
Measuring the Cognitive Load of Software
Developers: A Systematic Mapping Study

Lucian Gonçales, Kleinner Farias
University of Vale do Rio dos Sinos

São Leopoldo, Brazil

lucianj@edu.unisinos.br, kleinnerfarias@unisinos.br

Bruno da Silva, Jonathan Fessler
California Polytechnic State University
San Luis Obispo, United States

bcdasilv@calpoly.edu, jvfessle@calpoly.edu

Abstract—Context: In recent years, several studies explored
different facets of the developers’ cognitive load while executing
tasks related to software engineering. Researchers have proposed
and assessed different ways to measure developers’ cognitive
load at work and some studies have evaluated the interplay
between developers’ cognitive load and other attributes such as
productivity and software quality. Problem: However, the body
of knowledge about developers’ cognitive load measurement is
still dispersed. That hinders the effective use of developers’
cognitive load measurements by industry practitioners and makes
it difficult for researchers to build new scientific knowledge
upon existing results. Objective: This work aims to pinpoint gaps
providing a classification and a thematic analysis of studies on
the measurement of cognitive load in the context of software
engineering. Method: We carried out a Systematic Mapping
Study (SMS) based on well-established guidelines to investigate
nine research questions. In total, 33 articles (out of 2,612) were
selected from 11 search engines after a careful filtering process.
Results: The main findings are that (1) 55% of the studies
adopted electroencephalogram (EEG) technology for monitoring
the cognitive load; (2) 51% of the studies applied machine-
learning classification algorithms for predicting cognitive load;
and (3) 48% of the studies measured cognitive load in the context
of programming tasks. Moreover, a taxonomy was derived
from the answers of research questions. Conclusion: This SMS
highlighted that the precision of machine learning techniques
is low for realistic scenarios, despite the combination of a set
of features related to developers’ cognitive load used on these
techniques. Thus, this gap makes the effective integration of the
measure of developers’ cognitive load in industry still a relevant
challenge.

Index Terms—Cognitive Load; Software Engineering; Program
Comprehension; Systematic Mapping Study;

I. INTRODUCTION

The measure of cognitive load plays a key role in tasks

of software engineering. Software developers are involved in

activities that affect and demand their attention. Developers

apply cognitive effort to mentally process the structures of

the source code (which is a cognitive process known as

source code comprehension) [1], [2], on resolving arithmetic

problems [3], and on interpreting different abstractions levels

of software artifacts [4]. The measurement of cognitive load

generates valuable information (such as the level of expertise

of developers) for software engineering purposes [1], [2],

e.g, for accounting developers programming experience, and

classification of the perceived difficulty [5], [6] during a

coding task. Previous research has pointed out that measuring

cognitive load in software development activities is still a

problem [7]. But even so, researchers and practitioners in

the industry need to select a set of cognitive load measures

available in the literature and adapt them to their purpose.

However, choosing a proper cognitive load measure is

difficult. There are a limited number of studies in the literature

that have systematically classified the measures and their

technologies related to cognitive load. Some researchers have

produced literature reviews and surveys [8]–[10] related to

the measurement of cognitive load. These include a general

view of how mobile electroencephalograms (EEGs) could

be classified according to the activity of the users [8], an

analysis of biometric measures used to predict personal char-

acteristics [9], and a review of the literature about wearable

biometric recognition systems [10]. Moreover, they are far

from covering the research field of software engineering.

The second reason why the choice for a proper cognitive

load measure is difficult is that, while some measures about

cognitive load were proposed between 2008 and 2018, aca-

demic research and software industry have neglected a careful

classification of such measures produced in that period [7]

[6] [11]. In addition, there is still a lack of understanding

about important issues, such as, which sensors and measures

relate to cognitive load, the machine learning techniques used

to measure cognitive load in software engineering, and which

empirical methods are used to assess the cognitive load. In

general, an understanding of the state-of-the-art approaches

remains limited. Moreover, some studies points that measuring

code comprehension through cognitive load may be a more

reliable measure to classifying developer expertise rather than

time of completion tasks, or correctness of produced software

artifacts [1], [2], [12].

Therefore, this article aims at (1) providing a classification

and a thematic analysis of studies on the measurement of

developers’cognitive load, and (2) pinpoint gaps and research

directions for further investigations. To this end, we carried out

a Systematic Mapping Study (SMS) based on well-established

guidelines (e.g., [13]–[15]). A review protocol was established

by combining automatic and heuristic search in eleven widely

recognized electronic databases and running a careful filtering

process over a sample of 2,612 potentially relevant studies.

In total, 33 articles were selected for answering nine research

questions which are solved and discussed in the remainder of

42

2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC)

978-1-7281-1519-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICPC.2019.00018

this article.

Section II describes the methodology used to map the

current literature. Section III presents the results of the nine

research questions. Section IV discusses future challenges and

Section V contrasts parts of this work with related work.

Section VI discusses decisions taken to minimize threats to

the validity of our results. Finally, Section VII outlines final

remarks, and future directions of this research.

II. SMS PLANNING

A. Objective and Research Questions

This work has two main objectives: (1) to provide a classifi-

cation of the literature regarding the measurement of develop-

ers’ cognitive load to pinpoint gaps in the literature; and (2) to

identify emerging research topics for further investigation. To

achieve these objectives, we defined nine research questions

(RQs) to explore different aspects of available studies. Table I

presents an overview of these research questions (RQs). In

addition, this table also presents the description of their respec-

tive motivations, and the aspect that each research question

aims to explore.

B. Search Strategy

Search String (SS). We identified search terms using the
Populations, Interventions, and Outcomes (PIO) method [14],

[16]. The Populations refer to the standards and technologies

(such as EEG, and Brain Computer Interfaces). The Interven-

tion terms are related to the mentioned technologies (measures

of cognitive load in software development). The Outcomes

are the contributions that practitioners and researchers expect

related to software engineering (code, and diagram). The

synonyms of each group were identified, and they were related

using to the Boolean “AND” and “OR” operators as shown in

II).

The Search String (SS) bellow is the combination of terms

defined in Table II, thus used as default on search engines.

(“brain computer interfaces” OR sensors OR devices) AND
(“psychophysiological indicators” OR “brain

synchronization” OR “cognitive load” OR emotions OR
biometrics) AND (“software engineering” OR “software

development” OR “software testing” OR “software
maintenance” OR “computer programming” OR diagram

OR code)

Search Engines. We chose the search engines listed in Ta-
ble III because they are related to the area of computer science,

cover relevant research venues, and are likely to return peer-

reviewed studies written in English.

C. Exclusion Criteria

These criteria defined in this section were used to include

and exclude studies retrieved from search engines during the

selection process.

The Exclusion Criteria (EC) are specified bellow:

• EC1: the title, abstract or any other part of their content
were closely related to the search keywords, however

without any semantic interplay;

• EC2: the study was not written in English (the default
language considered in our study), or a patent had been

registered for it (grey literature, and studies in an initial

stage were also removed);

• EC3: the title did not have any term specified in the
search string, or even the meaning of the title is com-

pletely contrary to the purpose of the issues addressed in

the research questions;

• EC4: the abstract did not address any aspect of the
research questions;

• EC5: the study appears in duplicate; and
• EC6: the work did not address issues about measures
of cognitive load on software developers or on software

engineering tasks.

D. Defined Steps and Process Selection of Primary Studies

The filtering process aims at selecting representative studies

based on well recognized procedures [14]. Fig. 1 shows the

results of the selection process. In general, a total of 33

Primary Studies were selected from 2,612 papers. Seven steps

of selection were applied to produce the final list of 33 primary

studies (Listed on Appendix A).

• Step 1: Initial search. Retrieve the search results from
the search engines using the defined the search string. In

total, 2,612 studies were retrieved from digital libraries.

• Step 2: Remove impurities. Remove impurities obtained
from the search results. For this, we applied the exclusion

criteria EC1 and EC2. In this step we typically removed

calls for conference paper, journal special issues, patents

specifications, research reports, and materials not peer

reviewed. In this step, 686 studies were removed, i.e.;

about 26.3% were considered as impurities, and then

1,926 studies remained on this step.

• Step 3: Filter by title and abstract. Filter studies by
reading title and abstract and applying the exclusion

criteria EC3 and EC4. Therefore, we could filter out the

studies with content not related to our research questions.

In these step, 80.2% of studies were removed resulting

on 165 articles.

• Step 4: Combination. The studies were filtered by title
and abstract in the last step in different search engines di-

rectories. In this step, these studies were brought together

in a unique directory.

• Step 5: Removal of duplicates. Usually a study can be
found in two or more digital libraries. Thus, we applied

EC5 for removing all duplicates, thereby assuring the

uniqueness of each study. Then, 6.7% of studies (11 of

165) were duplicated and removed in this step. A total

of 154 studies remained after this step.

• Step 6: Filter by full text. Filter studies by reading the
full text and applying EC6. With we excluded studies that

were not related to neither the research questions nor the

main theme of this research (developers’cognitive load

measurement). A total of 119 studies were removed in

this step resulting on 35 studies.

43

TABLE I
RESEARCH QUESTIONS INVESTIGATED

Research Question Description Variable

RQ1: What are the types of sensors adopted to measure the
cognitive load of developers?

List the sensors used to collect cognitive load from developers. Sensors

RQ2: What metrics have been used to measure developers’
cognitive load?

Discover and understand the metrics that were applied to measure developers’
cognitive load.

Metrics

RQ3: What algorithms have been used to classify devel-
oper’s cognitive load?

Understand the different algorithms considered for measuring cognitive load. Algorithms

RQ4: For what purpose has developers’ cognitive load been
measured?

Identify for what purpose cognitive load has been measured. Purpose

RQ5: Which tasks have been used to measure developers’
cognitive load?

Classify software engineering tasks over the works published in the literature. Software Development Tasks

RQ6: What were the artifacts used on cognitive tasks? Determine which artifacts researchers commonly used on experimental tasks to
measure developers’ cognitive load.

Artifacts

RQ7: How many participants did the studies recruit to
measure developers’ cognitive load?

Find out the number of participants researchers used to conduct their experi-
ments.

Number of participants

RQ8:Which research methods have been used to investigate
cognitive load in software development tasks?

Understand the different types of research methods scientists on software
engineering research field used to investigate developers’ cognitive load.

Research methods

RQ9: Where have the studies been published? Identify the venues in which research on developers’ cognitive load have been
published over the last years.

Research venues

Fig. 1. Illustration of the execution of the study filtering process and the obtained results.

TABLE II
A DESCRIPTION OF THE MAJOR TERMS AND THEIR SYNONYMS

Major Terms Synonym Terms

Sensors “brain computer interfaces” OR sensors

OR devices

Cognitive Load “psychophysiological indicators” OR “brain

synchronization” OR emotions OR biometrics

Software engineering

“software development” OR “software testing”

OR “software maintenance” OR “computer programming”

OR diagram OR code

• Step 7: Selection of Representative work. Define the

final list of the primary studies. Examining these 35

studies, it was observed that some of them are extensions

of the same study. Finally, 5.7% (2/35) of studies were

discarded resulting on 33 works selected as the primary
studies.

III. RESULTS

A. RQ1: Sensors

Table IV shows the results of RQ1. It’s important to identify

which sensors were related to cognitive load, and why they

were applied. The main finding is that software engineering

researchers prefer the electroencephalogram (EEG) sensor to

collect data related to cognitive load. In particular, 55% (18

44

TABLE III
LIST OF THE SEARCH ENGINES

Search Engines Link

ACM Digital Library http://dl.acm.org/

CiteSeerX Library http://citeseerx.ist.psu.edu/

Google Scholar https://scholar.google.com.br/

IEEE Explore http://ieeexplore.ieee.org/

Inspec http://digital-library.theiet.org/

Microsoft Academic https://academic.microsoft.com/

Pubmed https://www.ncbi.nlm.nih.gov/pubmed/

Scopus http://www.scopus.com/

Science Direct http://www.sciencedirect.com/

Springer Link http://link.springer.com/

Wiley Online Library http://onlinelibrary.wiley.com/

of 33) of the selected works used EEG. According to Kosti

et al. [7] the application of EEG in software engineering

empirical studies paves the way for validation of theories

about cognitive processes related to software engineering

tasks, such as, programming tasks, using the electrical signals

from the brain (a.k.a. brain waves). In addition, a series of

work concerned with monitoring and analyzing brain waves

to trace human cognitive facets during development tasks,

such as, code comprehension [1], [2], [17], their relation with

developers’ emotions [18]–[20], and for evaluating mental

effort [7], [21], was produced.

TABLE IV
CLASSIFICATION OF TECHNOLOGIES FOR MEASURING THE COGNITIVE

LOAD OF DEVELOPERS

Technologies #Studies Percentage Studies

EEG 18 55%

[S01][S02][S04][S05][S07][S08][S09][S10]

[S12][S13][S16][S23][S27][S28][S29][S30]

[S32][S33]

Combination of Sensors 12 36%
[S03][S06][S11][S15][S17][S19][S20][S21]

[S22][S24][S25][S26]

Eye-Tracking 2 6% [S14][S31]

fMRI 1 3% [S18]

Total 33 100

Next, only 6% (2/33) of studies applied eye-tracking, and

3% (1/33) used Functional Magnetic Ressonance Imaging

(fMRI) technologies. Furthermore, we did not find any study

employing only one of the following technologies – Electro-

cardiogram (ECG), Blood Volume Pulse (BVP), and Electro-

dermal Activity (EDA) – to measure cognitive load from

developers. Instead, these technologies are usually combined

together with the EEG, acting as a set of combined sensors,

as summarized in Table IV. Table IV shows that a significant

number of the selected works (36%, 12/33) combined sensors

to measure developers’ cognitive load. We found out that the

combinations of the data from these multiple sensors were

used to improve the accuracy of the results from applying

machine learning techniques [22]–[24].

B. RQ2: Metrics

Table VI presents the results for RQ2. The main finding is

that a majority of studies focus on indicators related to brain

activity, e.g., 42% of studies (14/33) focus on measures that

TABLE V
CLASSIFICATION OF PRIMARY STUDIES THAT COMBINED SENSORS

List of Primary Studies Set of Combined Sensors

Muller 2015 [S03] EEG, Eye Tracking, Galvanic Skin Response

Randall Minas 2017 [S06] EEG, Skin Conductance

Lauri Ahonen [S11] EDA, ECG

Thomas Fritz [S15] EEG, EDA, Eye Tracking

Nargess Nourbakhsh [S17] Eye-blink, GSR

Norman Peitek [S19] fMRI, Eye Tracking

Manuela Zuger [S20] EEG, Eye Blink, EDA

Thomas Fritz [S21] EEG, Eye Tracking, EDA

Sarah Fakhoury [S22] fNIRS, Eye Tracking

Sebastian C. Muller [S24] Heart Rate, RR

Seolhwa Lee [S25] EEG, Eye Tracking

Sebastian C. Muller [S26] EEG, Eye Tracking, EDA

are related to EEGs. Measures such as Event-Related Potential

(ERP) (6%, 2/33), Evented Related Desynchronization (ERD)

(6%, 2/33), Fractal Design (FD) (6%, 2/33), SSVEP (6%,

1/33), and ERSP (3%, 1/33), were obtained from brain waves

and correlated to cognitive load.

TABLE VI
CLASSIFICATION OF PRIMARY STUDIES BASED ON METRICS RELATED TO

COGNITIVE LOAD

Metrics #Studies Percentage List of Primary Studies

Frequency Bands 4 12% [S23][S28][S29][S30]

Power Spectrum of Each Band 3 9% [S05][S08][S27]

Event Related Desynchronization 2 6% [S02][S06]

Event Related Potential 2 6% [S07][S12]

Fractal Dimension 2 6% [S04][S13]

Volume of Interest 2 6% [S18][S19]

Eye Fixation 1 3% [S14]

Event Related Spectral Perturbation 1 3% [S10]

Individual Alpha Frequency 1 3% [S01]

Index of Cognitive Activity 1 3% [S31]

Steady State Visual Evoked Potential 1 3% [S32]

Set of Metrics 13 40%

[S03][S09][S11][S15][S16]

[S17][S20][S21][S22][S24]

[S25][S26][S33]

Total 33 100%

The Event-Related Potential (ERP) was used to verify the

effect of the use of the software system on the developers’s

mental load [21], and to classify emotions [25]. The Event-

Related Disyncrhonization (ERD) was measured to calculate

the mental load during source code comprehension [1], [2].

Steady State Visual Evoked Potential (SSVEP) was used for

analyzing visual stimuli [26], Event Related Spectral Pertur-

bation (ERSP) was utilized to analyze the influence of stress

during activity switching [27], and Fractal Dimension (FD)

was used to analyze and classify emotions from the brain

waves [20]. 21% (7/33) of the studies were concerned with

using the frequency bands to analyze the cognitive load of

developers. In a software engineering context, few conclusions

could be derived from the visual analysis of raw EEG signals

regarding cognitive effort. However, some studies have already

evidenced that using brain waves in combination with machine

learning techniques can produce valuable outcome measures.

45

Rather than relying on a single metric, a relevant portion of

works (40%) applied a set of metrics to measure developers’

cognitive load. Table VII summarizes the selected studies

grouped by set of combined metrics. It is worth noting that

cognitive load analysis is not limited to brain-centric data.

TABLE VII
CLASSIFICATION OF PRIMARY STUDIES BASED ON SET OF COMBINED

METRICS

List of Primary Studies Set of Combined Metrics

Sebastian Muller 2015 [S03]
Alpha, Beta/Theta, Electrodermal activity, Pupil Size,

MeanSCL

Ahamad Subani 2017 [S09]
Amplitude Assimetry, Absolute Power, Relative Power,

Coherence, Phase Lag

Lauri Ahonen [S11]
Heart Rate, Standart Deviation of Normal to Normal, Skin

Conductance Response, and Skin Conductance Level

Thomas Fritz 2014 [S15]
Power Spectrum of each band, EDA, and Eye-Blink

Measures

Daniela Cernea 2012 [S16] Eye tracking, Emotions

Nargess Nourbakhsh 2013 [S17]
Accumulative GSR, power spectrum of GSR, blink

number and blink rate

Manuela Zuger 2015 [S20] Variations of brain waves, Heart hate, skin temperature

Thomaz Fritz 2016 [S21]
Frequency bands, EDA, HR, HRV, Blood Volume Pulse,

Respiratory Rate, eye blinks, fixations, pupil size

Sarah Fakhoury 2018 [S22] HbT, HbO, HbR ,Oxy

Sebastian Muller 2016 [S24] HRV, HR, Respiratory Rate, Skin Temperature, EDA

Seowlwa Lee 2017 [S25] Frequency bands, eye blink, pupil size

Sebastian Muller 2015 [S26]
Frequency bands, EDA, HR, HRV, Blood Volume Pulse,

Respiratory Rate, eye blinks, fixations, pupil size

Yueran Yuan [S33]
Frequency bands, mean, variance, min, max, skew,

first-order-polynomial-fit, and second-order-polynomial-fit

Overall, this classification evidences that primary studies ap-

plicated a different combination of metrics related to cognitive

load. Furtermore, the term cognitive load is commonly know

to be misused in software engineering. Some primary studies

use cognitive load as an absctract term for “mental effort” [7],

[28], while others base on the context of cognitive load theory,

in particular using concepts such as extraneous and intrinsic

cognitive load [1], [2].

C. RQ3:Algorithms

TABLE VIII
ALGORITHMS AND APPROACHES FOR MEASURING THE COGNITIVE LOAD

OF DEVELOPERS

Category
Machine Learning

Algorithms
#Studies Percentage List of Primary Studies

Classication

Support Vector Machines (SVM) 5 15% [S05][S07][S23][S25][S29]

Naive Bayes 5 15% [S15][S20][S21][S26][S33]

Multi-algorithms of Classification 3 9% [S09][S17][S32]

K-means 1 3% [S06]

Decision Tree Classifier 1 3% [S03]

Logistic Regression 1 3% [S01]

Neural Network 1 3% [S28]

Random Forest Learners 1 3% [S24]

Relevance Vector Machines 1 3% [S23]

Regression Linear regression 1 3% [S13]

Does not use 13 40%

[S02][S04][S10][S11][S12]

[S14][S16][S18][S19][S22]

[S27][S30][S31]

Total 33 100%

The results in Table VIII show that studies tend to use

more Classification Techniques than Regression techniques.

Only 1% of the primary studies (1/33) applied Regression

techniques to their approaches. This implies that studies in

software engineering which measure the cognitive load of

developers are focused on classification problems. Thus, the

literature is focusing on prediction problems such as level

of understanding, task difficulty, and emotion recognition.

Subsection III-D describes the prediction problems which the

software engineering researchers were focusing on classifying.

Table VIII shows that for classifying these groups and subsets,

they prefer to use Support Vector Machines (SVM) and

Naive Bayes (NB): about 30% of primary studies (10/33)

implemented these machine learning algorithms. The literature

shows that these algorithms both achieved higher precision and

accuracy in predicting situations where developers face high

task difficulty [5], [23], and lower productivity [6]. A small

portion of works focused on other classification strategies such

as the Decision Tree Classifier (3%, 1/33), K-means (3%,

1/33), and Random Forest Learners (3%, 1/33).

Moreover, some works used more than one machine learn-

ing algorithm. Table VIII shows that about 9% (3/33) of

works applied a set of multiple machine learning algorithms.

Table IX summarizes the three articles with the machine

learning techniques applied. This also reinforces the preference

of SVM and Naive Bayes. Fritz and Muller [6] concluded that

Naive Bayes has higher precision on data prediction than other

alternative machine learning techniques. In addition, they high-

lighted that classification techniques are less precise during

field experiments in realistic scenarios than those controlled

experiments in labs. Finally, classification of multi-classes

tends to decrease the precision and accuracy of classifiers. This

means that it would be difficult to identify precisely more than

two classes of expertise of developers.

TABLE IX
LIST OF PRIMARY STUDIES THAT APPLIED MORE THAN ONE MACHINE

LEARNING TECHNIQUE

List of Primary Studies Classification Algorithms

Ahmad Subhani 2017 [S09] Decision Tree, Naive Bayes and K-Nearest Neighbor

Nargess Nourbakhsh 2013 [S17] Support Vector Machines, and Naive Bayes

Zafer 2018 [S32] Support Vector Machines, Naive Bayes, Linear Regression

D. RQ4: Purpose

Table X presents the classification of studies according to

purposes for which they evaluated cognitive load.

The goal most explored by the primary studies is to

understand the correlation between cognitive load and code

comprehension. 25% (8/33) of primary studies aims investi-

gating how the developers brain waves signals can be used to

understand the process of comprehension of source code. The

literature points that measuring code comprehension through

cognitive load may be a more reliable alternative to classifying

developer expertise rather than time of completion tasks, or

correctness of produced software artifacts [1], [2]. Next, 18%

(6/33) of the primary studies aimed to understand the difficulty

of tasks based on cognitive load measurements of developers

, specifically. Detecting the difficulty of an activity while the

46

TABLE X
CLASSIFICATION OF PRIMARY STUDIES BASED ON PURPOSE

Purpose #Studies Percentage List of Primary Studies

Code Comprehension 8 25% [S01][S02][S14][S18][S19][S22][S31][S33]

Emotion Recognition 6 18% [S04][S05][S06][S07][S08][S13]

Task Difficulty 6 18% [S15][S23][S25][S26][S27][S29]

Cognitive demand 3 9% [S12][S17][S30]

Productivity 2 6% [S03][S21]

Stress level 2 6% [S09][S10]

Authentication 1 3% [S28]

Code Quality 1 3% [S24]

Interruptiblity 1 3% [S20]

Pair-Dynamic level 1 3% [S11]

Performance 1 3% [S32]

Satisfaction 1 3% [S16]

Total 33 100%

developer performs it is information that has the potential to

be used for various goals. According to Lee [12] the difficulty

can be used to update the time estimate for completing a task

and predict propensity for errors.

Furthermore, 18% (6/33) of primary studies used the cog-

nitive load of developers with the objective of classifying

and recognizing emotions. Some studies are dedicated to

developing methods to detect emotions more precisely [25]

[29]. Next, a small portion of primary studies focused on

using the cognitive load data to assess stress levels (3%,

1/33), interruptibility (3%, 1/33), performance (3%, 1/33),

productivity levels (3%, 1/33), and for predicting productivity

(3%, 1/33).

E. RQ5: Software Engineering Tasks

Table XI presents the classification of studies according to

the tasks for which they evaluated cognitive load.

TABLE XI
CLASSIFICATION OF PRIMARY STUDIES BASED ON TASKS

Tasks #Studies Percentage List of Primary Studies

Programming 16 48%
[S01][S02][S03][S06][S11][S14][S15][S18][S19][S20]

[S21][S22][S24][S25][S26][S30]

Observation 6 18% [S05][S07][S13][S16][S27][S28]

Arithmetic Equations 3 9% [S17][S23][S29]

Multitasks 3 9% [S08][S12][S32]

Listen 2 6% [S04][S09]

Reading 2 6% [S31][S33]

Choose 1 3% [S10]

Total 33 100%

The main finding is that studies concentrated on investi-

gating programming tasks. A near majority of studies (48%,

16/33) focused on investigating the cognitive load of practi-

tioners during programming tasks. Next, 9% of studies (3/33)

utilized tasks focusing on solving arithmetic equations. The

Listening and Reading tasks were each considered in 6%

(2/33) of the primary studies. In addition, 9% (3/33) of studies

used two different tasks in their experiments.

To sum up, the main research gap concerning these listed

tasks is the lack of other software development cycle phases,

such as analysis, design, and deployment phases. The primary

studies which evaluated cognitive load on programming tasks

usually required developers to complete a missing part of the

source code. In others, they solved an algorithm mentally.

None of the primary studies reported tasks related to software

development phases, such as analysis, design, and deployment

phases.

F. RQ6: Artifacts

Table XII show the answers of RQ6. The results shows

that the most adopted artifacts by primary studies are source

code (48%, 16/33), images (12%, 4/33), and math equations

(9%, 3/33). A minority of primary studies used artifacts such

as texts (9%, 3/33), reports (3%, 1/33), videos (3%, 1/33),

images (12%, 4/33), sounds (3%, 1/33), or a combination of

sounds and images (3%, 1/33), in experiments.

TABLE XII
CLASSIFICATION OF PRIMARY STUDIES BASED ON ARTIFACTS

Artifact #Studies Percentage List of Primary Studies

Code 16 48%
[S01][S02][S03][S06][S11][S14][S15][S18][S19]

[S20][S21][S22][S24][S25][S26][S30]

Images 4 12% [S05][S07][S10][S27]

Equation 3 9% [S17][S23][S29]

Texts 3 9% [S28][S31][S33]

Localization 1 3% [S12]

Product 1 3% [S16]

Reports 1 3% [S09]

Sounds 1 3% [S04]

Sounds and Images 2 6% [S08]

Video 1 3% [S13]

Total 33 100%

The primary studies were concerned mainly with using

source code artifacts in experiments to evaluate the cognitive

load of collaborators. In particular, 48% of studies (16/33)

adopted source code artifacts. Furthermore, the primary studies

chiefly used source code written in Java [2], [4], [23], [28],

[30]–[33], with one study using code written in C# [5]. Thus,

studies tend to choose a standard programming language for

their experiments. This suggests that the experiments have not

investigated the impact of the syntactic difference between the

languages on the cognitive load. This would be helpful in

highlighting which programming languages tend to be easier,

or which require less cognitive load from the developers.

Only one study used both C# and Java languages [34], but

they where evaluated sepparetly, i.e., aiming to adapt the

experiment to the developers’ background. The difference in

code structures has the potential to impact the cognitive load.

Minas et. al. [4] found out that methods concentrating a

majority of functionalities of a system demands less cognitive

load than code-oriented design.

Moreover, an evident research gap is that several artifacts

related to software engineering have not yet been used in ex-

periments, such as the wide range of UML software diagrams

[35]. Future studies have potential in exploring the impact that

artifacts of different abstraction levels on the cognitive load.

Recent studies measured it in terms of time effort, not in terms

of indicators obtained from biological features [1], [2].

47

G. RQ7: Participants

Table XIII shows the number of participants that the primary

studies used in their experiments. To sum up, a majority

of works collected the cognitive load from less than 20

participants. 48% (16/33) of studies recruited on a range of

between eleven and twenty participants. Furthermore, 12%

(4/33) of studies recruited ten or fewer participants. Next, 18%

(6/33) recruited between twenty-one and thirty participants. A

small portion of works recruited more than thirty participants.

Specifically, 12% (4/33) of primary studies fell into a range

of 31 to 40 participants, and only 9% (3/33) were in a range

of 41 to 50 participants. We did not find any study that had

more than 50 participants.

TABLE XIII
CLASSIFICATION OF PRIMARY STUDIES BASED ON NUMBER OF

PARTICIPANTS

#Participants #Studies Percentage List of Primary Studies

0-10 4 12% [S07][S20][S24][S30]

11-20 16 48%
[S03][S05][S08][S10][S12][S13][S15][S16][S17][S18]

[S21][S22][S26][S27][S29][S33]

21-30 6 18% [S04][S14][S19][S23][S31][S32]

31-40 4 12% [S01][S02][S25][S28]

41-50 3 9% [S06][S09][S11]

Total 33 100%

The literature does not indicate an ideal number of par-

ticipants to perform the experimental activities with EEGs.

However, a minimum number of participants is required to

generate consistent sampling. From consistent sampling it

is possible to generalize more reliable conclusions. In an

experimental task the participants must generate at least 25

to 30 samples. Achieving this number of samples is a chal-

lenging task mainly because of the difficulties encountered in

recruiting participants, such as the limits which must be placed

on participants’ time, and the struggle of choosing the ideal

participants’ profiles for the experiment. For example, the clas-

sification of the data in different participants’ profiles of the

users fragments the sample data. Igor Crk et. al. [2] classified

the participants into 4 different classes (ranked from 0 up to

4, i.e., respectively from the least to the most experienced).

Although there were a large number of participants in general,

this classification resulted in around 10 to 12 participants

in each class. This fragmentation causes a reduced number

of samples. Finally, an existing database with biometric data

related to software activities would facilitate the acquisition of

a good sample count.

H. RQ8: Research Methods

This research question classifies the research methods used

by primary studies. The research methods were classified

as controlled experiment, proposal of solution, philosophical

paper, validation, and personal experience. These categories

were based on [36]. Table XIV shows the answers of RQ8

according these categories.

A Majority of primary studies (67%, 22/33) were controlled

experiments. Second, some studies (25%, 8/33) were proposals

of solutions, i.e., they focused on proposing new solutions and

resolving problems inherent to research gaps, e.g., Peitek et

al. [33] propose the utilization of eye tracking and fMRI to

measure program comprehension. Moreover, numerous papers

propose methods of detecting emotions through the use of

EEGs [4], [19], [20], [25], [29]. Emotions are important factors

that impact many software development tasks, and conversely,

software development tasks can have an impact on developers’

emotions. 1% (1/33) were opinion papers, i.e., when authors

give their opinion about future problems on their research field.

Specifically, numerous papers propose methods of detecting

emotions through the use of EEGs [4], [19], [20], [25], [29].

Emotions are important factors that impact on many software

developments tasks, and conversely, software development

tasks can have an impact on developers’ emotions.

TABLE XIV
CLASSIFICATION OF PRIMARY STUDIES BASED ON RESEARCH METHOD

Research

Methods

Number

of Studies
Percentage Studies

Controlled Experiment 24 73%

[S01][S02][S03][S10][S11][S12][S14][S15]

[S16][S17][S18][S20][S21][S22][S23][S24]

[S25][S27][S28][S29][S30][S31][S32][S33]

Proposal of Solution 8 25% [S04][S05][S06][S07][S08][S09][S13][S26]

Opinion Paper 1 3% [S19]

Total 33 100%

Moreover, no validation study was identified among the

selected papers. This implies that there is a gap of replicating

the proposed solutions on realistic scenarios (industry).

I. RQ9: Research Venue

Fig. 2 shows a ten-year chronological plot of the primary

studies. Each article was attributed a value of one point. Based

on this, the contribution index was calculated by adding up the

points of each article in their corresponding years.

This Contribution index (dashed blue line) suggests that
research about cognitive load raised significantly between

2015 and 2018. The contribution rate was higher in 2018 (8

points), followed in 2016 (6 points). Moreover, by coincidence

the research focusing cognitive load increased in the software

engineering research field, just after the release of technolo-

gies, such as, Emotiv, and NeuroSky. These technologies are

widely cited in the published articles after the 2014.

Venue of publication. The results in Fig. 2 show that 58%
(19/33) of primary studies were obtained from conferences.

Four primary studies (S03, S15, S21, S24) were published in

ICSE, two studies (S14, S18) were published in ESEC/FSEC,

and one study (S22) was published in ICPC. Next, 39%

(13/33) were obtained from journals. Among these, two of

them (S31 and S32) were issued in PLOS One, another two

papers (S09, S10) in IEEE Access , and one more (S11)

in Scientific Reports. Finally, 3% (1/33) were published in

workshops, i.e., the primary study (S19) was published at the

EMIP workshop co-located with the ETRA conference.

48

Fig. 2. The research venues that primary studies were published over the last years.

J. Taxonomy

Fig. 3 presents the proposed taxonomy. This taxonomy was

derived from the results presented. They are grouped into eight

main categories: (i) which sensors were used to collect data

related to cognitive load; (ii) which metrics was extracted from

raw data of the sensors; (iii) the algorithms to classify the

metrics obtained; (iv) purposes to measure cognitive load by

primary studies; (v) the tasks used to evaluate cognitive load

of participants; (vi) the artifacts which participants interacted

during the tasks; (vii) range of participants who attended on the

experiments/tasks; and (viii) research methods of the selected

primary studies. The black color represents the root of the

taxonomy, whereas the blue color represents the subcategories

of the cognitive load on software engineering.

Note that this taxonomy is also a general view of this

research field and through this overview there is the distri-

bution of answers. For example, there is a concentration of

classification techniques rather than regression ones (iii), and

that although using other sensors than the EEG, the types of

metrics (ii) analyzed are related to the brainwave data, while

the metrics related to other sensors was concentrated in a set

of multiple metrics.

IV. DISCUSSION AND CHALLENGES FOR FUTURE

RESEARCH

This section presents a discussions and further challenges

we identified in selected primary studies.

(1) A quality model for measuring the developers’
cognitive load. A quality model is important for defining a
set of attributes that defines a cognitive load measure. These

attributes are taken into account in empirical studies that

measure the cognitive load in software engineering. Some

quality models have been proposed in the last several decades

[37]. However, these quality models aim at software modeling

in general rather than measuring the developers’ cognitive

load specifically. Further studies might extend these quality

models for the purpose of measuring developers’ cognitive

load. Therefore, some future research should answer these

challenging questions: (1) What attributes should the quality

model aggregate to measure the cognitive load of the devel-

opers? (2) Does only one quality model serve as a guide for

all different kinds of experiments in software engineering? (3)

Or should specific models be proposed?

(2) Detection of Quality Concerns Based on Cognitive
Indicators. The literature of software engineering research has
reported that cognitive indicators can be used to detect quality

concerns in source code such as bugs, and inappropriate

comments can also be detected using cognitive indicators [23].

In practice, the predictions of quality concerns have been

made by machine learning algorithms. Muller [23] applied a

machine learning algorithm called Random Forest Learners.

This algorithm successfully predicted quality concerns based

on cognitive indicators. Despite this, the precision of the

algorithm was very low, around 40% to 50%. Therefore,

improving the precision of the detection of quality concerns

is a potential challenge.

Muller [23] detected six types of quality concerns such

as coding style violations, bugs, missing tests, insufficient

exception handling, and inadequate comments. Future research

could also be directed to detecting quality concerns related

to bad smells [38]. Some examples of bad smells are Long

Method, Large Class, Large Parameter List, and Primitive

Obsessions.

(3) Sentiment and emotion detection of developers from
biometrics. The data gathered from biometrics sensors, such
as heart rates, eye blinks, and EEGs, can be used to detect

emotions. Positive and negative emotions are part of a software

developer’s daily life. Thus, it is important to detect and

classify the emotions of developers. The range of emotions

a software developer can experience can affect performance

factors during a software task, such as the correctness of

artifacts, or the effort applied to resolve change tasks.

In addition, some works pointed out that emotions have

impacts on software productivity. Future research could focus

on a prediction model to classify emotions using machine

learning or deep learning techniques. Finally, another research

gap is to build a system which recommends tasks according

to the developer’s emotional state.

49

Sensors

EEG
Combination

of Sensors
Eye

Tracking fMRI

Heart
Rate

Electro Dermal
Activity

fNRIS

Respiratory
Rate

Galvanic Skin
Response

Eye
Blink

EEGEye
Tracking

Metrics

Frequency
Bands

Power Spectrum
of each Band

Event Related
Desynchronization

Event-Related
Potential

Fractal
Dimension

Eye-
Fixation

Event Related
Spectral Perturbation

Individual Alpha
Frequency

Index of Cognitive
Activity

Steady State
Evoked Potential

Steady State
Evoked Potential

Set of
Metrics

Algorithms

Regression Classification

Linear
Regression

Logistic
Regression

Naive
Bayes

Support Vector
Machines

Decision
Tree

K-Means

Natural
Network

Random
Forest

Relevance Vector
Machines

Purposes

Code
Comprehension

Stress
Levels

Emotion
Recognition

Pair-Dynamic
Level

Task
Difficulty

Multi-Algorithms
of Classification

Interruptibility

Performance Productivity Satisfaction

Software
Development Tasks

Programming Observation Resolve
Equation

Multitasks Listen Reading Choose

Artifacts

Code Images
Arithmetic
Equation

Texts Localization Reading Choose

Sounds
Sounds and

Images Video

Number of
Participants

0-10 11-20 21-30 31-40 41-50

Research
Method

Controlled
Experiment

Proposal of
Solution

Opinion
Papers

 Cognitive Load
on Software Engineering

Fig. 3. Taxonomy of cognitive load in software engineering.

TABLE XV
MAIN FEATURES OF RELATED WORK THAT WAS EXPLORED

ID Title & Reference Research
Method

Number
of Studies

Search
Protocol Domain Goal(s) Range

Period
Questions/Dimensions

Addressed

RW01
A Survey of Wearable Biometric
Recognition Systems [10]

Survey
Does not
Specify

No Biometric Recognition

Explore specific issues
that resides on
wearable biometric
recognition systems

Until
2016

Categorization of wearable sensors, technique for
processing raw signals, machine learning techniques,
and discussion of issues such as the biosignal quality,
and lack of public datasets.

RW02

Predictive biometrics:
a review and analysis of
predicting personal
characteristics from
biometric data [9]

Literature
Review

∼100 No
Prediction of
Personal Characteristics

Classify and analyze
the more general
predictive capabilities
of biometric data

Until
2016

Categorization of studies that predicts low (such as gender
and age estimation) and high level individual characteristics,
machine learning techniques to classify users, discussion and
analysis about the studies, and Future development of
predictive biometrics.

RW03
Categorization of Mobile EEG:
A Researcher’s Perspective [8]

Literature
Review

29 Yes
EEG data
capture

Categorize Mobile or
ambulatory EEG
devices

Until
2017

A development of a scheme to classify EEG Devices,
Discussions of results and shortcomings on the scheme
for classification

RW04
Eye tracking in library
and information science:
a literature review [39]

Systematic
Literature
Review

59 Yes
Eye Tracking
metrics

Classify studies that apply
eye tracking technology
on the field of information
science and library

2005 to
2015

Eye-tracker devices, Eye-tracking measures, method for
data-analysis, and methods for collecting supplementary
data of eye track devices.

RW05

Psychophysiological measures
of human cognitive states
applied in human computer
interaction [40]

Literature
Review

∼20 No
Human Computer
Interaction

Review and classify the
measures of human cognitive
states applied in the HCI.

Until
2010

Measures of cognitive states, and the possible practical
applications.

V. RELATED WORKS

This section summarizes some studies that are closely

associated with this research. This summarization is presented

in Table XV. Each study is discussed in detail below.

RW1 [10] carried out a review about wearable biometric
recognition systems. It covered articles published up until

2016 and did not follow a systematic research protocol. The

authors focused on wearable biometrics signals for recognition

systems. They investigated the types of wearable sensors and

the similarities of measures across different signals, and they

also listed the machine learning techniques used to classify

signals.

RW2 [9] introduced a literature review about the potential
capabilities of biometrics for predicting personal characteris-

tics of users, such as age and gender, i.e, low-level charac-

teristics. The authors analyzed about 100 articles to conduct

the literature review. They described the biometric sources,

databases, and the number of participants which the studies

used to collect information.

RW3 [8] reviewed the literature and created a scheme to
classify “wireless EEG” devices. This is because there is a

wide range types of EEGs. The authors proposed classifying

the EEG devices based on dimensions such as the number

of channels, the sample rate, battery life, and electrode type.

Equipment such as Emotiv [41] and NeuroSky [42], widely

used in software engineering experiments, were classified as

equipment with low portability, precision and sampling rate.

RW4 [39] conducted a systematic literature review about
eye tracking within the research field of library and infor-

mation science. It covered a total of 59 primary studies

published between 2005 and 2015. The authors limited the

search to primary studies from two databases. In this study

they classified the selected studies based on metrics, research

venues, research methods, and number of participants.

RW5 [40] made a literature review of the psycho-

physiological measures applied to human-computer interac-

tion, i.e., to evaluate the experience of the user in relation to

computers. They analyzed about 20 studies published up until

2010. In this study the authors classified articles based on the

measures they found in the literature of HCI, and the possible

applications of psycho-physiological measures.

To sum up, our work is the first to conduct a systematic

mapping about the measures of cognitive load in the software

engineering domain. For this, we adopted a well-defined

search protocol, and found 33 primary studies published

through 2018.

VI. THREATS TO VALIDITY

Threats to construct validity concern the measures taken to
avoid bias in the selection of studies. First, the keywords that

formed the search string were extracted from articles related

50

to the topic. Second, the search string was based on well-

defined practices in the literature [13], [15]. Moreover, this

search string was used in the main search engines related to

the computer science and software engineering research field.

The authors also manually reviewed each step of the selection

process.

Threats to internal validity concern how the internal aspects
were established to avoid affecting the findings, i.e., that the

findings were derived from an adequate analysis of the results.

For this, we classified terms based on the literature of software

engineering, as well as based on concepts of cognitive load

present in already-published papers related to this research

field [5], [6].

Threats to conclusion validity concern the guidelines fol-
lowed to avoid hasty and premature conclusions of this re-

search. The conclusions were formulated right after all the

results were collected, thereby eliminating the fishing problem

[43], i.e., we did not expect any specific conclusion before

analyzing the results.

VII. CONCLUSION

We conducted a Systematic Mapping Study about measures

of cognitive load in software engineering. For this, we first

carried out an in-depth selection process on 2,612 potentially

relevant studies, and 33 were selected as primary studies. The

results of classification of these primary studies were presented

followed by a list of outstanding future challenges.

In essence, the findings of this article point that the appli-

cation of cognitive load in the software engineering research

field is in an initial stage and has potential to future research.

Overall, the primary studies selected focused on investigating

programming tasks, and applied machine learning classifica-

tion techniques to identify the programmer’s difficulty level,

and their code-level comprehensibility.

Thus, this area has potential for future research. Besides

corroborating the findings already achieved in the literature,

these include: investigating ways to integrate the cognitive

load measurement on industry environments effectively; and

investigating the impact of software artifacts of different

abstraction levels such as software models versus code-level,

on the comprehension of software developers.

ACKNOWLEDGEMENT

This study was financed in part by the Coordenação

de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil

(CAPES) - Finance Code 001.

APPENDIX

SELECTED PRIMARY STUDIES
S01 I. Crk and T. Kluthe, “Assessing the contribution of the individual alpha frequency

(IAF) in an EEG-based study of program comprehension,” In Int. Conf. of the
IEEE Eng. in Medicine and Biology Society (EMBC), 2016, 4601-4604.

S02 I. Crk, T. Kluthe, and A. Stefik. “Understanding Programming Expertise: An
Empirical Study of Phasic Brain Wave Changes”. ACM Trans. Comput.-Hum.
Interact. 23, 1, 2015.

S03 S. C. Müller and T. Fritz, “Stuck and Frustrated or in Flow and Happy: Sensing
Developers’ Emotions and Progress,” Int. Conf. on Soft. Eng., Florence, 2015,
688-699.

S04 Y. Liu, O. Sourina and M. K. Nguyen, “Real-Time EEG-Based Human Emotion
Recognition and Visualization,” 2010 Int. Conf. on Cyberworlds, 2010, 262-269.

S05 N. Jatupaiboon, S. Pan-ngum and P. Israsena, “Emotion classification using
minimal EEG channels and frequency bands,” Int. Joint Conf. on Comp. Science
and Soft. Eng. (JCSSE), Maha Sarakham, 2013, 21-24.

S06 R. K. Minas, R. Kazman, & E. Tempero. “Neurophysiological Impact of Software
design processes on software developers.” In Int. Conf. on Augmented Cognition,
2017, 56-64.

S07 J. Jiang, Y. Zeng, L. Tong, C. Zhang and B. Yan, “Single-trial ERP detecting for
emotion recognition.” IEEE/ACIS Int. Conf. on SNPD, 2016, pp. 105-108.

S08 Wahab, A., Kamaruddin, N., Palaniappan, L. K., Li, M., & Khosrowabadi, R.
“EEG signals for emotion recognition.” Jour. of Comp. Methods in Sciences and
Eng., 2010.

S09 A. R. Subhani, W. Mumtaz, M. N. B. M. Saad, N. Kamel and A. S. Malik,
“Machine Learning Framework for the Detection of Mental Stress at Multiple
Levels,” in IEEE Access, vol. 5, pp. 13545-13556, 2017.

S10 C. T. Lin, J. T. King, J. W. Fan, A. Appaji and M. Prasad, “The Influence of Acute
Stress on Brain Dynamics During Task Switching Activities,” in IEEE Access,
vol. 6, pp. 3249-3255, 2018.

S11 L. Ahonen, B. U. Cowley, A. Hellas, & K. Puolamäki “Biosignals reflect pair-
dynamics in collaborative work: EDA and ECG study of pair-programming in a
classroom environment.” Scientific reports, 2018, n. 8, v. 1.

S12 I. Solı́s-Marcos, K. & Kircher, “Event-related potentials as indices of mental
workload while using an in-vehicle information system.” Cognition, Technology
& Work, 2018, 1-13.

S13 Li, Y., Zheng, W., Cui, Z., Zong, Y., & Ge, S. “EEG Emotion Recognition Based
on Graph Regularized Sparse Linear Regression.” Neural Processing Letters, 1-17.

S14 K. Kevic, B. M. Walters, T. R. Shaffer, B. Sharif, D. C. Shepherd, and T. Fritz.
“Tracing software developers’ eyes and interactions for change tasks.” In Proc. of
the 2015 10th ESEC/FSE, 2015, 202-213.

S15 T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger. “Using psycho-
physiological measures to assess task difficulty in software development.” In Int.
Conf. on Software Engineering (ICSE). 2014, 402-413.

S16 D. Cernea, P. S. Olech, A. Ebert, & A. Kerren “Measuring subjectivity.” KI-
Künstliche Intelligenz, 2012, n. 26, v. 2, 177-182.

S17 N. Nourbakhsh, Y. Wang, & F. Chen. “GSR and blink features for cognitive load
classification,” In IFIP Conf. on HCI, 2013, 159-166.

S18 J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner, A. Begel,
A. Bethmann, and A. Brechmann, “Measuring neural efficiency of program
comprehension.” In Proc. of the 2017 11th ESEC/FSE, 2017, 140-150.

S19 N. Peitek, J. Siegmund, C. Parnin, S. Apel, and A. Brechmann. “Toward conjoint
analysis of simultaneous eye-tracking and fMRI data for program-comprehension
studies.” In Workshop on Eye Mov. in Progr. (EMIP), 2018.

S20 M. Züger and T. Fritz. “Interruptibility of Software Developers and its Prediction
Using Psycho-Physiological Sensors.” In ACM Conf. on CHI. 2015, 2981-2990.

S21 T. Fritz and S. C. Müller, “Leveraging Biometric Data to Boost Software Developer
Productivity,” Int. Conf. on Software Analysis, Evolution, and Reengineering
(SANER), 2016, 66-77.

S22 S. Fakhoury, Y. Ma, V. Arnaoudova, & O. Adesope “The Effect of Poor Source
Code Lexicon and Readability on Developers’ Cognitive Load.” In Proc. Int. Conf.
Program Comprehension (ICPC), 2018.

S23 A. Sinharay, D. Chatterjee and A. Sinha, “Evaluation of Different Onscreen Key-
board Layouts Using EEG Signals,” Int. Conf. on Systems, Man, and Cybernetics,
2013, 480-486.

S24 S. C. Müller and T. Fritz. “Using (bio)metrics to predict code quality online.” Int.
Conf. on Software Engineering (ICSE). 2016, 452-463.

S25 S. Lee, D. Hooshyar, H. Ji, K. Nam, & H. Lim. “Mining biometric data to predict
programmer expertise and task difficulty.”, Cluster Computing, 2017, 1-11.

S26 S. C. Müller “Measuring software developers’ perceived difficulty with biometric
sensors.” Int. Conf. on Software Engineering, pp. 887-890, 2015, IEEE Press.

S27 E. W. Anderson, K. C. Potter, L. E. Matzen, J. F. Shepherd, G. A. Preston, &
C. T. Silva. “A user study of visualization effectiveness using EEG and cognitive
load.” In Comp. Graphics Forum, v. 30, n. 3, 2011, 791-800.

S28 Q. Gui, Z. Jin and W. Xu, “Exploring EEG-based biometrics for user identification
and authentication,” IEEE Signal Processing in Medicine and Biology Symposium
(SPMB), 2014, 1-6.

S29 F. C. Galán and C. R. Beal. “EEG estimates of engagement and cognitive workload
predict math problem solving outcomes.” In Int. Conf. on User Modeling,
Adaptation, and Personalization (UMAP). 51-62.

S30 M. V. Kosti, K. Georgiadis, D. A. Adamos, N. Laskaris, D. Spinellis, & L.
Angelis. “Towards an affordable brain computer interface for the assessment of
programmers’ mental workload.” Int. Journal of HCI, 2018, 115, 52-66.

S31 V. Demberg, & A. Sayeed. “The frequency of rapid pupil dilations as a measure
of linguistic processing difficulty.” PLOS one, v. 11, n.1, 2016.

S32 Z. Iscan, & V. Nikulin. “Steady state visual evoked potential (SSVEP) based brain-
computer interface (BCI) performance under different perturbations.” PLOS one,
v. 13, n 1, 2018.

S33 Y. Yuan, K. Chang, J. N. Taylor, and J. Mostow. “Toward unobtrusive measurement
of reading comprehension using low-cost EEG.” In Int. Conf. on Learning
Analytics And Knowledge (LAK). 2014, New York, 54-58.

REFERENCES

[1] I. Crk and T. Kluthe, “Assessing the contribution of the individual alpha
frequency (IAF) in an EEG-based study of program comprehension,” in

51

2016 38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Aug 2016, pp. 4601–4604.

[2] I. Crk, T. Kluthe, and A. Stefik, “Understanding programming expertise:
An empirical study of phasic brain wave changes,” ACM Trans. on
Computing-Human Interaction, vol. 23, no. 1, pp. 2:1–2:29, dec 2015.

[3] A. Sinharay, D. Chatterjee, and A. Sinha, “Evaluation of different on-
screen keyboard layouts using EEG signals,” in 2013 IEEE International
Conference on Systems, Man, and Cybernetics, Oct 2013, pp. 480–486.

[4] R. K. Minas, R. Kazman, and E. Tempero, “Neurophysiological impact
of software design processes on software developers,” in Augmented
Cognition. Enhancing Cognition and Behavior in Complex Human
Environments. Springer International Publishing, 2017, pp. 56–64.

[5] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger, “Using
psycho-physiological measures to assess task difficulty in software
development,” in Proc. of the 36th Int. Conference on Software En-
gineering, ser. ICSE 2014, 2014, pp. 402–413.

[6] T. Fritz and S. C. Müller, “Leveraging biometric data to boost software
developer productivity,” in 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 5,
March 2016, pp. 66–77.

[7] M. V. Kosti, K. Georgiadis, D. A. Adamos, N. Laskaris, D. Spinellis,
and L. Angelis, “Towards an affordable brain computer interface for the
assessment of programmers’ mental workload,” International Journal of
Human-Computer Studies, vol. 115, pp. 52–66, 2018.

[8] A. D. Bateson, H. A. Baseler, K. S. Paulson, F. Ahmed, and A. U.
Asghar, “Categorisation of mobile EEG: A researcher’s perspective,”
BioMed research international, vol. 2017, 2017.

[9] M. Fairhurst, C. Li, and M. D. Costa-Abreu, “Predictive biometrics: a
review and analysis of predicting personal characteristics from biometric
data,” IET Biometrics, vol. 6, no. 6, pp. 369–378, 2017.

[10] J. Blasco, T. M. Chen, J. Tapiador, and P. Peris-Lopez, “A survey
of wearable biometric recognition systems,” ACM Computing Surveys,
vol. 49, no. 3, pp. 43:1–43:35, Sep. 2016.

[11] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect of poor
source code lexicon and readability on developers’ cognitive load,” in
Proc. Int’l Conf. Program Comprehension (ICPC), 2018.

[12] S. Lee, D. Hooshyar, H. Ji, K. Nam, and H. Lim, “Mining biometric data
to predict programmer expertise and task difficulty,” Cluster Computing,
Jan 2017.

[13] B. A. Kitchenham, D. Budgen, and O. Pearl Brereton, “Using mapping
studies as the basis for further research - a participant-observer case
study,” Information Software Technology, vol. 53, no. 6, pp. 638–651,
Jun. 2011.

[14] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conduct-
ing systematic mapping studies in software engineering: An update,”
Information and Software Technology, vol. 64, pp. 1–18, 2015.

[15] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” 2007.

[16] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus
within-company cost estimation studies: A systematic review,” IEEE
Trans. on Software Engineering, vol. 33, no. 5, pp. 316–329, May 2007.

[17] Y. Yuan, K.-m. Chang, J. N. Taylor, and J. Mostow, “Toward unobtrusive
measurement of reading comprehension using low-cost EEG,” in Proc.
of the Fourth International Conference on Learning Analytics And
Knowledge, ser. LAK ’14, 2014, pp. 54–58.

[18] Y. Li, W. Zheng, Z. Cui, Y. Zong, and S. Ge, “EEG emotion recognition
based on graph regularized sparse linear regression,” Neural Processing
Letters, pp. 1–17, 2018.

[19] N. Jatupaiboon, S. Pan-ngum, and P. Israsena, “Emotion classification
using minimal EEG channels and frequency bands,” in The 2013 10th
International Joint Conference on Computer Science and Software
Engineering (JCSSE), May 2013, pp. 21–24.

[20] Y. Liu, O. Sourina, and M. K. Nguyen, “Real-time EEG-based human
emotion recognition and visualization,” in 2010 International Confer-
ence on Cyberworlds, Oct 2010, pp. 262–269.

[21] I. Solı́s-Marcos and K. Kircher, “Event-related potentials as indices
of mental workload while using an in-vehicle information system,”
Cognition, Technology & Work, Apr 2018.

[22] M. Züger, S. C. Müller, A. N. Meyer, and T. Fritz, “Sensing interrupt-
ibility in the office: A field study on the use of biometric and computer
interaction sensors,” in Proc. of the 2018 CHI Conf. on Human Factors
in Computing Systems. ACM, 2018, p. 591.

[23] S. C. Muller and T. Fritz, “Using (bio)metrics to predict code quality
online,” in Proc. of the 38th Int. Conf. on Software Engineering, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 452–463.

[24] S. C. Müller, “Measuring software developers’ perceived difficulty with
biometric sensors,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 2, ser. ICSE ’15. Piscataway, NJ,
USA: IEEE Press, 2015, pp. 887–890.

[25] J. Jiang, Y. Zeng, L. Tong, C. Zhang, and B. Yan, “Single-trial ERP de-
tecting for emotion recognition,” in 2016 17th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), May 2016, pp. 105–108.

[26] Z. İşcan and V. V. Nikulin, “Steady state visual evoked potential
(SSVEP) based brain-computer interface (BCI) performance under dif-
ferent perturbations,” PLOS ONE, vol. 13, no. 1, p. e0191673, 2018.

[27] C. T. Lin, J. T. King, J. W. Fan, A. Appaji, and M. Prasad, “The influence
of acute stress on brain dynamics during task switching activities,” IEEE
Access, vol. 6, pp. 3249–3255, 2018.

[28] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner,
A. Begel, A. Bethmann, and A. Brechmann, “Measuring neural effi-
ciency of program comprehension,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2017. ACM, 2017, pp. 140–150.

[29] A. Wahab, N. Kamaruddin, L. Palaniappan, M. Li, and R. Khosrowabadi,
“EEG signals for emotion recognition,” Journal of Computational Meth-
ods in Sciences and Engineering, vol. 10, no. 1-2 SUPPL. 1, 2010.

[30] S. C. Müller and T. Fritz, “Stuck and frustrated or in flow and happy:
Sensing developers’ emotions and progress,” in Proc. of the 37th Int.
Conf. on Software Engineering, ser. ICSE ’15, 2015, pp. 688–699.

[31] K. Kevic, B. M. Walters, T. R. Shaffer, B. Sharif, D. C. Shepherd, and
T. Fritz, “Tracing software developers’ eyes and interactions for change
tasks,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2015, 2015, pp. 202–213.

[32] L. Ahonen, B. U. Cowley, A. Hellas, and K. Puolamäki, “Biosignals
reflect pair-dynamics in collaborative work: EDA and ECG study of
pair-programming in a classroom environment,” Scientific reports, vol. 8,
no. 1, p. 3138, 2018.

[33] N. Peitek, J. Siegmund, C. Parnin, S. Apel, and A. Brechmann, “Toward
conjoint analysis of simultaneous eye-tracking and fMRI data for
program-comprehension studies,” in Proceedings of the Workshop on
Eye Movements in Programming, EMIP ’18. New York, NY, USA:
ACM, 2018, pp. 1:1–1:5.

[34] M. Züger and T. Fritz, “Interruptibility of software developers and its
prediction using psycho-physiological sensors,” in Proc. of the 33rd
Annual ACM Conf. on Human Factors in Computing Systems, ser. CHI
’15, 2015, pp. 2981–2990.

[35] OMG, “Unified modeling language: infrastructure, version 2.4.1,” doc-
ument formal/2011-08-06. Technical report, OMG, Tech. Rep., 2011.

[36] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements
engineering paper classification and evaluation criteria: A proposal and
a discussion,” Requirements Engineering, vol. 11, no. 1, pp. 102–107,
december 2005.

[37] C. Lange, “Assessing and improving the quality of modeling,” Technis-
che, Universiteit Eindhoven, 2007.

[38] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
improving the design of existing code. Addison-Wesley Professional,
1999.

[39] H. Lund, “Eye tracking in library and information science: a literature
review,” Library Hi Tech, vol. 34, no. 4, pp. 585–614, 2016.

[40] A. C. Dirican and M. Göktürk, “Psychophysiological measures of
human cognitive states applied in human computer interaction,” Procedia
Computer Science, vol. 3, pp. 1361–1367, 2011.

[41] Emotiv, “Testbench™ specifications, emotiv, 2014.” [Online]. Available:
https://www.emotiv.com/files/Emotiv-EPOC-Product-Sheet-2014.pdf

[42] J. Katona, I. Farkas, T. Ujbanyi, P. Dukan, and A. Kovari, “Evaluation
of the neurosky mindflex eeg headset brain waves data,” in 2014 IEEE
12th International Symposium on Applied Machine Intelligence and
Informatics (SAMI). IEEE, 2014, pp. 91–94.

[43] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

52

