
A Guidance for Model Composition
Kleinner S. F. Oliveira and Toacy Cavalcante de Oliveira

Informatics Faculty
Pontifical Catholic University of Rio Grande do Sul
Ipiranga Avenue 6681 - Building 32 - ZIP 90619-900

Porto Alegre - Brazil
{ksoliveira,toacy}@inf.pucrs.br

Abstract—With the advent of the Model Driven Development
(MDD), models are replacing code as the major artifact in
software development. These models are typically specified using
OMG’s Unified Modeling Language (UML) . In MDD, model
transformation and model composition are two essential model
management tasks. Model transformation has been extensively
researched while model composition still needs further investiga-
tion. The goal of this paper is to propose a guidance for model
composition (specifically for class diagrams composition) based
on match rules, model transformation rules and model compo-
sition strategy. Moreover, we present UML Profile for Model
Composition and make an analysis about UML’s composition
mechanism

I. INTRODUCTION

Advances in software development and information pro-
cessing technologies have resulted in attempts to build more
complex software systems. These systems have highlighted
the inadequacies of the abstractions provided by modern high-
level programming languages. This has led to a demand for
languages, methods, and technologies that raise the abstraction
level at which software systems are conceived, built, and
evolved [1].

A current trend in software engineering consists of mana-
ging programs at the level of their concepts (using modeling
languages) in order to simplify their design and maintenance
and to increase their robustness against the rapid change
of technologies. This trend proposes to raise the level of
abstraction at which programs are designed and developed [2].
One reference to this new trend is Model Driven Architecture
(MDA) [3], an approach to MDD from Object Management
Group (OMG).

However, with the emergence of MDA, the role of model
transformation and model composition1 becomes more and
more important. Model transformation has been extensively
researched, documented and achieved an important advance,
while model composition still needs more investigation and
efforts to address significant problems. Model composition
is an emerging research field, based on related work on
database integration [4], aspect oriented modeling [5] and
model transformation [6].

Model composition consists of combining two (or more)
input models to generate an output model that combines the

1Model composition and model merging are considered corresponding
terms in this work.

present content in both models. However, there are many
open questions along with model composition, such as: If
we need to compose two input models then what activities
will we execute? UML was adopted as a standard modeling
language, is UML’s composition mechanisms so good as we
think? In this paper the composition of UML’s class diagram is
considered as a merging of model elements of the same type.
For example, class must be composed with class, association
with association, attribute with attribute and as forth. The main
contribution of this paper is a guidance for the specification of
class diagram composition based on match rules, model trans-
formation rules and model composition strategy. Moreover,
we present UML Profile for Model Composition and make an
analysis about UML’s composition mechanism

In order to briefly answer these questions (this work does
not claim completeness), this paper is organized as follows.
Section 2 describes what a model composition is. In Section
3 we propose an initial guidance for model composition
explaining the activities defined in our approach. In Section
4 we present the transformation rules. Section 5 presents
an example of model composition. Section 6 presents some
conclusions.

II. MODEL COMPOSITION IN A NUTSHELL

An object oriented design consists of a set of models
and in which each model consists of a number of different
kinds of UML’s class diagrams. In order to have an integrate
view of the system, the models must be composed. Model
composition is defined by composition operation, a special
type of transformation, that takes two models MA and MB

as input and combines their elements into a model MAB.
Model composition is a generic operation that varies from
application to application. Which elements from MA and MB

are combined and in which way depends on the operation
implementation [7].

A. Model Composition Semantic

When is needed to merge two models, they must be iden-
tified in order to avoid wrong interpretation and to define
the role of each model in model composition mechanism.
Therefore, we now present a semantic for model composition.
This semantic is based on composition semantic defined in [8].
In the Figure 1 are defined:

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

• merged model: the first operand of the merge. It is
merged into the receiving model.

• receiving model: the second operand of the merge. It
is the central element during the composition and is the
source of the merge arrow in the diagrams.

• resulting model: this term is used to specify the model
obtained after model composition have been performed.

• merged element: refers to a model element that exits in
the merged model.

• receiving element: is a model element in the receiving
model.

• resulting element: is a model element in the receiving
model.

<<merge>>

Model AModel A

Model B

Model B

Model Composition
Mechanism

Model AB

Merged

Model
Receiving

Model

Resulting

Model

<<becomes>>

Figure 1. Model composition semantic

In order to provide a clear view of the model composition
mechanism we present our approach based on four phases
described below, know as: initial phase, comparison phase,
merge phase and post-composition phase.

B. Initial Phase

In this phase, the input models are analyzed in order to know
each type of model (i.e. class, association, etc). The models
are separated and grouped according to its types. For example,
Class and Association are identified and grouped. The goals
of this phase is to know the input models.

C. Comparison Phase

The goal of this phase is to find equivalents model elements
based on its signatures. The model element’s signature is
defined in terms of its syntactic properties, where a syntactic
property of a model element defines its structure. The signature
is a collection of values for a subset of syntactic properties in
model element’s metamodel class. For example, isAbstract is a
syntactic property defined in the metamodel class called Class.
If an instance of a Class is an abstract class then isAbstract
= true for the class, otherwise the instance is a concrete
class, isAbstract = false. The set of syntactic properties used
to determine a model element’s signature is called signature
type, as defined in [9]. A signature that consists of all syntactic
properties associated with a model element is called complete

signature type and the signature only based on name is
called default signature type.

The signature is structured in comparison levels orga-
nized hierarchically . For instance, in Figure 3, a pos-
sible definition of levels for the class P1.Student would
be: P1.Student (level 1) with P1.Student.name (level 2)
and P1.Student.age (level 2), and P1.Student.getName() (level
3). This indicate that P1.Student is the first syntactic property
used to compare this class with another. For each model
element type is defined one signature.

In order to check if two model elements are equivalents
(same signature), we defined match rules and match operator.
This operator is responsible to execute the match rules. Match
rule defines when two model elements are equivalents. if a
match rule fails then the models are not possible to compose
themselves. Otherwise, models will be composed. In order to
group the equivalent models two files were created: Match
Model Package (MMP) to group the equivalent models,
and No-Match Model Package to group the no equivalent
models, (NoMMP). The main goal of grouping equivalents
model elements in MMP is facility the model comparison
process. The end of comparison phase is reached as soon as
all models are located either MMP or NoMMP.

1) Match rules: Merged model and receiving model are
corresponds if, and only if, they satisfy all match rules
applied to merged element and receiving element. We present
a short description of the these rules, as follows:

Class match rule:
MatchClass(Class mrgd,Class rcv) → mrgd.name = rcv.name

Association match rule:
MatchAssociation(Association mrgd, Association rcv) →
(mrgd.name = rcv.name) AND (mrgd.memberEnds =
rcv.memberEnds)

Attribute match rule:
MatchAttribute(Class mrgd, Class rcv) →
(mrgd.ownedAttribute.name = rcv.ownedAttribute.name)
AND (mrgd.ownedAttribute.TypedElement = rcv.
ownedAttribute.TypedElement)

Operation match rule:
MatchOperation(Class mrgd, Class rcv) → (mrgd.
ownedOperation.name = rcv.ownedOperation.name) AND
(mrgd.ownedOperation.ownedParameter.length = rcv.
ownedOperation.ownedParameter.length) AND (∀x(mrgd.
ownedOperation.ownedParameter[x] = rcv.ownedOperation.
ownedParameter[x])

D. Merge Phase

There is little agreement on requirements, activities and
steps are need to follow in order to accomplish the composition
of two simple input models, and even less on good practices
to avoid problems during model composition. Several ap-
proaches [10] [11] have been proposed to resolve the problems
found in model composition, but none, as yet, was defined as
standard. In [8], the UML’s Model Composition Mechanisms
(PackageMerge) does not present a tasks flow to merge UML

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

models, does not present a good documentation, and, more-
over, does not defines how model merge is accomplished.

As a preliminary requirements for this phase, MMP and
NoMMP have already been defined once they are input models
(source models) for this phase. The models must be properly
composed in order to obtain an integrate view of input models.
Our approach is based on merging strategy as well as [10].
Strategies are pluggable algorithms that can be attached to
merging phase to implement specific functionality of model
composition, such as: override, integration and union. For each
strategy there is an operator responsible to accomplish the
activities defined in this strategy. For instance, union operator
accomplishes all activities specified in union strategy.

Merged elements and receiving elements with same signa-
ture and syntactic type are merged to form a single element in
composed model. As in [12], we assume that model elements
of the same syntactic type and with same name represent
different and consistent view of the same concept. However,
in some case, this may not be the case if model elements are
developed independently.

In order to work at the abstract level in a model composition,
it is necessary to have a language capable of modeling this
domain. To this end, we present a simple UML Profile for
Model Composition (UPMC) to allow tailoring UML to fit
the needs of model composition domain. Using this profile
is easier to identify a merged and an unchangeable model.
Figure 2 defines an early version of UPMC. Table I specifies
a description for each stereotype of UPMC.

1) UML’s Package Merge Mechanism: The UML has been
used as standard modeling language, but it does not contain
enough elements to model the composition. Model composi-
tion mechanism is defined by PackageMerge. A PackageMerge
defines how the contents of one package are extended by the
contents of another package. As UML metamodel is organized
into packages, according to function and complexity, the
package merge is used extensively. However, package merge
does not have a solid theoretical background, noting written
about it in the literature, outside of the UML specification
itself and in [13].

Based on analysis of UML 2.1 specification and of [13],
some problems in package merge were found, such as: (i)
the definition of package merge in the UML specification is
incomplete, ambiguous and inconsistent; (ii) the semantics of
package merge is not well defined; (iii) most popular UML
modeling tools do not implement package merge.

UPMC
<<profile>>

<<stereotype>>

Merged
<<stereotype>>

Clean

<<stereotype>>

Class

Figure 2. UML Profile for Model Composition in early version

E. Post-Composition Phase

The goals of this phase is to uncover design errors, unde-
sirable properties and conflicts. All models from composition
phase are verified against well-formedness rules in order to
identify badly formed models, such as: class with elevated
number of attribute, operation with excessive number of
parameters. For each uncovered problems are identified an
applicable Model Transformation Rules in order to resolve the
problems and conflicts. These rules are based on [9] and its
definition will present on Section IV.

III. GUIDANCE FOR MODEL COMPOSITION

Based on the Section 2, we now present an activity flow
in order to provide a description of how model composition
activities are accomplished. Figure 4 outlines our approach to
model composition by an activity flow.

P1P2

P2P1

topics: String

ResearchArea

Professor

name: String

email: String

String getName()

Student

name: String

age: int

String getName()

name: String

address: String

University

Professor

name: String

phone: String

String getPhone()

topics: String

ResearchArea

Student

name: String

age: int

String getName()

+name: String

+address: String

University

Professor

name: String

email: String

phone: String

String getName()

String getPhone()

<<merged>>

<<clean>>

<<merged>>

<<clean>>

<<merge>>

rsa

P1P2

topics: String

ResearchArea

Student

name: String

age: int

String getName()

+name: String

+address: String

University

Professor

name: String

email: String

phone: String

String getName()

String getPhone()

<<merged>>

<<clean>>

<<clean>>

<<clean>>
association

reference

Applying

Model Element

Transformation

Rules

match[name]

Resulting Model

Figure 3. A composition with corresponding Classes and Attributes

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Table I
CANDIDATES STEREOTYPES FOR MODEL COMPOSITION

UPMC Applies To Stereotype Description
Merged Class �Merged� Merged stereotype is used to identify a composed model.

Model class branded by this stereotype implying that
one merged strategy was executed.

Clean Class �Clean� Clean stereotype is used to identify an unchangeable model.
Model class branded by this stereotype implying that
no merged strategy was executed.

IV. TRANSFORMATION RULES

In order to produce the resulting model with desired features
and without conflicts is necessary to apply some transforma-
tion rules. These rules are also used to ensure well-formedness
rules. For example, a class must not have an operation with
five or more parameters, an attribute must not have a name so
large (i.e. with twenty character). The bad-formedness conflicts
occurs when a well-formedness rules is not respected. Model
Element Transformation Rules (METR) are the transformation
rules applied to class elements. With METR is possible:

1) Creating and deleting models.
2) Add to and remove from a package.
3) Rename model elements.
4) Changing references to a model element.
5) Merging two models according to a merge strategy

The transformation rules are described following a standard,
as follows:
Name: define the name of the transformation rule.
Description: used to make a description of how a transforma-
tion rules must be applied.
Context: define the context in which transformation rule is
used.
Syntax: specify the syntax of the transformation rule.
Pre-condition: specify the conditions must be satisfied in
order to transformation rule can be executed.
Post-condition: define the conditions must be obtained after
transformation rule has been performed.

A. Model element transformation rules

TR1. Creating new model element
Name: create
Description: this transformation rule is used for creating
new ModelElement. This rule is applied as a factory and is
able to create any model element. To specify this rule was
used reflection defined in CMOF::Reflection [14]. Basically,
we provide the type of element need to create and its
arguments (when need).
Context: to create a new model element
Syntax:
newElement = create[ModelElement.type](arg:
Argument[*]){

Factory.createElement([ModelElement.type], arg) }
Pre-condition: check if the arguments are valid properties of
the correct type and if that values are supplied for all
mandatory properties with no default.

Post-condition: this rule must have created a model
correctly. Moreover, it is possible to make a reference to
well-formedness rules in order to certify bad-formedness
conflict.

TR2. Deleting a model element
Name: delete
Description: we can use this transformation rule when a
class’s model element have to be deleted. It has two
operands: (i) the ModelElement to be deleted; and (ii) the
Package in which ModelElement is inserted.
Context: to delete a model element
Syntax:
delete[ModelElement.type] name :ModelElement
from owner :Package
Pre-condition: check if first the namespace exist then verify
the name of ModelElement. All operands must be correctly
specified.
Post-condition: this rule must have deleted a model
correctly. Moreover, it is possible to make a reference to
well-formedness rules in order to certify bad-formedness
conflict. For instance, if a class was deleted and another
class makes reference to her then a conflict arise.

TR3. Inserting a model into a Package
Name: insert
Description: All model must be located in a Package.
Therefore, the goal of this rule is to insert a model in a
Package. It has two operands: (i) the ModelElement (i.e.
class or association) to be inserted; and (ii) the Package
specification in which ModelElement will be inserted.
Context: to insert a model into a package
Syntax:
insert[ModelElement.type] name :ModelElement
into owner :Package
Pre-condition: check if first the Package exists then verify
the name of ModelElement. All operands must be correctly
specified.
Post-condition: this rule must have inserted a model
correctly in a Package.

TR4. Renaming a model into a Package
Name: rename
Description: The goal of this rule is rename model elements
avoid name conflict. For instance, two attribute of different
class have same name and they must be inserted in resulting
model. This set a name conflict. Therefore, one of these
attributes must be renamed. Rename rule has tree operands:

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

(i) a model (i.e. Class, attribute, operation, association, etc.)
to be renamed; (ii) the model’s Namespace and (iii) a new
name is used to assign to rename the model.
Context: to rename a model into a Package
Syntax:
rename[ModelElement.type] name :ModelElement
from owner :Package
to newName :ModelElement.name
Pre-condition: a model must be defined in a Package.
Post-condition: this rule must have inserted a model
correctly in a Package.

TR5. Merging two models according to a merge strategy
Name: merge
Description: The goal of this rule is merge two model
elements according to a merge strategy. Each merge strategy
will produce a different kind of output model. This rule has
five operands: (i) two model elements and theirs Package
specification. (ii) a merge strategy definition.
Context: to merge two models
Syntax:
merge[ModelElement.type]
name :ModelElement in owner :Package with
name :ModelElement in owner :Package
by strategy :MergeStrategy
Pre-condition: the MergeStrategy must be valid.
Post-condition: this rule must correctly merge two model.

TR6. Creating an association between two models
Name: createAssociation
Context: To create an association between two models.
Description: This rule creates an association from two
supplied Elements that is an instance of the supplied
Association. The first element is associated with the second
element and must conform to its type. To specify this rule
was used reflection defined in CMOF::Reflection. Basically,
we use Fatory class to create a Link between two models.
Syntax:
createAssociation(ass :Association, arg1 :AssociationEnd,
arg2 :AssociationEnd){

Factory.createLink(ass, arg1, arg2)
}
Pre-condition: the arguments must be correctly specified.
Post-condition: a association between two model must be
correctly provided.

TR6. Replacing reference to a ModelElement
Name: replaceReferences
Context: To replace an association between two models.
Description: Removing a ModelElement may lead to invalid
references that refer to a non-existent ModelElement,
a reference conflict. Adopted from [12], we make use of
replaceReferences directive in order to change these
references.
Syntax:
replaceReferences originalName :Name
with replacementName :Name in owner :Package

Pre-condition: the arguments must be correctly specified.
Post-condition: a association between two model must be
correctly changed.

V. EXAMPLE OF MODEL COMPOSITION

One specific application of model composition is when
separate models contains specifications for different require-
ments of a software system. For example, in the context of
global software development the system development effort is
shared with design teams may work on different requirements
concurrently. In determined moment, compose the models is
necessary. Thus, the model composition is applied. Based on
the previous sections, we now show one simple example of
model composition depicted in Figure 3. A desired feature is
defined and it must be found in output model: a Student must
have a research area as well as Professor.

In order to compose P1 and P2 the guidance defined in
Section III is followed:

1) Initial Phase: the classes P1.Student, P1.University,
P1.Professor, P2.Professor and P2.ResearchArea are
grouped because are same types.

2) Comparison Phase: comparison process is based
on default signature, therefore the classes P1.Professor
and P2.Professor are equivalences by merging relation-
ship between P1 and P2. These classes are inserted into
MMP and the remainder classes into NoMMP.

3) Merge Phase: In this example, merging strategy applied
is integration strategy. Therefore, corresponding classes,
attributes and operation appear once in the composed
model. Since P1.Professor and P2.Professor are cor-
responding, P1.Professor only appears once in the
composed model. In the same way, P1.Professor.name
and P2.Professor.name appear once in P1P2.Professor.

4) Post-Composition Phase: composed model does not
result in a well-formed model, since there may
be references to the P2.Professor.name attribute
in P1P2.Professor.getName() (reference conflict). In or-
der to solve this conflict are executed some activities, as
follows:
Step 1: All references to P2.Professor.name attribute
must be changed to P1P2.Professor.name, as follows:
replaceReferences P2.Professor.name
with P1P2.Professor.name in P1P2
Step 2: the P1P2.Student class must have an associa-
tion to P1P2.ResearchArea, therefore, a new association
between P1P2.Student and P1P2.ResearchArea must be
created, as follows:
createAssociation(rsa, Student , ResearchArea){

Factory.createLink(rsa, Student, ResearchArea)
}

The resulting model is showed in Figure 3.

VI. CONCLUSION

The main contributions of this paper are a definition and
a organization of model composition activities in phases

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

Input Model A

Input Model B

Definition of signature for

each model element type

[Identification of

composition problems]

[No identified

problems during

the composition]

Composed Model

Definition of the

Merge Strategy

Merging of models

Application of merge rules

Identification of

to be applied

Model

Transformation Rules

Model Transformation

Rules

Output Model

Identification and analysis

of input models

Comparison of models

signature

Verify Composed

Model

[Identification of

problems]

[Equivalent models were found]

[No equivalence

model was found]

In
it
ia

l
P
h
a
s
e

C
o
m

p
a
ri
s
o
n

P
h
a
s
e

M
e
rg

e
P
h
a
s
e

P
o
s
t-

C
o
m

p
o
s
it
io

n
P
h
a
s
e

NoMMP

MMP

Well-Formedness Rules

[No identification of

problems]

Figure 4. Model composition activity flow

and a specification of activity flow of model composition,
moreover a definition of transformation rules. We presented
a guidance for defining how the activities are distributed
among the phases. Moreover, UML model composition me-
chanism (Package Merge) was analyzed and identified some
its problems. In order to elevate the abstract level in a model
composition and make easier to identify the merged model
and no merged model was defined an UML Profile for model
composition that have been evolved. The definition of model
composition semantics, models transformation rules and UML
Profile for model composition provide a set of terms are used
during model composition description.

Future work will concentrate on clearly defining of merging
strategy and its operators. The model element transformation
rules are in the initial definition stage so that they can be used
to resolve identified problems in composed model. Empirical
evaluation is needed to validate this approach in real world
design settings of model composition. Finally, we observe that

model composition is in initial stage and its improvement is
absolutely necessary to model engineering evolution.

REFERENCES

[1] Robert B. France, S. Ghosh, and T. Dinh-Trong, “Model Driven Devel-
opment Using UML 2.0: Promises and Pitfalls,” IEEE Computer Society,
vol. 39, no. 2, pp. 59–66, February 2006.

[2] B. Selic, “The Pragmatics of Model-Driven Development,” IEEE Soft-
ware, vol. 20, no. 5, pp. 19–25, September/October 2003.

[3] Object Management Group, MDA Guide Version 1.0.1, 2003,
http://www.omg.org/docs/omg/03-06-01.pdf.

[4] C. Batini, M. Lenzerini, and S. B. Navathe, “A Comparative Analysis
of Metodologies for Database Schema Integration,” ACM Computing
Surveys, vol. 18, no. 4, pp. 323–364, December 1986.

[5] T. Cotternier, A. van den Berg, and T. Elrad, “Modeling Aspect-Oriented
Compositions,” in Proceedings of Workshop on Aspect-Oriented Mode-
ling co-located with MODELS 2005, October 2005.

[6] F. Jouault and I. Kurtev, “On the Architectural Alignment of ATL and
QVT,” in Proceedings of Symposium on Applied Computing (SAC 06).
ACM Press, April 2006.

[7] M. D. D. Fabro, J. Bzivin, and P. Valduriez, “Weaving Models with the
Eclipse AMW Plugin,” in Eclipse Modeling Symposium, Eclipse Summit
Europe 2006, Esslingen, Germany, 2006.

[8] OMG, Unified Modeling Language: Infrastructure version 2.0, Ob-
ject Management Group, February 2007, http://www.omg.org/cgi-
bin/apps/doc?formal/07-02-03.pdf.

[9] Y. Reddy, R. France, G. Straw, N. M. J. Bieman, E. Song, and G. Georg,
“Directives for Composing Aspect-Oriented Design Class Models,” in
Transactions of Aspect-Oriented Software Development, vol. 1, no. 1,
2006.

[10] D. Kolovos, R. Paige, and F. Polack, “Merging Models with the Epsilon
Merging Language (EML),” in ACM/IEEE 9th International Conference
on Model Driven Engineering Languages and Systems (MODELS/UML
2006), Genova, Italy, October 2006.

[11] R. F. Benoit Baudry, Franck Fleury and R. Reddy, “Exploring the
Relationship Between Model composition and Model Transformation,”
in Proceedings of Aspect Oriented Modeling Workshop, in conjution
with MoDELS’05, 2005.

[12] G. Straw, G. Georg, E. Song, S. Ghosh, R. France, and J. Bieman,
“Model Composition Directives,” in Proceedings 7th International Con-
ference on UML Modelling Languages and Applications, ser. LNCS,
A. M. Thomas Baar, Alfred Strohmeier and Stephen J. Mellor, Eds.
Springer-Verlag, Outubro 2004, pp. 84–97.

[13] A. P. Zito, “UML’s Package Extension Mechanism: Taking a Closer
Look at Package Merge,” Master’s thesis, School of Computing, Quenn’s
University Kingston, Ontario, Canada, September 2006.

[14] OMG, Meta-Object Facility Core Specification Version 2.0, Object
Management Group, 2002, http://www.omg.org.

International Conference on Software Engineering Advances(ICSEA 2007)
0-7695-2937-2/07 $25.00 © 2007

