge
is the merge strategy. Next, the resulting model MAB Researcher is
merged with ME. Researcher. This is also represented by the
notation ≪2, default, merge≫ over the relationship between the
MAB and ME, where 2 is the execution order, default is again the
default match strategy, and merge is the merge strategy.

Merge. This metaclass defines the semantics of merging by
specifying a merge strategy to be assigned to a merge relationship.
Moreover, it also defines the merge rules that implement the
meaning of the merge relationship itself. The following presents its
property and association:

– merge: MergeStrategyKind represents the merge strategy to be
assigned to the merge relationship. The MergeStrategyKind defines
assignable values for this attribute.

+ ownedMergeRule: Rule[1..*] consists of a set of Rules (merging
rules). The multiplicity ‘1..*’ specifies that Merge always have a
reference to Rule, which defines the rules that are responsible for
combining the model elements considered equivalents. The
developers can create such merging rules using OCL [23] or
Epsilon Merging Language (EML) [19], for example.

Match. It represents match strategy to be applied to a merge
relationship:

−match: MatchStrategyKind defines the different types of match
strategies that can be associated with the merge relationship.
Moreover, its possible values are those found in
MatchStrategyKind.
ownedMatchRule: Rule[*] consists of a collection of Rule (match
rules). The multiplicity ‘1. *’ specifies that Match will always have
a reference to Rule, which defines the match rules.

Transformation. It expresses the changes that should be done to
overcome inconsistencies found in the merged output model.
Transformation rules can be assigned to merge relationship so that
inconsistencies in MCM can be solved. The multiplicity ‘0..1’
indicates that a merge relationship may (or not) have model
transformation rules (i.e. optional). Its property and association are
presented as follows:

• ownedTransformationRule: Rule[*] consists of a set of Rules
(model transformation rules). The multiplicity ‘*’ indicates that
can have a set of rules. isRequired: Boolean is equal to true
when the specifications of model transformation rules should be
applied to a merge relationship.

Rule. It adds to the UML metamodel the capability of representing
rules to be used in the model merge. It extends the Operation
metaclass defined in the UML metamodel. This extension allows
developers to specify the match, merge, and transformation rules
using natural language or even some language, such as OCL [23]
or Epsilon [19]. This inheritance relationship represents the point
where the UML2Merge is inserted into the UML metamodel. An
important observation is that a rule will be executed if its
preconditions are satisfied. This construct has some associations
that are described as follows:

• ruleExpression: RuleExpression[*] represents a set of
RuleExpressions. The multiplicity ‘*’ means that it may (or not)
have a reference to RuleExpression. Developers use it to define
the rules to be used to implement the merge relationship.

• ruleValues: RuleValues[*] consists of a collection of RuleValues.
The multiplicity ‘*’ specifies that it may (or not) have a
reference to a RuleValues. It is important to highlight that a rule
to be valid it must satisfy the values specified in ruleValues.

• ownedElements: ComposableElement[*] is the operands of the
rules.

• raisedInconsistency: Inconsistency[*] represents the conflicts
can raise from the merges.

Inconsistency. It represents the contradicting changes found in the
input model elements that were improperly resolved.

RuleExpression. It defines a structured-tree of symbols, which
denotes a particular value for a rule. Developers use it for
elaborating the rules to be applied to merge relationship, including
the match rules, merge rules and model transformation rules. For
example, MatchEnumeration(Enumeration rcv, Enumeration mrgd)
would represent an expression of a match rule to be applied to
Enumeration.

RuleValues. It represents the values that are manipulated by the
rules and is an instance of ValueSpecification (from UML).

MatchStrategyKind. It is an Enumeration that defines the match
strategy to be applied during the merge. It can assume the
following values: default, partial and complete, representing the
default, partial and complete match strategy, respectively.

MergeStrategyKind. It consists of an Enumeration that defines a
literal for specifying the types of strategies that can be used for

Fig. 7  Solving the order problem in expressing merge relationships

580 IET Softw., 2019, Vol. 13 Iss. 6, pp. 575-586
© The Institution of Engineering and Technology 2019

merging two CompositeElements. This element has the following
literals (but not limited to) ‘override’, ‘merge’, and ‘union’. These
literals represent the override, merge, and union merge strategy,
respectively. We use this element to specify the semantics to be
applied in a merge relationship, being this meaning passed by
parameter.

4 Evaluation
This section focuses on describing the methodology to evaluate the
UML2Merge, and presents the collected results. Section 4.1
describes our objective and research questions (RQ). Section 4.2
introduces the formulated questionnaire to evaluate the
UML2Merge. Section 4.3 explains the context and participant
selection. Section 4.4 introduces the experimental design. Section
4.5 presents the analysis of the collected data. All these
methodological steps were followed based on well-established
practical guidelines about empirical studies presented in [24].

4.1 Objective and research questions

This empirical study seeks to evaluate the effects of UML2Merge
on two variables: the developers effort, and the correctness of such
merge relationships. These effects were explored from realistic
scenarios by expressing evolutions of UML class diagrams. In this
sense, we use the GQM template [24] to state the objective of this
evaluation, as follows:

Analyse the proposed UML2Merge
for the purpose of investigating their effects
with respect to effort, correctness and acceptance
from the perspective of developers
in the context of evolving design models.
For software developers in industry, maximising productivity

and not wasting time using techniques that are not cost-effective
are essential things. So, we evaluate the effects of the UML2Merge
on the effort invested by developers to express merge relationship,
and the correctness of such merge relationships. In addition, we
also assess the UML2Merge applicability and acceptance from the
perspective of software developers. Thus, we focus on exploring
three RQ, as follows:

• RQ1: What is the effort of expressing merge relationship using
the UML2Merge notation?

• RQ2: Does the proposed extension favour the production of
correct merge relationships?

• RQ3: What is the acceptance of the proposed extension by
software developers?

4.2 Questionnaire

To answer these RQ, we elaborated a questionnaire [Our
questionnaire is available at this link: https://
kleinnerfarias.github.io/pdf/studies/uml2merge-quest.pdf.], which
was answered by our participants (introduced in Section 4.3). This
questionnaire was written in Portuguese because our study was
focused on Brazilian developers. Our questionnaire consists of
three parts, which are detailed below.

Part 1: participant profile: The first part of the questionnaire
sought to collect data related to the characteristics and opinions of
the participants. Creating a participant profile with such data is
important to select only those who are potential users of the
UML2Merge. Without this profile, participants with inadequate
profile might generate incoherent evaluation. To do this, we ask the
participants for more general information, such as age, gender,
current position, profession, level of education. Information
regarding the level of experience has also been considered,
including academic background, education at university,
experience with software development and modelling, and UML
knowledge level. We need to be sure that the proposed technique is
being evaluated by people whose profile would be of future users
of the UML2Merge.

Part 2: usage scenarios of UML2Merge: The second part has
six usage scenarios to properly investigate the RQ1 and RQ2. In
total, six multiple-choice questions were elaborated. Fig. 8 shows
the first question used in our empirical study (option A is the
correct answer). Each question was composed of a description of
evolution, a desired merged model, and five options. For each
multiple-choice question, four possible answer options (A–D) had
merge relationships using the UML2Merge, while one answer
option (E) allowed participants to inform that no answer could be
given because of problems in the merge relationship. One of the

Fig. 8  First question used in our empirical evaluation

IET Softw., 2019, Vol. 13 Iss. 6, pp. 575-586
© The Institution of Engineering and Technology 2019

581

four options (A–D) had the merge relationship that would generate
the desired model, i.e. the correct option. The correct option was
randomly assigned to one of the four options (A–D). Three options
were incorrect merge relationships. Participants were then
encouraged to choose the option that had the merge relationship
that would generate the desired model. For this, they should
consider the evolution descriptions, mentioning the changes that
need to be made using the UML2Merge to produce the desired
model.

Participants could answer the questions sloppily, without
attention. This would pose a threat to the quality of our data. To
mitigate this threat, a control question (Question 4) was created, in
which no merge relationship would produce the desired model.
This question had only incorrect options of easy perception. The
correct answer of the control question would be the E-option,
which indicated that no merge relationship would be able to
produce the desired model. If a participant incorrectly answers this
question, this may imply that he did not understand the approach or
was unattended.

The UML models of our questionnaire had by about three
classes and four relationships. Being a first evaluation, having a
small size of models was essential to mitigate possible influences
of size in relation to the UML2Merge applicability and acceptance.
Mens [25] highlights that software changes should be as small as
possible so that the number of changes (i.e. delta model) is low,
reducing the number of conflicts. Farias et al. [18] also point out
the need to have a low amount of changes between design models
to be merged so that design models can keep stable. Exposing
participants to large models could influence the results obtained.
Instead, we restrict the use of small models.

Part 3: TAM questionnaire: The third part addressed questions
about the usability and acceptance of the technique. This part aims

at exploring the RQ3. For this, this part of our questionnaire is
based on the widely known technology acceptance model (TAM)
[26]. This part had nine questions, which were answered using a
Likert Scale, including Totally Agree, Partially Agree, Neutral,
Partially Disagree, and Totally Disagree. The formulated questions
(Q) dealt with various topics, including the perceived ease of use
(Q1–3), perceived usefulness (Q4–6), attitude towards used (Q7
and Q8), and behavioural intention to use (Q9).

4.3 Context and participant selection

The context selection is representative of realistic scenarios in
which software developers need to merge UML models to produce
a new release. Six scenarios were considered in our study, which
are briefly described in Table 1. Each participant was asked to
express each evolution scenario using UML2Merge. These
scenarios are typical cases where our participants would not be
their designers, but need to evolve them by running merge tasks.

Our experiment was conducted with 10 participants, being one
student and nine professionals from Brazilian companies and one
student with professional experience. The participants were
recruited based on convenience [24]. An e-mail was sent to a set of
undergraduate and graduate students at University of Vale do Rio
dos Sinos, who with experience with software development and
modelling. Some participants held a Master's degree and Bachelor's
degree (or equivalent) and had a considerable knowledge of
software modelling and programming. We chose participants,
including students, so that we could have participants with different
profiles and levels of expertise. All participants were from a
postgraduate program in Applied Computing at the University of
Vale do Sinos, Brazil. The experiment was performed similarly to a
practical laboratory exercise. Each participant received the same
training on the proposed technique and experimental procedures.
We discuss the experimental process in the following section.

4.4 Experimental process

Fig. 9 presents the experimental process, which is formed by a set
of activities grouped into three phases discussed as follows:

Phase 1 has two activities. The first, training, the participants
received training on both the UML2Merge and the experimental
procedures. A pre-test was also run in which participants
performed an activity similar to that found in the experiment. This
allowed us to evaluate whether the participants had actually
understood the proposed technique, as well as helped to level the
knowledge of our sample. The second activity, collect
demographic data, the participants answered a list of questions
(input) so that we could collect their characteristics and opinions
about the UML2Merge. The demographic data collected (output) is
the result of this activity.
Phase 2 has only one activity, apply UML2Merge. Participants
were asked to answer six questions. To be correctly answered, each
question required the complete understanding of UML2Merge.
Participants received the desired model (input) to be produced.
This model should be produced from the application of evolution
descriptions (input) to be applied in a base model. At the end of
this phase, six merge relationships using UML2Merge (output)
were generated. We calculated the invested effort (output) to
answer each question, and the correctness (output) of the expressed
merge relationship. Effort was computed based on the number of
minutes to answer each question, while correctness was calculated
based on the number of correctly answered question per question.
Phase 3 focused on the application of the TAM questionnaire
(input). Participants received a list of questions inquiring about the
perception of ease of use, utility perception, attitude, and intent of
behaviour, regarding the UML2Merge. Qualitative data (output)
were generated, regarding UML2Merge usability and acceptance
from the perspectives of software developers. Participants
individually performed all activities (in Phases 1–3) to avoid any
threat to the experimental process. We discuss the collected data in
the following section.

Table 1 Tasks of the evolution scenarios
Task Models Required changes to the base model
1 database

connection
add class to establish different database

connections.
2 management change attribute type, add methods, add

attributes.
3 eCommerce add attributes and methods.
4 health care remove methods, add classes (control

question).
5 ERP add classes, methods, attributes and

relationships.
6 calculator change classes, add classes.

Fig. 9  Experimental process

582 IET Softw., 2019, Vol. 13 Iss. 6, pp. 575-586
© The Institution of Engineering and Technology 2019

4.5 Analysis of results

Profile data of the participants: Table 2 describes the profile data,
reporting the participants’ characteristics and opinion. These data
were collected from 17 September to 19 October 2018. In total, we
had 10 Brazilian participants. Our participants were aged between
20 and 39 years. Considering education, the majority (70%) had a
complete or incomplete postgraduate degree. Only one participant
did not take an undergraduate course in computing, but rather in
mathematics, subsequently pursuing a master's degree in applied
computing. Most participants (90%) took an undergraduate course

in computing, only one graduated in mathematics but held a
master's degree in Applied Computing. Almost all participants
(90%) have 5 years (or more) of education at university.
Professional experiences of 5 years (or more) with software
development and modelling registered 70 and 40%, respectively.
Over 40% indicated having 5 years (or more) of professional
experience with software development and modelling. A total of
60% of the participants have 2 years (or more) of experience with
this activity. All the participants agreed that expressing merge
could minimise conflict problems. Therefore, we believe that our
sample is small but adequate to carry out an initial evaluation of
the proposed approach.

RQ1: Effort to express merge relationship. Table 3 presents the
collected data related to the formulated RQ. We begin our analysis
by exploring the invested effort (RQ1) to express a merge
relationship using UML2Merge. The collected data indicate that,
the participants invested a low effort in this regard. On average, the
participants invested 3 min to answer each question of the
experimental evaluation. Question 2 required the most effort (by
about 5.5 min), while Question 06 required the least effort (by 1.8 
min). This may mean that the proposed notation required little
cognitive processing by allowing participants to make a decision
(choosing a questionnaire option) in a short amount of time. So,
our data suggest that, the effort of expressing merge relationship
using the UML2Merge is low. Note that the use of the proposed
approach could be questionable in practice, if the low required
effort were accompanied by a high number of incorrect answers.

RQ2: Correctness of the merge relationship. The next step was
to evaluate whether the participants expressed the merge
relationships correctly. Table 3 presents the number of correct
answers per question and percentage. The high number of correctly
produced relationships means that the UML2Merge was proper. In
the worst case (Question 6), 70% of participants expressed the
relationship correctly. The high number of correct answers suggests
using the UML2Merge there is a high likelihood to express merge
relationship of UML models properly. These results might be
harmed, if the participants answered each question randomly.
However, this threat could be tamed by formulating and analysing
the results of our control question. In Table 3, we can also observe
that, all participants answered the control question correctly
(Question 4). This implies that they understood the experimental
activities as well as were attentive. Therefore, our data also suggest
that the UML2Merge also contributed to the expression of correct
merge relationships.

RQ3: Acceptance of the proposed technique. By using TAM
questionnaire, we seek to evaluate the perceived ease of use,
perceived usefulness, attitude towards use, and behavioural
intention to use, with regards to the UML2Merge. Table 4 displays
the obtained data. Our obtained data show that, no one disagreed
that UML2Merge is easy to use, learn, and master. On the contrary,
70% (or more) of the participants think that UML2Merge is easy to
use (70% totally agree and 30% partially agree), learn (80% totally
agree, 10% partially agree and 10% neutral) and master (70%
totally agree, 20% partially agree and 10% neutral). The results are
even better considering the perceived usefulness. All participants
realised that UML2Merge makes it easier to merge UML models
(90% totally agree and 10% partially agree), increase productivity
(70% totally agree and 30% partially agree), and improve
understanding of merge relationships (50% totally agree and 50%
partially agree). In particular, we would like to highlight that 90%
of them have fully agreed that UML2Merge makes it easy to
express merge relationship. Considering the attitude towards use,
the participants believe that using UML2Merge is a good idea
(90% totally agree and 10% partially agree), as well as are
confident about it (50% totally agree and 50% partially agree).
Likewise, participants also agree (80%) that they intend to use the
approach to express merge relationship (40% totally agree, 40%
partially agree, and 20% neutral). These findings show the
potential for acceptance by people with profiles similar to those of
the participants. The results are encouraging and show the potential
of using the proposed approach in a real environment.

Additional analysis. Previous studies [27] highlight that the
developers experience can influence the comprehension of design

Table 2 Profile data of the participants
Characteristic and opinion (n = 10) Answer # %
age < 20 years 0 0.0

20–29 years 6 60.0
30–39 years 4 40.0
> 39 years 0 0.0

education high school 1 10.0
undergraduate* 2 20.0

Master* 6 60.0
PhD* 1 10.0

Others 0 0.0
undergraduate course information systems 1 10.0

computer science 4 40.0
computer engineering 0 0.0

system analysis 1 10.0
Others 4 40.0

education at university < 2 years 1 10.0
2–4 years 0 0.0
5–6 years 3 30.0
7–8 years 4 40.0
> 8 years 2 20.0

professional experience with software
development

< 2 years 2 20.0
2–4 years 1 10.0
5–6 years 1 10.0
7–8 years 1 10.0
> 8 years 5 50.0

professional experience with software
modelling

< 2 years 3 30.0
2–4 years 3 30.0
5–6 years 1 10.0
7–8 years 0 0.0
> 8 years 3 30.0

merge experience < 2 years 4 40.0
2–4 years 3 30.0
5–6 years 0 0.0
7–8 years 1 10.0
> 8 years 2 20.0

expressing integration could minimise
conflict problems

totally agree 6 60.0
partially agree 4 40.0

neutral 0 0.0
partially disagree 0 0.0
totally disagree 0 0.0

Table 3 Collected data concerning effort (RQ1) and
correctness (RQ2)
Question RQ1: effort, min RQ2: Correctness

General Mean Correct answers Percentage, %
1 25 2,7 9 90
2 46 5.4 9 90
3 31 3.1 10 100
4 28 2.8 10 100
5 42 4.2 8 80
6 18 1.8 7 70

IET Softw., 2019, Vol. 13 Iss. 6, pp. 575-586
© The Institution of Engineering and Technology 2019

583

models. Thus, we seek to grasp whether the level of experience
may impact on results produced by participants. The participants
who had less than 7 years of experience in software development
were classified as Low Experience (n = 4), while the remaining
ones considered as High Experience (n = 6). The participants with
high experience answered 36 questions, while those with low
experience answered 24 questions. The collected data (in Table 5)
indicate that participants with lower experience achieved a higher
rate of correctness while investing the same amount of effort,
compared with participants with higher experience.

5 Related work
This section compares the proposed extension with some related
works. For this, Section 5.1 analyses some related works. Section
5.2 introduces a comparative analysis of the related works. Section
5.3 presents some limitations of our study.

5.1 Analysis of the related works

We surveyed this literature to identify similar works. For this, we
used the IEEE Xplore and Google Scholar. In total, six papers were
chosen for convenience.

Sharbaf & Zamani [28]. This study introduces a UML profile for
modelling conditions in which conflict problems can emerge. The
paper presents a set of conflict elements, used to supply
descriptions concerning when the contradicting UML models
appear. These conditions are used to produce constraints
automatically. Papyrus tool was used to support the proposed UML
profile. In addition, the usefulness of this profile was evaluated
through a case study, in which two conflicts were created.
Although the usefulness has been evaluated, the evaluation cases
are simple, and few details about the experimental setup are
provided. The proposed approach was not evaluated by potential
users, neglecting the provision of data related to the perceived ease
of use and usefulness, attitude towards use, and degree of
acceptance as a whole.
Mansoora et al. [29]. This paper presents a multi-objective
formulation of the model-merging problem so that ‘the best trade-
off between minimising the number of omitted operations and
maximising the number of successfully applied important

operations’ can be found. They evaluated the proposed approach
using seven open source systems and compared it with different
existing model-merging approaches. This work did not focus on
the expression of merge relationship, and did not carry out
empirical studies with potential users on this topic.
Dam et al. [30]. It reports that the current merging techniques are
limited to textual artefacts, and they tend to be unable to discover
and resolve complex merging issues beyond simple conflicts. This
study introduces a novel approach for merging versions of models,
which addresses emerging conflicts and inconsistencies throughout
the merging process. The proposed approach was validated through
case studies using industrial design models, so that its scalability
might be properly evaluated. Moreover, this study aimed at
exploring conflicts, arbitrary syntactic, and semantic consistency
issues. The results, collected from an extensive empirical
evaluation, suggest that the approach can scale to practical settings.
In addition, it is important to highlight that it is not concerned with
expressing a merge relationship, but rather with attacking more
complex problems, such as the automatic merging of consistent
models.
Brun & Pierantonio [31]. This study highlights the need to record
the design-level structural changes that modern software systems
can typically undergo throughout its life cycle. In this sense, they
introduced EMF Compare, which is a metamodel-independent
approach to model differencing. This approach, based on similarity
techniques, was fully implemented and incorporated into the
Eclipse platform, and aimed at 2-way comparisons approach. Some
important contrasts were observed in relation to our work. First, its
main contribution is not a UML extension to express model merge,
but a comparison technique. Secondly, no experimental study was
conducted to analyse the approach in practice from the perspective
of software developers.
Kolovos et al. [32]. It puts the spotlight on the problem of UML
model merging. In particular, they explored requirements for
supporting model merging, and introduced the EML. By using
EML, software developers can combine models of diverse
metamodels and technologies through a rule-based language with
tool support. The work understands that model merging can be
seen as an activity composed of four distinct phases, such as
comparison, conformance checking, merging, and reconciliation
(or restructuring). Similar to our study, this study also addresses,
but at the code level, the theme of comparison, merge and
transformation of models. We believe that the relationships created
with UML2Merge could be implemented using the rules found in
EML. Although the work has proposed a language to support the
model merge, EML does not address the problem of expressing
merge relationships at the level of models.
Mens [25]. It highlights that textual software merge ‘an essential
aspect of the maintenance and evolution of large-scale software
systems.’ Thus, he presents a comprehensive survey and analyses
the available textual merge approaches. The author also points out
that several merge techniques has been proposed purely based on

Table 4 Collected data related to TAM questionnaire
Totally agree Partially agree Neutral Partially disagree Totally disagree

Perceived ease of use
I found the UML2Merge extension easy to use 7 3 0 0 0
I found the UML2Merge extension easy to learn 8 1 1 0 0
I found the UML2Merge extension easy to master 7 2 1 0 0
Perceived usefulness
UML2Merge would facilitate the merge of UML models. 9 1 0 0 0
using UML2Merge would help increase productivity. 7 3 0 0 0
the use of UML2Merge would provide a better understanding
about merge of UML models.

5 5 0 0 0

Attitude towards use
using UML2Merge is a good idea. 9 1 0 0 0
I am confident about UML2Merge. 5 5 0 0 0
Behavioural intention to use
I plan to use UML2Merge to merge UML models. 4 4 2 0 0

Table 5 Analysis about the level of experience
Experience RQ1: effort, min RQ2: Correctness

General Mean Correct
answers

Percentage, %

low experience (n 
= 4)

72 3 22 91.7

high experience (n 
= 6)

108 3 31 86.1

584 IET Softw., 2019, Vol. 13 Iss. 6, pp. 575-586
© The Institution of Engineering and Technology 2019

textual merging, while ones that are more powerful take the syntax
and semantics of the software into account. In addition, Mens has
reported that there is a tendency in developing operation-based
textual merging due to high expressiveness when compared with
others, e.g. state-based or change-based merging. Unlike our study,
the study does not propose a UML extension, and does not perform
empirical studies to evaluate the merging expression of UML
models.

5.2 Comparative analysis of the works

This section contrasts the proposed extension with the previously
analysed studies. This comparison, based on comparison criteria
(C), serves to identify some similarities and differences. The
comparison criteria are presented below:

i. Main contribution (C1): Studies that have, as main
contribution a UML extension for expressing merge
relationships, or approaching research topics related to merge
relationships.

ii. Proposed approach (C2): Studies that introduce a new
approach that deal with research topics concerning
comparison, merge, and/or transformation of models. In
addition, we also analyse whether the studies are able to
establish the order of the merge relationships.

iii. Experimental study (C3): Studies that evaluate the proposed
approach through empirical studies, including case study,
controlled experiment, quasi-experiment, or survey.

iv. Context (C4): Studies that were performed with industry
professionals or used real-world artefacts in academia.

v. Participant profile (C5): Studies that collected data of the
participants to screen and characterise their profile.

vi. Study variables (C6): Studies that analyse the effort to merge
UML models, the correctness of merge relationships and the
acceptance of the proposed technique.

vii
.

User acceptation (C7): Studies that evaluate the proposed
approach using the TAM questionnaire, so that the perceived
ease of use, perceived usefulness, attitude towards use, and
behavioural intention to use can be measured.

vii
i.

Available tool support (C8): Studies that have available tool
support. Having a support tool is fundamental to make feasible
the use of the proposed technique not only in academia, but
also in industry.

Table 6 presents the comparison considering these criteria. We
emphasise, that the UML2Merge was the one that met most of the
criteria (C1–8), highlighting its contributions and limitations.

5.3 Limitations of our study

This work proposes a UML extension by adding new constructors
to the UML metamodel. Although the approach has had a good
acceptance of the participants, it still suffers from some limitations.
The first would be the lack of a domain-specific modelling
environment that supports the proposed extension (i.e. tool
support). This environment allowed us to use a UML modelling
environment with the constructors proposed by the UML2Merge.

This environment might be created using the Graphical Modelling
Framework (GMF), which is a model-driven development
approach to the elaboration of graphical editors. GMF can generate
a ready-to-use graphical editor in the Eclipse platform. The second
limitation would be related to the way of representing the rules,
including matching, merging, and transformation ones. They can
be represented through different languages, including OCL [23],
Epsilon, among others. However, no language has been created so
far. The third limitation is related to empirical evaluation. Although
the current evaluation has been well elaborated and the collected
results are favourable, new empirical studies are needed.

6 Conclusions and future work
This paper proposed the UML2Merge, which is an extension for
expressing UML merge relationship. An empirical study with 10
participants was run to grasp its effects on the merge effort, the
correctness of merge relationships, and the participants’
acceptance. On average, the participants invested 3 min to indicate
the merge relationship in our experiment tasks. At least, 70% of
participants expressed the merge relationship correctly. None of the
participants disagreed with the usefulness of the UML2Merge; on
the contrary, most of them (>70%) agreed on ease of use and
usefulness. Still, all participants demonstrated an attitude towards
use. The collected data suggest that the UML2Merge is proper to
express merge relationships by requiring a low effort, allowing
high correctness of merge relationships, and having a high
acceptance of the participants. The results are encouraging and
show the potential for using UML2Merge to express the evolution
of UML models through merge relationship.

As future work, we plan to investigate two RQ. First, how can
the proposed UML extension be used by merge techniques as a
merge specification language? Secondly, do developers invest less
effort to merge real-world UML models using the UML2Merge? In
addition, we will perform empirical studies to understand to what
extent, we can use it to support the evolution of industrial design
models. Moreover, our evaluation focused on the usability and
understanding of the UML2Merge. Upcoming evaluations can
extend it by proposing new experimental tasks in which merge
relationships are manually specified by the stakeholder, and
evaluating its impact on affective states [33]. New findings can
open doors to quantifying interactions of stakeholders while
expressing merge relationships.’

Finally, we hope that this work represents a first step in a more
ambitious agenda on better supporting the representation of merge
relationships at modelling time. We also hope that the issues
outlined throughout the paper encourage other researchers to
extend our study with different matching and merge strategies.

7 References
[1] Chaudron, M., Heijstek, W., Nugroho, A.: ‘How effective is UML

modeling?’, Softw. Syst. Model., 2012, 4, (11), pp. 571–580
[2] Ho-Quang, T., Hebig, R., Robles, G., et al.: ‘Practices and perceptions of

UML use in open source projects’. 39th Int. Conf. on Software Engineering:
Software Engineering in Practice Track, 2017, pp. 203–212

[3] OMG: ‘UML: Infrastructure specification’, Version 2.5.1, https://
www.omg.org/spec/UML/2.5.1/, 2018

Table 6 Comparative analysis of the related works
Related work Comparison criteria

C1 C2 C3 C4 C5 C6 C7 C8
UML2Merge ● ● ● ● ● ● ● ○
Sharbaf & Zamani [28] ● ◐ ● ○ ○ ○ ◐ ⊘
Mansoora et al. [29] ○ ◐ ● ● ○ ○ ○ ◐
Dam et al. [30] ○ ● ● ○ ○ ○ ○ ●
Brun & Pierantonio [31] ○ ◐ ○ ○ ○ ○ ○ ●
Kolovos et al. [32] ○ ◐ ● ○ ○ ○ ○ ●
Mens [25] ○ ◐ ◐ ○ ○ ○ ⊘ ⊘
● Meets Fully, ○ Does not meet.
◐ Meets partially, ⊘ Not Applicable .

IET Softw., 2019, Vol. 13 Iss. 6, pp. 575-586
© The Institution of Engineering and Technology 2019

585

[4] Jolak, R., Vesin, B., Chaudron, M.R.: ‘Octo U.M.L: an environment for
exploratory and collaborative software design’. 39th Int. Conf. on Software
Engineering Companion Proc., 2017, Vol. 17

[5] Menezes, G., Murta, L.G.P., Barros, M.O., et al.: ‘On the nature of merge
conflicts: A study of 2,731 open source Java projects hosted by GitHub’,
IEEE Trans. Softw. Eng., 2018, doi: 10.1109/TSE.2018.2871083

[6] Marussy, K., Semerath, O., Varro, D.: ‘Incremental view model
synchronization using partial models’. 21th MODELS, 2018, pp. 323–333

[7] Bruneliere, H., de Kerchove, F.M., Daniel, G., et al.: ‘Towards scalable model
views on heterogeneous model resources’. 21th MODELS, 2018, pp. 334–344

[8] Bischoff, V., Farias, K., Gonçales, L.J., et al.: ‘Integration of feature models: a
systematic mapping study’, Inf. Softw. Technol., 2019, 105, pp. 209–225

[9] Dingel, J., Diskin, Z., Zito, A.: ‘Understanding and improving UML package
merge’, Softw. Syst. Model., 2008, 7, (4), pp. 443–467

[10] Knapp, A., Mossakowski, T.: ‘Multi-view consistency in UML: A survey’.
Graph Transformation, Specifications, and Nets, 2018, pp. 37–60

[11] Guessi, M., Oliveira, L., Nakagawa, E.: ‘Extensions of UML to model aspect-
oriented software systems’, Clei Electron. J., 2011, 14, (15), pp. 1–18

[12] Jinwala, D., Phalnikar, R.: ‘Optimal web service selection using UML
profile’, GSTF J. Comput. (JoC), 2018, 2, (1), pp. 244–249

[13] Robles-Ramirez, D., Escamilla-Ambrosio, P., Tryfonas, T.: ‘Iotsec: UML
extension for internet of things systems security modelling’. Int. Conf. on
Mechatronics, Electronics and Automotive Engineering, 2017, pp. 151–156

[14] Rubin, J., Rinard, M.: ‘The challenges of staying together while moving fast:
an exploratory study’. 38th Int. Conf. on Software Engineering, 2016, pp. 1–
12

[15] Rubin, J., Chechik, M.: ‘N-way model merging’. 9th Joint Meeting on
Foundations of Software Engineering, 2013, pp. 301–311

[16] Martin, R.: ‘Clean architecture: a craftsman's guide to software structure and
design’ (Prentice Hall Press, Upper Saddle River, NJ, USA, 2017)

[17] Bang, J., Brun, Y., Medvidovic, N.: ‘Continuous analysis of collaborative
design’. Int. Conf. on Software Architecture, 2017, pp. 97–106

[18] Farias, K., Garcia, A., Lucena, C.: ‘Effects of stability on model composition
effort: an exploratory study’, Softw. Syst. Model., 2014, 13, (4), pp. 1473–
1494

[19] Kolovos, D., Rose, L., Garcia-Dominguez, A., et al.: ‘The epsilon book’,
https://www.eclipse.org/epsilon/doc/book/, 2018

[20] Farias, K.: ‘Empirical Evaluation of Effort on Composing Design Models’,
PhD Thesis, Department of Informatics, PUC-Rio, Rio de Janeiro, RJ, Brazil,
2012

[21] Ermel, G., Farias, K., Goncales, L.J., et al.: ‘Supporting the composition of
UML component diagrams’. XIV Brazilian Symp. on Information Systems,
Caxias do Sul, Brazil, June 2018, pp. 441–449

[22] Farias, K., Garcia, A., Whittle, J., et al.: ‘Evaluating the effort of composing
design models: a controlled experiment’, Softw. Syst. Model., 2015, 14, (4),
pp. 1349–1365

[23] OCL.: ‘The object constraint language specification’, Version 2.4, https://
www.omg.org/spec/OCL/2.4/, 2014

[24] Wohlin, C., Runeson, P., Host, M., et al.: ‘Experimentation in software
engineering’ (Springer, Heidelberg, Germany, 2012)

[25] Mens, T.: ‘A state-of-the-art survey on software merging’, IEEE Trans. Softw.
Eng., 2002, 28, (2), pp. 449–462

[26] Marangunic, N., Granic, A.: ‘Technology acceptance model: a literature
review from 1986 to 2013’, Univers. Access. Inf. Soc., 2015, 14, (1), pp. 81–
95

[27] Filippo, R., Penta, M.D., Torchiano, M., et al.: ‘How developers’ experience
and ability influence web application comprehension tasks supported by UML
stereotypes: a series of four experiments’, IEEE Trans. Softw. Eng., 2010, 36,
(1), pp. 96–118

[28] Sharbaf, M., Zamani, B.: ‘A UML profile for modeling the conflicts in model
merging’. 4th Int. Conf. on Knowledge-Based Engineering and Innovation,
2017, pp. 197–202

[29] Mansoora, U., Kessentinia, M., Langerb, P., et al.: ‘MOMM: multi-objective
model merging’, J. Syst. Softw., 2015, 103, pp. 423–439

[30] Dam, H., Egyedb, A., Winikoffc, M., et al.: ‘Consistent merging of model
versions’, J. Syst. Softw., 2015, 112, pp. 137–155

[31] Brun, C., Pierantonio, A.: ‘Model differences in the eclipse modeling
framework’, Europ. J. Inf. Prof., 2008, 9, (2), pp. 29–34

[32] Kolovos, D.S., Paige, R.F., Polack, F.A.: ‘Merging models with the epsilon
merging language (EML)’. MODELS, 2006, pp. 215–229

[33] Manica, M., Farias, K., Gonçales, L.J., et al.: ‘Effects of model composition
techniques on effort and affective states: a controlled experiment’. 30th Int.
Conf. on Software Engineering and Knowledge Engineering, 2018, pp. 304–
307

586 IET Softw., 2019, Vol. 13 Iss. 6, pp. 575-586
© The Institution of Engineering and Technology 2019

