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Abstract—In this paper we explore the use of formal ontology 
in  model comparison. Most techniques used in the MDA 
community are essentially syntactic, and rely on typographical 
hints, such as attribute data types and labels to determine 
similarity. We have adapted and incorporated an ontology 
alignment technique, as the means to obtain more precise and 
reliable similarity measurements between model elements, a 
fundamental issue in model comparison and composition. 
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I.  INTRODUCTION  
UML models are universally used to describe real-life 

software system. They are useful to manage system 
descriptions, as they provide a set of models that capture 
different perspectives of the problem [1]. Quite frequently, 
during the software development process, practitioners need 
to compare and compose different UML models to provide 
desired solutions.  

Model comparison requires a clear understanding of the 
UML metamodel specification and, of course, model 
semantics. Model composition relies on the ability to 
compare and indentify similarities and overlaps between 
model elements. Overlaps are undesired as they can lead to 
semantic conflicts, misinterpretation and problems in the 
model composition process. We define model composition 
as the process by which two input models, Ma and Mb, are 
combined producing model Mab as the result. In short, it can 
be represented by the expression: Ma (receiving) + Mb 
(merged)   Mab. 

In the last few years, model comparison issues gained 
momentum at the software engineering community, bringing 
forth a variety of novel techniques, including schema 
matching [2], Web services composition, matching object 
catalogues,  differences between versions of UML diagrams 
[5], and UML model comparison [6].  We have 
experimented with a few of the proposed approaches, but 
found none suitable for usage in UML model comparison. 
Such approaches ignore important aspects of model 
comparison that may lead to problems such as: (i) lack of 
flexibility to determine correspondences among model 
elements; (ii) lack of focus on model proprieties; (iii) require 
a large amount of human effort; (iv) do not take into account 
model meanings (the semantics). Thus, new approaches that 
overcome these shortcomings are in order. 

In this paper we propose to capitalize from our previous 
experience in the project, implementation and integration of 
ontology based software applications [3], [6] to provide an 
enhanced solution to UML model comparison. We propose a 
match operator, responsible for putting in practice a strategy 
that takes into account both syntactic and semantic aspects 
involved during model comparison. Central to the 
functioning of the match operator is the capacity of finding 
precise similarity measurements between pairs of elements in 
different models in a flexible way. With this operator we are 
able to tackle and overcome most of the problems cited 
previously. We propose the use of an ontology-based match 
strategy in order to improve the calculation of element 
similarity, while preserving original model semantics.  

The rest of this paper is organized as follows. In Section 
2 we present our approach. In Section 3 we discuss how the 
similarity degree between two input models is calculated 
using the proposed approach. Finally, in Section 4, we 
present our concluding remarks and future work. 

II. MODEL COMPARISON 
Our model comparison approach, illustrated in Figure 1, 

focuses on the central process, in particular using ontology to 
enhance the Definition of Similarity Degree (S). On the first 
step of the comparison phase, the domain expert defines a 
signature for every model element type that can be defined as 
input model. On the second, he or she specifies a match 
strategy. The authors anticipate a choice among three pre 
defined and implemented strategies (i) default, (ii) partial, 
and (iii) complete match strategy (see [8], [9], [10] for more 
details). It is important to note that the approach is extensible 
and allows for the addition of new strategies, as a means of 
offering flexibility during the matching process.   

This feature is particularly interesting if we take into 
account that matching strategies work better for some 
specific domains than others. This problem is very well 
known to the natural language processing community, where 
the application domain is a deciding factor in choosing 
matching strategies [12]. Once the match strategy has been 
determined, the match operator will put it in practice. 
Following is the stage in which the degree of similarity (S) 
between pairs of elements from the two different input 
models is calculated. Similarity is computed as the result of a 
combination of techniques. In this paper we extend the 
original architecture proposed in [8], [10] and include an 
ontology alignment strategy to enhance the results. 
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The next step focuses on specifying equivalent model 
elements and producing the matching description. For this 
purpose, before comparing the models, the user sets a 
similarity threshold. Every pair of elements whose similarity 
degree is above the threshold is considered equivalent. The 
output consists of two sets of artifacts, the first is the match 
models, i.e., a set of models that are considered equivalent, 
and the second is a match description, i.e., a list of mappings 
between the input models. Figure 1 illustrates the process. In 
the next section we detail the techniques used in the 
computation of the similarity degree (computation of the 
similarity degree between pairs of input model elements 
using the ontology based strategy implemented by CATO), 
introducing the ontology based strategy. 

 

 

Figure 1.  Proposed model comparison process approach (adapted from 
[11]). 

III. SIMILARITY DEGREE COMPUTATION 
 
To calculate the similarity degree between pairs of model 

elements, both syntactical and semantic aspects need to be 
taken into account. On the syntactical hand, both lexical and 
structural comparisons are performed in order to determine 
whether model elements in different input model should be 
considered syntactically equivalent. On the semantic hand, 
domain specialist expertise and ontologies are integrated in a 
seamless way. On a subsequent step, all strategies are then 
combined to determine the equivalence degree (S) between 
model elements. Synonym dictionary, typographic similarity, 
model signatures, verification using matching rules, and 

ontology-based strategy are underlying components to 
implement and put our approach in practice. They are 
described as follows.     

A. Synonym Dictionary 
With a synonym dictionary it is possible to identify 

mappings among domain concepts that have equal semantic 
value. The great benefit of using synonym dictionaries is to 
pave the way for the domain specialists to explicitly apply 
their domain expertise in the matching process. We denote 
by D(r,m) in [0,1] the degree of similarity between receiving 
(r) and merged (m) model elements. D(r,m) returns 0 
whether r and m are synonym, otherwise it returns 1. D is 
calculated for every possible pair of (r,m).  

Initially, every pair (r,m) of input model elements are not 
assumed to be synonymous, then D(r,m) = 0 for every pair of 
(r,m). In the current implementation of our model 
composition tool, called MoCoTo, the dictionary 
contemplates synonyms, hyponyms and hypernyms only. It 
is of particular interest to the model comparison process to 
include other semantic relationships as well, especially 
meronymical ones (part-of relationships) that although very 
frequently found in UML models, are very hard to identify 
automatically.  

B. Typographic Similarity 
The goal of typographic similarity is to determinate 

T(r,m) in [0..1] for every possible pair of receiving (r) and 
merged (m) model elements, Ma and Mb respectively. The 
N-gram algorithm [11] is applied to assign a similarity value 
in [0..1] to every possible pairs of (r,m). These pairs are 
determined by the cartesian product of (RxM), where R and 
M are the set of receiving and merged model elements, 
respectively. The result of RxM is a matrix. This algorithm 
yields a similarity degree to a pair of strings based on 
counting the number of their identical substrings of length N 
(we use N = 2). 

C. Typographic Similarity 
The signature is defined in terms of syntactic properties, 

where a syntactic property of a model element defines its 
structure. The signature is a collection of values assigned to a 
subset of syntactic properties in a model element’s 
metamodel class.  If an instance of a Class is an abstract 
class then isAbstract = true for the class, otherwise the 
instance is a concrete class, isAbstract = false. The set of 
syntactic properties used to determine a profile element’s 
signature is called a signature type, as defined in [12].   

We defined three types of signatures: (i) complete 
signature, which consists of all syntactic properties 
associated with a model element; (ii) partial signature, which 
is made up a range of syntactic properties; and (iii) default 
signature, which is composed only by properties name. The 
signatures can be structured in comparison levels organized 
hierarchically. Every model element type should have a 
signature.  The similarity degree based on signature M 
between receiving (r) and merged (m) model elements is 
represented by M(r,m), where 0 ≤ M ≤ 1. It is defined by 
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calculating the weighted average among the arithmetic 
average of the levels (Equation 1): 

 

(1) 

 
• n is the number of levels employed to compare the 

model elements, where n ≥ 1 and n . For 
example, we defined three levels to compare classes 
from input models. The first level has the property 
name: String only. The second one has the 
ownedAttribute: Property. The third one has the 
ownedOperation: Operation.   

• represents the weight, being i, where i ≥ 1 
and i ; k expresses the number of elements in 
each level, where k ≥ 1 and k ; 

•   (i and j represent the level and item of model 
elements that are being compared, respectively) is 
used to denote if an item in the receiving model 
element is equivalent to another item in the merged 
model element. It is a boolean variable and its value 
is determined by matching rules (described as 
follows).  The matching rules compare pairs of items 
from model elements; returns 1 if the rule is 
satisfied, otherwise it returns 0.  
 

D. Verification Using Matching Rules 
In order to check if pair of input model elements is 

equivalent, we defined matching rules. The match operator is 
responsible to execute these matching rules and, according to 
the resulting of this execution, it defines consequently the 
value of , which was specified earlier. For every model 
element and item of model element, a matching rule to check 
if they are equivalent is necessary. This checking is based on 
the element’s signatures. If a matching rule fails, then the 
models are not equivalent (  = 0). Otherwise, models are 
equivalent (  = 1).  

The matching rules verify whether the input model 
element properties have the same values, and for each 
matching strategy is defined a set of matching rule according 
to respective signature type of the strategy. There are three 
kinds of matching rules: (i) default matching rules are a set 
of rules that compare models based on only their name, using 
the default signature type; (ii) partial matching rules are also 
a set of rules that compare models based on a number of 
syntactic properties of the models, using the partial signature 
type; (iii) complete matching rules are also a set of rules that 
compare models based on their syntactic properties, but use 
the complete signature type. Thus, the match operator makes 
use of these rules to implement the default, partial and 
complete match strategies, respectively.  

E. Ontology Based Strategy 
In this paper we adapt from an existing ontology 

integration technique strategy as an innovative means to 
obtain more precise similarity measurements. Before 
detailing the approach, however, we briefly argue in favor of 
the adoption of ontologies into the model comparison 
process. 

1) Why Ontology?  
Ontologies are much more expressive than other 

conceptual models: a controlled vocabulary is simply lists a 
set of terms and definitions, e.g. glossaries and acronyms; 
taxonomy is a set of terms arranged in a generalization-
specialization (parent-child) hierarchy. A taxonomy may or 
may not define attributes of these terms nor does it specify 
other relationships between terms, e.g. RosettaNet and 
ebXML; a relational database schema defines a set of terms 
through classes, attributes and a limited set of relationships 
among those classes; an OO software model defines a set of 
concepts and terms through a hierarchy of classes and 
attributes and a broad set of binary relationships among 
classes. Constraints and other behavioral may be specified 
through methods on the classes (or objects). An ontology can 
express all of the preceding relationships, models and 
diagrams as well as, n-ary relations, a rich set of constraints, 
rules relevant to usage or related processes and other 
differentiators including negation and disjunction [13].   

Furthermore ontologies capture knowledge rather than 
data. Because it is possible to infer new information from 
previously coded one (with the aid of an inference 
mechanism), we believe ontologies provide a much more 
robust conceptual model for model comparison in the MDA 
context, than restricting ourselves to pure UML models, that 
are neither formal nor support automated reasoning. 

2) Ontology-Based Mappings Semantic 
Mapping between two ontological models results in a 

formal representation that contains expressions that link 
concepts from one ontology to the second [14]. This result is 
of particular interest to the UML model comparison process 
approach proposed in this paper, for it provides formal, 
unambiguous, accurate and precise similarity measurements 
for pairs of model elements, while preserving their original 
semantics. A similarity measurement is represented by O, 0 
≤ O ≤ 1 and O  Initially designed to provide mappings 
between two input ontologies, the ontology alignment 
strategy proposed in [15] is implemented by the CATO tool 
[16].  

CATO takes as input any two ontologies written in W3C 
recommended standard OWL. It was fully implemented in 
JAVA and uses a specific API (Application Programming 
Interface) that deals with ontologies, JENA. It performs both 
lexical and structural comparisons in order to determine if 
concepts in different ontologies should be considered 
semantically equivalent. It is based in a refinement approach, 
broken into three successive steps, detailed in what follows.  
CATO’s original output is an ontology that contains the 
elements from the input ontologies plus the mappings 
between those (if any). For the model comparison purposes 
described in this paper this result is of little interest, what is 
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important is a byproduct of the ontology alignment process, 
the calculation of the similarity between pairs of elements 
from the two input ontologies. Figure 2 depicts CATO 
ontology alignment strategy. 

 

 

Figure 2.  CATO ontology alignment strategy 

3) First Step: Lexical Comparison 
The goal of this step is to identify lexically equivalent 

concepts. We assume that lexically equivalent concepts are 
also semantically equivalent in the domain of discourse 
under consideration, an assumption which is not always 
warranted. Each concept label in the first ontology is 
compared to every concept label present in the second one, 
using lexical similarity as the criteria. Filters are used to 
normalize the labels to a canonical format: (i) if the concept 
is a noun, the canonical format is the singular masculine 
declination; (ii) if the concept they represent is a verb, the 
canonical format is its infinitive.  

Besides using the label itself, synonyms are also used. 
The use of synonyms enriches the comparison phase because 
it provides more refined information. Lexical similarity 
alone, however, is not enough to assume that concepts are 
semantically compatible. We also investigate whether their 
ancestors share lexical similarity. It is important to note that 

the alignment strategy in this step is restricted to concepts 
and instances of the ontology. We are not considering 
properties at this time. A concept instance is represented by a 
pair name and namespace in OWL. As a result of the first 
stage of the proposed strategy, the original ontologies are 
enriched with links that relate concepts identified as lexically 
equivalent. 

4) Second Step: Structural Comparison 
Comparison at this stage is based on the subsumption 

relationship that holds among ontology concepts. Ontology 
properties and restrictions are not taken into consideration. 
Our approach is thus more restricted than the one proposed 
in [17], that analyses the ontologies as graphs, regarding both 
taxonomic and non taxonomic relationships among concepts. 
Because we only consider lexical and structural relationships 
in our analysis, we are able to make use of well-known tree 
comparison algorithms. We are currently using the TreeDiff 
implementation available at [18]. Our choice was based on 
its ability to identify structural similarities between trees in 
reasonable time. The goal of the TreeDiff algorithm is to 
identify the largest common substructure between trees, 
described using the DOM (Document Object Model) model. 
This algorithm was first proposed to help detect the steps, 
including renaming, removing and addition of tree nodes, 
necessary to migrate from one tree to another (both trees are 
the inputs to the algorithm). 

The result of the Tree Diff algorithm is the detection of 
concept equivalence groups. They are represented as subtrees 
of the enriched ontologies. Concepts that belong to such 
groups are compared in order to identify if lexically 
equivalent pairs can also be identified among the ancestors 
and descendants of the original pair. Differently from the 
first step, where we based our analysis and compared 
concepts that were directly related to one another, we are 
now considering the structural vicinity of concepts. Every 
concept in the equivalence group is investigated in order to 
determine lexically equivalent pairs, number of matching 
sons, number of synonymous concepts in the sub-trees, 
available from the previous step, and ancestor equivalence.  

5) Third Step: Fine Adjustments based on Similarity 
Measurements 

The third and last step is based on similarity 
measurements. Concepts are rated as very similar or little 
similar based on pre-defined similarity thresholds. We only 
align concepts that were both classified as lexically 
equivalent in the second step, and thus rated very similar. 
Thus the similarity measurement is the deciding factor 
responsible for fine tuning our strategy. We adapted the 
similarity measurement strategies proposed in [18] (see 
Figure 3). Their similarity level is calculated in the present 
step. The final ontology will provides a common 
understanding of the semantics represented by the two input 
ontologies. As long-term goal, this representation can now 
be accessed by model comparison operator searching for 
information or knowledge to compare UML models. In this 
paper, we make use of the similarity measurements, 
represented by O, as cited previously and discard the final 
ontology and the element mappings. 
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Figure 3.  TreeDiff algorithm’s entries and exits [18] 

F. Calculating the Similarity Degree between the Input 
Model Elements 
We denote by S the degree of similarity between 

receiving (r) and merged (m) model elements. For defining 
the similarity degree, it is necessary to combine the partial 
similarity degrees described in previous sections. For this 
purpose, it is calculated the average of D, T, M, and O as 
showed in Equation 2. If D = 1, then T also assumes value 1 
and contrariwise. 

 

[ ]1..0
3

→
+

+++=
D

OMTDS  (2) 

 
Where: 
D – Synonym Dictionary similarity degree, calculated as 

indicated in the previous section. Note that if D = 1, then T 
also assumes value 1. By the same token, if D=0, T assumes 
the same value. 

T – Typographic Similarity, calculated as indicated in 
Section 4.2 

M – Model Signature Similarity, calculated as indicated 
in Section 4.3 

O – Ontology Alignment Similarity, calculated as 
indicated in Section 4.5 

 
Based on the Equation 2, we calculate the similarity 

degree of every model elements. if S(r,m) > t, then r and m 
are equivalents, where t is a threshold and serves to 
determine whether pairs of model should be computed as 
equivalent. The possibility of combining different matching 
strategies assures overall better performance and reliability 
in the comparison phase.  The ontology based approach is 
fully implemented and incorporated in the MoCoTo tool, as 
an Eclipse Plug-in which allows for a seamless integration 
with Eclipse Platform. It provides functionalities for users 
work with model composition and model comparison in the 
Eclipse SDK. The goal of the MoCoTo tool is to 
automatically compose pairs of input models.  

 

 
 

IV. CONCLUDING REMARKS AND FUTURE WORK 
In this paper we explored the use of ontology to enhance 

a model comparison mechanism based on similarity 
measurements. Most existing techniques are essentially 
syntactic in nature [12], [4], i.e., they make use of syntactical 
hints, such as attribute data types and naming similarities. It 
assumes that syntactical proximity implies semantic 
similarity, but such assumptions are often unwarranted and 
can lead to incorrect mappings [19]. We have adapted and 
incorporated an ontology alignment technique, as a means to 
obtain more precise and reliable similarity measurements 
between model elements, a fundamental issue in model 
comparison and composition.   

We have only started experimenting with the ontology 
based approach, but the results already show improvement 
from the ones obtained using syntactic based techniques 
alone. Further empirical studies are necessary, however, to 
calibrate the similarity thresholds used in the ontology based 
approach, validate the approach in real world design settings, 
and verify its performance levels and its applicability in 
different application domains.  Obviously scalability is an 
issue, and more investigation on the applicability of the 
proposed approach in comparing large UML models is 
required. 

 

REFERENCES 
 

[1] S. Sendall and W. Kozaczynski, “Model Transformation: The Heart 
and Soul of Model-Driven Software Development,” IEEE Software, 
vol. 20, no. 5, September/Octocber 2003, pp. 42–45. 

[2] E. Rahm and P. Bernstein, “A Survey of Approaches to Automatic 
Schema Matching,” Very Large Data Bases Journal, vol. 10, no. 4, 
pp. 334-350, 2001. 

[3] L. Leme, D. Brauner, K. Breitman, M. Casanova, and A. Gazola, 
Matching Object Cataloques, Inovations in System Software 
Engineering, Springer, 2008. 

[4] D. Ohst, M. Welle, and U. Kelter, “Differences between Versions of 
UML Diagrams,” Proc. 9th European Software Engineering 
Conference, ACM Press, pp. 227–236, 2003. 

[5] D. Kolovos, R. Paige, and F. Polack, “Model Comparison: a 
Foundation for Model Composition and Model Transformation 
Testing,” Proc. International Workshop on Global Integrated Model 
Management, New York, NY, USA: ACM Press, pp. 13–20, 2006. 

[6] K. Breitman, M. Casanova, and W. Truszkowski, Semantic Web: 
Concepts, Technologies and Applications, Springer Verlag, 2007. 

[7] Unified Modeling Language: Infrastructure version 2.1, OMG, 
February 2007.  

[8] K. Oliveira, “Composição of  UML Profiles,” Master’s thesis, 
Informatics Faculty, Pontifical Catholic University of Rio Grande do 
Sul, Porto Alegre, Brazil, February 2008. 

[9] K. Oliveira and T. Oliveira, “A Guidance for Model Composition,” 
Proc. International Conference on Software Engineering Advances 
(ICSEA’07), pp. 27–32, August, 2007.  

[10] K. Oliveira and T. Oliveira, “Model Comparison – A Strategy-Based 
Approach,”  Proc. 20th International Conference on Software 
Engineering and Knowledge Engineering, San Francisco, USA, 2008. 

[11] C. Manning, and H. Schutze, Foundations of Statistical Natural 
Language Processing, ISBN 978-0262133609, MIT Press, 1999. 

82



[12] Y. Reddy, R. France, G. Straw, N. Bieman, E. Song, and G. Georg, 
“Directives for Composing Aspect-Oriented Design Class Models,” 
Transaction  on Aspect-Oriented Software Development (AOSD), 
vol. 1, no. 1, pp. 75–105, 2006. 

[13] A. Pérez, M. Peréz, and O. Corcho, Ontological Engineering, 
Springer Verlag, 2004. 

[14] J. Euzenat and P. Shvaiko, Ontology matching, Springer, Springer-
Verlag, Berlin Heidelberg (DE), 2007. 

[15] C. Felicissimo, “Interoperabilidade Semântica na Web: Uma 
Estratégia para o Alinhamento Taxonômico de Ontologias,” Master’s 
thesis, Department of Informatics, Pontifical Catholic University of 
Rio de Janeiro, Rio de Janeiro, Brazil, August 2004. 

[16] K. Breitman, C. Felicissimo, and M. Casanova, “CATO - A 
Lightweight Ontology Alignment Tool,”  Proc. International 
Conference on Advanced information Systems Engineering (CAiSE), 
Short Paper Proceedings, 2005. 

[17] F. Noy and A. Musen, “The PROMPT Suite: Interactive Tools For 
Ontology Merging And Mapping,” International Journal of Human-
Computer Studies, 2003. 

[18] U. Bergmann, Evolução de Cenários Através de um Mecanismo de 
Rastreamento Baseado em Transformações, PhD Thesis of the 
Department of Informatics of PUC-Rio, 2002. 

[19] M. Casanova, K. Breitman, F. Brauner, and A. Marins, Database 
Conceptual Schema Matching. Computer (Long Beach), v. 40, p. 
102-104, 2007. 

 
 
 
 

   

83


