
Ontology Aided Model Comparison

Kleinner Oliveira 1, Karin Breitman1
Department of Informatics1

Pontifical Catholic University of Rio de Janeiro
Rio de janeiro, Brazil

{kfarias,karin}@inf.puc-rio.br

Toacy Oliveira2

DC School of Computer Science
University of Waterloo
Waterloo, ON, Canada

toliveira@csg.uwaterloo.ca

Abstract—In this paper we explore the use of formal ontology
in model comparison. Most techniques used in the MDA
community are essentially syntactic, and rely on typographical
hints, such as attribute data types and labels to determine
similarity. We have adapted and incorporated an ontology
alignment technique, as the means to obtain more precise and
reliable similarity measurements between model elements, a
fundamental issue in model comparison and composition.

Keywords: Ontology, UML, Model Comparison

I. INTRODUCTION
UML models are universally used to describe real-life

software system. They are useful to manage system
descriptions, as they provide a set of models that capture
different perspectives of the problem [1]. Quite frequently,
during the software development process, practitioners need
to compare and compose different UML models to provide
desired solutions.

Model comparison requires a clear understanding of the
UML metamodel specification and, of course, model
semantics. Model composition relies on the ability to
compare and indentify similarities and overlaps between
model elements. Overlaps are undesired as they can lead to
semantic conflicts, misinterpretation and problems in the
model composition process. We define model composition
as the process by which two input models, Ma and Mb, are
combined producing model Mab as the result. In short, it can
be represented by the expression: Ma (receiving) + Mb
(merged) Mab.

In the last few years, model comparison issues gained
momentum at the software engineering community, bringing
forth a variety of novel techniques, including schema
matching [2], Web services composition, matching object
catalogues, differences between versions of UML diagrams
[5], and UML model comparison [6]. We have
experimented with a few of the proposed approaches, but
found none suitable for usage in UML model comparison.
Such approaches ignore important aspects of model
comparison that may lead to problems such as: (i) lack of
flexibility to determine correspondences among model
elements; (ii) lack of focus on model proprieties; (iii) require
a large amount of human effort; (iv) do not take into account
model meanings (the semantics). Thus, new approaches that
overcome these shortcomings are in order.

In this paper we propose to capitalize from our previous
experience in the project, implementation and integration of
ontology based software applications [3], [6] to provide an
enhanced solution to UML model comparison. We propose a
match operator, responsible for putting in practice a strategy
that takes into account both syntactic and semantic aspects
involved during model comparison. Central to the
functioning of the match operator is the capacity of finding
precise similarity measurements between pairs of elements in
different models in a flexible way. With this operator we are
able to tackle and overcome most of the problems cited
previously. We propose the use of an ontology-based match
strategy in order to improve the calculation of element
similarity, while preserving original model semantics.

The rest of this paper is organized as follows. In Section
2 we present our approach. In Section 3 we discuss how the
similarity degree between two input models is calculated
using the proposed approach. Finally, in Section 4, we
present our concluding remarks and future work.

II. MODEL COMPARISON
Our model comparison approach, illustrated in Figure 1,

focuses on the central process, in particular using ontology to
enhance the Definition of Similarity Degree (S). On the first
step of the comparison phase, the domain expert defines a
signature for every model element type that can be defined as
input model. On the second, he or she specifies a match
strategy. The authors anticipate a choice among three pre
defined and implemented strategies (i) default, (ii) partial,
and (iii) complete match strategy (see [8], [9], [10] for more
details). It is important to note that the approach is extensible
and allows for the addition of new strategies, as a means of
offering flexibility during the matching process.

This feature is particularly interesting if we take into
account that matching strategies work better for some
specific domains than others. This problem is very well
known to the natural language processing community, where
the application domain is a deciding factor in choosing
matching strategies [12]. Once the match strategy has been
determined, the match operator will put it in practice.
Following is the stage in which the degree of similarity (S)
between pairs of elements from the two different input
models is calculated. Similarity is computed as the result of a
combination of techniques. In this paper we extend the
original architecture proposed in [8], [10] and include an
ontology alignment strategy to enhance the results.

2009 14th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-3702-3/09 $25.00 © 2009 IEEE

DOI 10.1109/ICECCS.2009.55

78

The next step focuses on specifying equivalent model
elements and producing the matching description. For this
purpose, before comparing the models, the user sets a
similarity threshold. Every pair of elements whose similarity
degree is above the threshold is considered equivalent. The
output consists of two sets of artifacts, the first is the match
models, i.e., a set of models that are considered equivalent,
and the second is a match description, i.e., a list of mappings
between the input models. Figure 1 illustrates the process. In
the next section we detail the techniques used in the
computation of the similarity degree (computation of the
similarity degree between pairs of input model elements
using the ontology based strategy implemented by CATO),
introducing the ontology based strategy.

Figure 1. Proposed model comparison process approach (adapted from
[11]).

III. SIMILARITY DEGREE COMPUTATION

To calculate the similarity degree between pairs of model

elements, both syntactical and semantic aspects need to be
taken into account. On the syntactical hand, both lexical and
structural comparisons are performed in order to determine
whether model elements in different input model should be
considered syntactically equivalent. On the semantic hand,
domain specialist expertise and ontologies are integrated in a
seamless way. On a subsequent step, all strategies are then
combined to determine the equivalence degree (S) between
model elements. Synonym dictionary, typographic similarity,
model signatures, verification using matching rules, and

ontology-based strategy are underlying components to
implement and put our approach in practice. They are
described as follows.

A. Synonym Dictionary
With a synonym dictionary it is possible to identify

mappings among domain concepts that have equal semantic
value. The great benefit of using synonym dictionaries is to
pave the way for the domain specialists to explicitly apply
their domain expertise in the matching process. We denote
by D(r,m) in [0,1] the degree of similarity between receiving
(r) and merged (m) model elements. D(r,m) returns 0
whether r and m are synonym, otherwise it returns 1. D is
calculated for every possible pair of (r,m).

Initially, every pair (r,m) of input model elements are not
assumed to be synonymous, then D(r,m) = 0 for every pair of
(r,m). In the current implementation of our model
composition tool, called MoCoTo, the dictionary
contemplates synonyms, hyponyms and hypernyms only. It
is of particular interest to the model comparison process to
include other semantic relationships as well, especially
meronymical ones (part-of relationships) that although very
frequently found in UML models, are very hard to identify
automatically.

B. Typographic Similarity
The goal of typographic similarity is to determinate

T(r,m) in [0..1] for every possible pair of receiving (r) and
merged (m) model elements, Ma and Mb respectively. The
N-gram algorithm [11] is applied to assign a similarity value
in [0..1] to every possible pairs of (r,m). These pairs are
determined by the cartesian product of (RxM), where R and
M are the set of receiving and merged model elements,
respectively. The result of RxM is a matrix. This algorithm
yields a similarity degree to a pair of strings based on
counting the number of their identical substrings of length N
(we use N = 2).

C. Typographic Similarity
The signature is defined in terms of syntactic properties,

where a syntactic property of a model element defines its
structure. The signature is a collection of values assigned to a
subset of syntactic properties in a model element’s
metamodel class. If an instance of a Class is an abstract
class then isAbstract = true for the class, otherwise the
instance is a concrete class, isAbstract = false. The set of
syntactic properties used to determine a profile element’s
signature is called a signature type, as defined in [12].

We defined three types of signatures: (i) complete
signature, which consists of all syntactic properties
associated with a model element; (ii) partial signature, which
is made up a range of syntactic properties; and (iii) default
signature, which is composed only by properties name. The
signatures can be structured in comparison levels organized
hierarchically. Every model element type should have a
signature. The similarity degree based on signature M
between receiving (r) and merged (m) model elements is
represented by M(r,m), where 0 ≤ M ≤ 1. It is defined by

79

calculating the weighted average among the arithmetic
average of the levels (Equation 1):

(1)

• n is the number of levels employed to compare the

model elements, where n ≥ 1 and n . For
example, we defined three levels to compare classes
from input models. The first level has the property
name: String only. The second one has the
ownedAttribute: Property. The third one has the
ownedOperation: Operation.

• represents the weight, being i, where i ≥ 1
and i ; k expresses the number of elements in
each level, where k ≥ 1 and k ;

• (i and j represent the level and item of model
elements that are being compared, respectively) is
used to denote if an item in the receiving model
element is equivalent to another item in the merged
model element. It is a boolean variable and its value
is determined by matching rules (described as
follows). The matching rules compare pairs of items
from model elements; returns 1 if the rule is
satisfied, otherwise it returns 0.

D. Verification Using Matching Rules
In order to check if pair of input model elements is

equivalent, we defined matching rules. The match operator is
responsible to execute these matching rules and, according to
the resulting of this execution, it defines consequently the
value of , which was specified earlier. For every model
element and item of model element, a matching rule to check
if they are equivalent is necessary. This checking is based on
the element’s signatures. If a matching rule fails, then the
models are not equivalent (= 0). Otherwise, models are
equivalent (= 1).

The matching rules verify whether the input model
element properties have the same values, and for each
matching strategy is defined a set of matching rule according
to respective signature type of the strategy. There are three
kinds of matching rules: (i) default matching rules are a set
of rules that compare models based on only their name, using
the default signature type; (ii) partial matching rules are also
a set of rules that compare models based on a number of
syntactic properties of the models, using the partial signature
type; (iii) complete matching rules are also a set of rules that
compare models based on their syntactic properties, but use
the complete signature type. Thus, the match operator makes
use of these rules to implement the default, partial and
complete match strategies, respectively.

E. Ontology Based Strategy
In this paper we adapt from an existing ontology

integration technique strategy as an innovative means to
obtain more precise similarity measurements. Before
detailing the approach, however, we briefly argue in favor of
the adoption of ontologies into the model comparison
process.

1) Why Ontology?
Ontologies are much more expressive than other

conceptual models: a controlled vocabulary is simply lists a
set of terms and definitions, e.g. glossaries and acronyms;
taxonomy is a set of terms arranged in a generalization-
specialization (parent-child) hierarchy. A taxonomy may or
may not define attributes of these terms nor does it specify
other relationships between terms, e.g. RosettaNet and
ebXML; a relational database schema defines a set of terms
through classes, attributes and a limited set of relationships
among those classes; an OO software model defines a set of
concepts and terms through a hierarchy of classes and
attributes and a broad set of binary relationships among
classes. Constraints and other behavioral may be specified
through methods on the classes (or objects). An ontology can
express all of the preceding relationships, models and
diagrams as well as, n-ary relations, a rich set of constraints,
rules relevant to usage or related processes and other
differentiators including negation and disjunction [13].

Furthermore ontologies capture knowledge rather than
data. Because it is possible to infer new information from
previously coded one (with the aid of an inference
mechanism), we believe ontologies provide a much more
robust conceptual model for model comparison in the MDA
context, than restricting ourselves to pure UML models, that
are neither formal nor support automated reasoning.

2) Ontology-Based Mappings Semantic
Mapping between two ontological models results in a

formal representation that contains expressions that link
concepts from one ontology to the second [14]. This result is
of particular interest to the UML model comparison process
approach proposed in this paper, for it provides formal,
unambiguous, accurate and precise similarity measurements
for pairs of model elements, while preserving their original
semantics. A similarity measurement is represented by O, 0
≤ O ≤ 1 and O Initially designed to provide mappings
between two input ontologies, the ontology alignment
strategy proposed in [15] is implemented by the CATO tool
[16].

CATO takes as input any two ontologies written in W3C
recommended standard OWL. It was fully implemented in
JAVA and uses a specific API (Application Programming
Interface) that deals with ontologies, JENA. It performs both
lexical and structural comparisons in order to determine if
concepts in different ontologies should be considered
semantically equivalent. It is based in a refinement approach,
broken into three successive steps, detailed in what follows.
CATO’s original output is an ontology that contains the
elements from the input ontologies plus the mappings
between those (if any). For the model comparison purposes
described in this paper this result is of little interest, what is

80

important is a byproduct of the ontology alignment process,
the calculation of the similarity between pairs of elements
from the two input ontologies. Figure 2 depicts CATO
ontology alignment strategy.

Figure 2. CATO ontology alignment strategy

3) First Step: Lexical Comparison
The goal of this step is to identify lexically equivalent

concepts. We assume that lexically equivalent concepts are
also semantically equivalent in the domain of discourse
under consideration, an assumption which is not always
warranted. Each concept label in the first ontology is
compared to every concept label present in the second one,
using lexical similarity as the criteria. Filters are used to
normalize the labels to a canonical format: (i) if the concept
is a noun, the canonical format is the singular masculine
declination; (ii) if the concept they represent is a verb, the
canonical format is its infinitive.

Besides using the label itself, synonyms are also used.
The use of synonyms enriches the comparison phase because
it provides more refined information. Lexical similarity
alone, however, is not enough to assume that concepts are
semantically compatible. We also investigate whether their
ancestors share lexical similarity. It is important to note that

the alignment strategy in this step is restricted to concepts
and instances of the ontology. We are not considering
properties at this time. A concept instance is represented by a
pair name and namespace in OWL. As a result of the first
stage of the proposed strategy, the original ontologies are
enriched with links that relate concepts identified as lexically
equivalent.

4) Second Step: Structural Comparison
Comparison at this stage is based on the subsumption

relationship that holds among ontology concepts. Ontology
properties and restrictions are not taken into consideration.
Our approach is thus more restricted than the one proposed
in [17], that analyses the ontologies as graphs, regarding both
taxonomic and non taxonomic relationships among concepts.
Because we only consider lexical and structural relationships
in our analysis, we are able to make use of well-known tree
comparison algorithms. We are currently using the TreeDiff
implementation available at [18]. Our choice was based on
its ability to identify structural similarities between trees in
reasonable time. The goal of the TreeDiff algorithm is to
identify the largest common substructure between trees,
described using the DOM (Document Object Model) model.
This algorithm was first proposed to help detect the steps,
including renaming, removing and addition of tree nodes,
necessary to migrate from one tree to another (both trees are
the inputs to the algorithm).

The result of the Tree Diff algorithm is the detection of
concept equivalence groups. They are represented as subtrees
of the enriched ontologies. Concepts that belong to such
groups are compared in order to identify if lexically
equivalent pairs can also be identified among the ancestors
and descendants of the original pair. Differently from the
first step, where we based our analysis and compared
concepts that were directly related to one another, we are
now considering the structural vicinity of concepts. Every
concept in the equivalence group is investigated in order to
determine lexically equivalent pairs, number of matching
sons, number of synonymous concepts in the sub-trees,
available from the previous step, and ancestor equivalence.

5) Third Step: Fine Adjustments based on Similarity
Measurements

The third and last step is based on similarity
measurements. Concepts are rated as very similar or little
similar based on pre-defined similarity thresholds. We only
align concepts that were both classified as lexically
equivalent in the second step, and thus rated very similar.
Thus the similarity measurement is the deciding factor
responsible for fine tuning our strategy. We adapted the
similarity measurement strategies proposed in [18] (see
Figure 3). Their similarity level is calculated in the present
step. The final ontology will provides a common
understanding of the semantics represented by the two input
ontologies. As long-term goal, this representation can now
be accessed by model comparison operator searching for
information or knowledge to compare UML models. In this
paper, we make use of the similarity measurements,
represented by O, as cited previously and discard the final
ontology and the element mappings.

81

Figure 3. TreeDiff algorithm’s entries and exits [18]

F. Calculating the Similarity Degree between the Input
Model Elements
We denote by S the degree of similarity between

receiving (r) and merged (m) model elements. For defining
the similarity degree, it is necessary to combine the partial
similarity degrees described in previous sections. For this
purpose, it is calculated the average of D, T, M, and O as
showed in Equation 2. If D = 1, then T also assumes value 1
and contrariwise.

[]1..0
3

→
+

+++=
D

OMTDS (2)

Where:
D – Synonym Dictionary similarity degree, calculated as

indicated in the previous section. Note that if D = 1, then T
also assumes value 1. By the same token, if D=0, T assumes
the same value.

T – Typographic Similarity, calculated as indicated in
Section 4.2

M – Model Signature Similarity, calculated as indicated
in Section 4.3

O – Ontology Alignment Similarity, calculated as
indicated in Section 4.5

Based on the Equation 2, we calculate the similarity

degree of every model elements. if S(r,m) > t, then r and m
are equivalents, where t is a threshold and serves to
determine whether pairs of model should be computed as
equivalent. The possibility of combining different matching
strategies assures overall better performance and reliability
in the comparison phase. The ontology based approach is
fully implemented and incorporated in the MoCoTo tool, as
an Eclipse Plug-in which allows for a seamless integration
with Eclipse Platform. It provides functionalities for users
work with model composition and model comparison in the
Eclipse SDK. The goal of the MoCoTo tool is to
automatically compose pairs of input models.

IV. CONCLUDING REMARKS AND FUTURE WORK
In this paper we explored the use of ontology to enhance

a model comparison mechanism based on similarity
measurements. Most existing techniques are essentially
syntactic in nature [12], [4], i.e., they make use of syntactical
hints, such as attribute data types and naming similarities. It
assumes that syntactical proximity implies semantic
similarity, but such assumptions are often unwarranted and
can lead to incorrect mappings [19]. We have adapted and
incorporated an ontology alignment technique, as a means to
obtain more precise and reliable similarity measurements
between model elements, a fundamental issue in model
comparison and composition.

We have only started experimenting with the ontology
based approach, but the results already show improvement
from the ones obtained using syntactic based techniques
alone. Further empirical studies are necessary, however, to
calibrate the similarity thresholds used in the ontology based
approach, validate the approach in real world design settings,
and verify its performance levels and its applicability in
different application domains. Obviously scalability is an
issue, and more investigation on the applicability of the
proposed approach in comparing large UML models is
required.

REFERENCES

[1] S. Sendall and W. Kozaczynski, “Model Transformation: The Heart
and Soul of Model-Driven Software Development,” IEEE Software,
vol. 20, no. 5, September/Octocber 2003, pp. 42–45.

[2] E. Rahm and P. Bernstein, “A Survey of Approaches to Automatic
Schema Matching,” Very Large Data Bases Journal, vol. 10, no. 4,
pp. 334-350, 2001.

[3] L. Leme, D. Brauner, K. Breitman, M. Casanova, and A. Gazola,
Matching Object Cataloques, Inovations in System Software
Engineering, Springer, 2008.

[4] D. Ohst, M. Welle, and U. Kelter, “Differences between Versions of
UML Diagrams,” Proc. 9th European Software Engineering
Conference, ACM Press, pp. 227–236, 2003.

[5] D. Kolovos, R. Paige, and F. Polack, “Model Comparison: a
Foundation for Model Composition and Model Transformation
Testing,” Proc. International Workshop on Global Integrated Model
Management, New York, NY, USA: ACM Press, pp. 13–20, 2006.

[6] K. Breitman, M. Casanova, and W. Truszkowski, Semantic Web:
Concepts, Technologies and Applications, Springer Verlag, 2007.

[7] Unified Modeling Language: Infrastructure version 2.1, OMG,
February 2007.

[8] K. Oliveira, “Composição of UML Profiles,” Master’s thesis,
Informatics Faculty, Pontifical Catholic University of Rio Grande do
Sul, Porto Alegre, Brazil, February 2008.

[9] K. Oliveira and T. Oliveira, “A Guidance for Model Composition,”
Proc. International Conference on Software Engineering Advances
(ICSEA’07), pp. 27–32, August, 2007.

[10] K. Oliveira and T. Oliveira, “Model Comparison – A Strategy-Based
Approach,” Proc. 20th International Conference on Software
Engineering and Knowledge Engineering, San Francisco, USA, 2008.

[11] C. Manning, and H. Schutze, Foundations of Statistical Natural
Language Processing, ISBN 978-0262133609, MIT Press, 1999.

82

[12] Y. Reddy, R. France, G. Straw, N. Bieman, E. Song, and G. Georg,
“Directives for Composing Aspect-Oriented Design Class Models,”
Transaction on Aspect-Oriented Software Development (AOSD),
vol. 1, no. 1, pp. 75–105, 2006.

[13] A. Pérez, M. Peréz, and O. Corcho, Ontological Engineering,
Springer Verlag, 2004.

[14] J. Euzenat and P. Shvaiko, Ontology matching, Springer, Springer-
Verlag, Berlin Heidelberg (DE), 2007.

[15] C. Felicissimo, “Interoperabilidade Semântica na Web: Uma
Estratégia para o Alinhamento Taxonômico de Ontologias,” Master’s
thesis, Department of Informatics, Pontifical Catholic University of
Rio de Janeiro, Rio de Janeiro, Brazil, August 2004.

[16] K. Breitman, C. Felicissimo, and M. Casanova, “CATO - A
Lightweight Ontology Alignment Tool,” Proc. International
Conference on Advanced information Systems Engineering (CAiSE),
Short Paper Proceedings, 2005.

[17] F. Noy and A. Musen, “The PROMPT Suite: Interactive Tools For
Ontology Merging And Mapping,” International Journal of Human-
Computer Studies, 2003.

[18] U. Bergmann, Evolução de Cenários Através de um Mecanismo de
Rastreamento Baseado em Transformações, PhD Thesis of the
Department of Informatics of PUC-Rio, 2002.

[19] M. Casanova, K. Breitman, F. Brauner, and A. Marins, Database
Conceptual Schema Matching. Computer (Long Beach), v. 40, p.
102-104, 2007.

83

