

Evaluating the Effects of Stability on
Model Composition Effort: an Exploratory Study

Kleinner Farias, Alessandro Garcia, Carlos Lucena

1OPUS Research Group – LES – Informatics Department
Pontifical Catholic University of Rio de Janeiro (PUC-Rio)

Rio de Janeiro – RJ– Brazil
{kfarias,afgarcia,lucena}@inf.puc-rio.br

Abstract. Heuristics are often used to support model composition, but they
also lead to syntactic and semantic inconsistencies in the composed models. If
the effort to resolve inconsistencies is high, heuristic model composition might
become impractical. Unfortunately, little is known whether well-designed
models can minimize the inconsistency rate so that state-of-practice heuristics
can be efficiently applied. This paper presents an exploratory study that
analyzes the impact of model stability on the composition effort required to
produce several releases of a software product line. Our results, supported by
statistical tests, show that when models are well-structured upfront and,
therefore more stable over time, the inconsistency rate and inconsistency
resolution effort are kept under control. On the other hand, when changes are
not predicted upfront, the use of existing heuristics might become prohibitive.

1. Introduction

Model composition [Farias 2010] [Dingel 2008] [France 2007] [Clarke 2001] [OMG
2008] [Clarke 2001] plays a crucial role in many software development activities, such
as the reuse and evolution of design models. Model composition can be defined as a set
of activities performed to combine two input models, MA and MB, to produce an output
composed model, MCM. The latter often needs to be reviewed and changed to become
complaint to an output intended model, MAB. Software developers usually rely on the
use of heuristic composition algorithms [Clarke 2001], which match input model
elements by automatically “guessing” their semantics. Consequently, the composed and
intended models often do not match (MCM MAB) in practice because the input models
conflict in some way, leading one or more syntactic and semantic inconsistencies
[Oliveira 2008]. It is very difficult, if not impossible, to resolve such inconsistencies
automatically because this task often requires the understanding of what the model
elements mean. Thus, developers might need to invest some effort to resolve emerging
inconsistencies; otherwise, the produced design model will represent anything other than
what is expected.

 Unfortunately, nothing is known about the suitability of state-of-practice
composition heuristics on the evolution of design models. Most of the research on
model composition is focused on building new model composition strategies (e.g.,
[Clarke 2001] [OMG 2008]). There is no guidance to help developers to minimize
model composition effort, apart from policies for naming model elements and meta-
model construction [Meyer 1988] [France 2007]. A possible strategy for avoiding

Proceedings of 8th Experimental Software Engineering Latin American Workshop ESELAW 2011

ISBN pending 77

composition inconsistencies is to structure the models to-be-composed based on design-
for-change principles [Meyer 1988]. The assumption is that if a model is well-structured
and decomposed with changes in mind, then it should not succumb in the presence of
changes when they evolve using heuristics-based composition algorithms.

 This paper presents an exploratory study that investigates the impact of model
stability on the composition effort. We analyzed the inconsistency rate as well as the
resolution effort required to derive successive releases of realistic product-line
architecture. Three well-established composition algorithms [Clarke 2001], namely
override, merge and union, were employed to evolve product-line architecture along six
releases. The initial results, supported by statistical tests, show that it is likely that the
more well-designed and stable design is, the lower the inconsistency density and the
resolution effort. On the other hand, design for change is not always possible and, in
such circumstances, the use of the composition heuristics became either costly or
prohibitive; in these contexts, the use of emerging non-heuristic techniques (e.g. [Farias
2010] [France 2007]) might be inevitable.

 The remainder of the paper is organized as follows. Section 2 describes the main
concepts and knowledge that are going to be used and discussed throughout the paper.
Section 3 presents the study methodology. Section 4 discusses the study results. Section
5 compares this work with others, presenting the main differences and commonalities.
Section 6 points out some threats to validity. Finally, Section 7 presents some
concluding remarks and future work.

2. Background

2.1. Model Composition Effort

MA is the current design model while MB is the model expressing the evolution (delta
model), for example, the upcoming changes being added. MB is inserted into the MA
using composition algorithms, which are responsible for defining the composition
semantics and specify how MA and MB should be manipulated to produce MAB. We will
use the terms composed model (MCM) and intended model (MAB) to differentiate
between the output model produced by a composition algorithm and one is desired by
the developers. Usually, MCM MAB because the input models conflict in some way.
The higher the number of inconsistencies in MCM, the more distant it is from the
intended model, MAB. Once MCM has been produced, the next step is to measure the
effort to transform MCM into MAB i.e., the effort to resolve inconsistencies. If MCM is
equal to MAB, then inconsistency resolution effort is equal to zero. Otherwise, the effort
is higher than zero.

2.2. Stability Analysis

MCM can be considered stable if its design characteristics have a low variation with
regards to the characteristics of MAB. In our study, we define low variation as equal to
or less than 20 percent. This choice is based on previous empirical studies [Kelly 2006]
on software stability that has demonstrated the usefulness of this threshold. For
example, if the mean of measures of MCM is equal to 9, and the mean of MAB is to 11.
So MCM is stable in relation to MAB (because 9 is 18% lower than 11). Following this
stability threshold, we can systematically identify whether the MCM keeps stable given

Proceedings of 8th Experimental Software Engineering Latin American Workshop ESELAW 2011

ISBN pending 78

an evolution scenario. However, this threshold was used more as a reference value
rather than a final design maker. This difference is computed from the comparison of
measures of the model characteristics calculated with a suite of metrics (Section 3.4)
[Results 2011].

2.3. Composition Heuristics and Inconsistencies

Composition algorithms rely on two key activities: matching and combining the input
design model elements. Note that algorithms are used to modify, remove and add model
elements to existing design models. This paper focuses on three well-established
composition algorithms: override, merge and union [Clarke 2001]. These algorithms
were chosen because they have been applied to a wide range of model composition
scenarios such as model evolution [Dingel 2007] [OMG 2008], ontology merge, and
conceptual model composition. In addition, they are supported by tools such as IBM
Rational Software Architecture [Norris 2011]. Figure 1 shows the application of the
composition algorithms in realistic evolution scenario in our study. Two broad
categories of inconsistencies [Oliveira 2008] were identified in our study: (1) syntactic
inconsistencies, which arise when the composition heuristic results in a model not
conforming to the modeling language’s metamodel; and (2) semantic inconsistencies,

Figure 1 The base and delta model in the third Mobile Media evolution scenario
(left). The use of merge and override algorithms (right).

Proceedings of 8th Experimental Software Engineering Latin American Workshop ESELAW 2011

ISBN pending 79

where the meaning of the composed model does not match that of the intended model.
We compute only certain categories of inconsistencies, which are doable to spot
manually. A typical example of semantic inconsistency considered in our investigation
was the lack of an expected functionality in a model element.

3. Study Methodology

3.1. Objective and Research Questions

The objective of this study is stated based on the GQM template as follows:
analyze the stability of design models for the purpose of investigating its effects
with respect to inconsistency rate and developers’ effort from the perspective of
the developers in the context of evolution of a software product-line

In particular, this study is aimed at investigating the stability effects on the
inconsistency rate and the developers’ effort. Thus, we focus on the following two
research questions: What is the effect of stability on the inconsistency rate (RQ1) and
developers’ effort (RQ2)?

3.2. Hypothesis Formulation

3.2.1. First Hypotheses: Effect of Stability on Inconsistency Rate

The first hypothesis is intended to evaluate whether the inconsistency rate in stable
design models is significantly different than unstable design models. The intuition is
that as design models are well-structured [Meyer 1988] [Martin 2002] and design-for-
change principles [Meyer 1988] [Martin 2002] were applied, the system decomposition
is more modular and resilient to changes (i.e., more stable). Then, it is expected that a
more effective modularization can help the composition heuristics (Section 2.3) to better
accommodate the upcoming evolving changes into an existing design model; thus
minimizing the inconsistency density. These hypotheses are summarized as follows:

Null Hypothesis 1, H1-0:
Stable models have similar or higher inconsistency rate than unstable ones.
H1-0: Rate(stable models) Rate(unstable models).
Alternative Hypothesis 1, H1-1:
Stable models have a lower inconsistency rate than unstable ones.
H1-1: Rate(stable models) < Rate(unstable models)

3.2.2. Second Hypotheses: Effect of Stability on Developer Effort

Inconsistencies have a tendency to propagate in a composed model. That is, the
introduction of one inconsistency can often lead to multiple other inconsistencies as a
result of a “knock-on” effect. An example would be the inconsistency whereby a
composed component is missing an important operation. This semantic conflict leads to
a “knock-on” syntactic inconsistency if another component requires the operation. In the
worst case, there may be long chains of inconsistencies all derived from a single
conflict. Studying such propagation effects is important because propagation directly
affects the effort in resolving inconsistencies – e.g., a propagation chain of length n may
actually be fixed by resolving a single conflict rather than the expected n conflicts. Thus,
we conjecture that design models that are well-structured upfront can isolate these
inconsistencies. However, it is by no means obvious that this hypothesis holds. It may

Proceedings of 8th Experimental Software Engineering Latin American Workshop ESELAW 2011

ISBN pending 80

be, for instance, that added changes to the base design model can give rise to unexpected
interdependence among design model elements in the output composed model.
Consequently, this additional interdependence may significantly increase the
developers’ effort because additional effort must be invested to restructure the model
elements so that the output intended model can be obtained. Thus, we are interested in
understanding the possible difference of effort to resolve inconsistencies in stable and
unstable design models. The expectation is that stable models may alleviate the
developers’ effort to produce output intended model using state-of-practice composition
heuristics. This leads to the second null and alternative hypotheses as follows:

Null Hypothesis 2, H2-0:
Stable models require similar or higher effort to solve inconsistencies than
unstable models.
H2-0: Effort(stable models) Effort(unstable models).
Alternative Hypothesis 2, H2-1:
Stable models require a lower inconsistency resolution effort than unstable ones.
H2-1: Effort(stable models) < Effort(unstable models).

3.3. Target Case: Evolving a Product Line Architecture

MobileMedia: the Target Software Product-Line. A product line, called
MobileMedia [Figueiredo 2008], was selected to be the target case of the evaluation.
Model compositions were defined to generate the new releases of the MobileMedia
SPL. The purpose of MobileMedia is to provide support for the manipulation of photos,
music, and videos on mobile devices. The reasons for selecting this system in the
evaluation are: (i) different types of change were realized in each release, including
refinements of the architecture style employed; and (ii) the system has been successfully
used in other studies involving empirical evaluation of stability in code level. As such,
all these factors provided a solid foundation for our study.

3.4. Measured Variables and Quantification Method

Dependent Variables. The dependent variable of hypothesis 1 is the inconsistency rate.
It quantifies the amount of composition inconsistencies divided by the total number of
elements in the composed model. It is defined from multiple inconsistency metrics,
which can be found in [Results 2011]. The dependent variable of the hypothesis 2 is the
inconsistency resolution effort—that is, the number of operations (creations, removals,
and modifications) needed to transform the composed model into the intended model.

Independent Variable. The independent variable of the hypotheses 1 and 2 is the
stability. The measure of stability can be defined as: S = {x 0 x 1}. This
measure is mapped to a nominal scale with two categories: Stable Model (SM), if 0.8
S 1; and Unstable Model (UM), if 0 S < 0.8. Making use of the design metrics
[Results 2011], stability is quantified by the sum of the model characteristics have a
variation 0.8 divided by the total number of characteristics considered (in this case
nine). We are interested in the stability with regards to the intended model (MAB). In the
second stability, we assess how well the composition algorithms accommodate the
changes into the composed model (w.r.t. the intended composition).

Proceedings of 8th Experimental Software Engineering Latin American Workshop ESELAW 2011

ISBN pending 81

3.5. Evaluation Procedures

Composition and Measurement Stages. From one release to another, 6 compositions
were produced: 3 compositions following override, merge, and union from the current
release to delta model, and 3 compositions in the inverse direction. In total, 60
compositions were performed. The result of this phase was a document of composition
descriptions, including the gathered data from the application of our metrics suite. We
used a well-validated suite of inconsistency metrics defined in our previous work
[Oliveira 2008].

Effort Assessment Stage. The goal of this phase was to assess the effort to resolve the
inconsistencies using the quantification method described in Section 3.4. The
composition algorithms were used to generate the evolved models, so that we could
assess the impact of stability on the model composition effort. In order to support a
detailed data analysis, the assessment phase was further decomposed in two main stages.
The first stage is concerned with pinpointing the inconsistency rates produced by the
compositions (H1). The second stage aims at assessing the effort to resolve a set of
previously identified inconsistencies (H2). All measurement results and the raw data are
available at [Results 2011].

4. Composition Effort Analysis

4.1. H1: Stability and Inconsistency Rate

4.1.1. Descriptive Statistics

This section describes interesting aspects of the collected data. For this, descriptive
statistics for the inconsistency rate are depicted in Figure 2-I. The main conclusion is
that stable design models have a lower inconsistency rate. The measures show evidence
to support this observation. For instance, the results indicate that stable design models
produce an inconsistency rate that, on average, is 63.4 percent lower than the
inconsistency rate produced by unstable design models (e.g., a mean of 0.84 compared
to a mean of 2.27 for stability related to the intended model). Following the procedures
described in Section 3, 60 compositions were performed in total. However, only 15
produced the intended model — that is, the inconsistency rate was equal to zero.
Therefore, our results suggest that stable design models have a positive impact on
inconsistency rate. Even though, the collected measures had extreme values, they are not
considered as true outliers. Hence, they were not removed because they do not tamper
the results.

 Stable design models present a lower inconsistency rate than unstable design
models. This finding is particularly understandable if we take into account previous
studies that report positive correlation between low variation of coupling and
complexity with design stability [Kelly 2006]. The insights that we can draw out from
the descriptive statistics is that: whether models, which are notoriously unstable, have
high inconsistency rate because they did not have good design properties, such as high
coupling, or because the composition algorithms do not worked well in all evolution
scenarios? Observing some findings from previous studies, both insights are true. Kelly
[Kelly 2006] states that well-planned software design leads to accommodate the changes
in a better way. On the other hand, we observed that well-known composition
algorithms (override, merge and union) used in this study are not effective to a set of

Proceedings of 8th Experimental Software Engineering Latin American Workshop ESELAW 2011

ISBN pending 82

evolution categories such as (i) modification — that is, a model element has some
properties modified; and (ii) derivation — that is, model elements are refined and/or
moved to accommodate the changes.

4.1.2. Hypothesis Testing

This test evaluates whether in fact the difference between the inconsistency rates of SM
and UM groups are statistically significant (p 0.05 to indicate a true significance).

Mann-Whitney test. As the collected data violated the assumption of normality, the
non-parametric Mann-Whitney test was used as the main statistical test. The results
produced are U' = 659.00, U = 205.00, z = 3.418 and p < 0.001. The p-value is lower
than z so that we can reject the null hypothesis of no difference between the rates of
inconsistency of the SM and UM groups (H1-0) — that is, there is sufficient evidence to
say that there is a difference between the inconsistency rate measures of the two groups
in the Mobile Media project. Figure 2-II depicts that the mean rank of inconsistency rate
for UM are higher than that of SM. As Mann-Whitney test relies on ranking scores from
lowest to highest, the group with the lowest mean rank is the one that contains the
largest amount of lower inconsistency rate. Likewise, the group with the highest mean
rank is the group that contains the largest amount of higher inconsistency rate. Hence,
the collected data show that unstable models tend to have higher inconsistency rate than
the stable design models.

Correlation Analysis. Spearman's correlation (SC) test was played rather than
Pearson’s correlation because the data set is not normally distributed. It is important to
point out that this test assumes that both variables are independent. The correlation
coefficient takes on values between -1 and 1. Values close to 1 or -1 indicate a strong
relationship between the stability and inconsistency rate. A value close to 0 indicates a
weak or non-existent relationship. As can be seen in Figure 2-III, the t-test of
significance of the relationship has a low p-value, 0.001, indicating that the correlation
is significantly different from zero. Spearman’s correlation analysis resulted in a
negative and significant correlation (SC = - 0.542). The negative value indicates an
inverse relationship — that is, as one variable increases, the other decreases. Hence,
composition inconsistencies are more frequently manifested in unstable models rather
than stable models. The above correlation suggests that whereas the stability of design
models decreases the inconsistency rate in such models increases. Therefore, on
average, stable models have significantly lower inconsistency rate than those that are
unstable. Thus, we can reject the null hypothesis (H1-0), and confirm the alternative
hypothesis (H1-1).

Figure 2 Descriptive statistics, hypotheses test and correlation analysis

Proceedings of 8th Experimental Software Engineering Latin American Workshop ESELAW 2011

ISBN pending 83

4.2. H2: Stability and Inconsistency Resolution Effort

4.2.1. Descriptive Statistics

Figure 2-I provides the descriptive statistics of sampled inconsistency resolution effort
in stable and unstable model groups. There the number of models (N), their mean,
median and the standard deviations of each group are presented. From 60 compositions,
53.33 percent of them (N = 32) produced stable design models related to the intended
model and the other 46.66 percent (N = 28) produced unstable design models. If we
compare the median values of the inconsistency resolution effort of both SM and UM
groups, we can observe that SM’s median (4.50) is much higher than UM’s median
(27). Note that this also happens with the mean and standard deviation, which represent
the measure of central tendency and measure of dispersion, respectively. Thus, stable
design models require less effort than unstable design models by about 77.36 percent
(e.g., a mean of 5.9 compared to a mean of 26.07). Moreover, the median of effort is
much lower for the stable design models than for unstable design models (e.g., median
equal to 4.5 instead of 27). This substantial difference suggests that stable design
models require less effort than unstable design models to reach the intended model—
that is, a lower amount of operations (creations, removals, and modifications) should be
performed to transform the composed model into an intended model.

3.2.2 Hypothesis Testing

This test checks (Figure 2-II) statistically whether the difference between the
inconsistency resolution effort required by SM and UM model is significant (p 0.05 to
indicate a true significance).

Mann-Whitney test. The collected data do not respect the assumption of normality;
therefore, the non-parametric Mann-Whitney test was used as the main statistical test as
well as it was done in the first hypothesis. The results of the Mann-Whitney test
produced are U' = 760.50, U = 103.50, z = 4.949 and p < 0.001. The p-value is lower
than z, so the null hypothesis (H2-0) can be rejected—that is, there is strong evidence
about the difference between the median measures of the two groups. As we can see in
Figure 2-II, mean ranks of the measured variables are not similar. We can see that the
difference between them in the SM and UM groups is quite significant—that is, the
mean rank in the SM group is 57.58 percent lower than the mean rank in the UM group.
As Mann-Whitney test relies on ranking scores from lowest to highest, the group with
the lowest mean rank is the one that requires the largest amount of lower effort.
Likewise, the group with the highest mean rank is the group that contains the largest
amount of higher effort. Hence, the collected data show that models that are not stable
tend to have higher effort than the stable design models.

Correlation Analysis. As the gathered data do not follow a normal distribution we
cannot apply the Pearson’s correlation analysis, the Spearman's correlation (SC) test was
applied. Figure 2-III provides the results the Spearman’s correlation test. The low p-
value < 0.001 indicates that the correlation is significantly different from zero. Note that
Spearman's correlation value close to 1 or -1 indicates a strong relationship between the
stability and effort. On the other hand, a value close to 0 indicates a weak or non-
existent relationship. The results (SC = - 0.8341) suggest that there is a negative and
significant correlation between the two variables. This implies that whereas the stability

Proceedings of 8th Experimental Software Engineering Latin American Workshop ESELAW 2011

ISBN pending 84

increases the effort to resolve inconsistency decrease. Hence, stable design models tend
to require less effort to be transformed into the intended model than unstable design
models. Having such results, we can reject the null hypothesis (H2-0), and accept the
alternative hypothesis (H2-1): stable design models tend to require lower effort to resolve
composition inconsistency than unstable design models. In fact, we have also recently
observed this phenomenon in a real-world project (in a different application domain) –
based on the use of IBM Rational Software Architecture [Norris 2011]. Despite there is
a significant correlation between stability and inconsistency resolution effort, it is
difficult (if not impossible) to precisely estimate the effort required when transforming a
composed model into an intended model given the problem at hand.

5. Related Work

To the best of our knowledge, our results are the first to empirically investigate the
relation between stability and model composition effort. The current model composition
literature does highlight the importance of performing empirical studies in model
composition [France 2007]. However, nothing has been done up-to-now. For example,
the UML built-in composition mechanism, namely package merge [OMG 2008], does
not define metrics or criteria to assess the UML models that are merged. Moreover, it
has been found to be incomplete, ambiguous and inconsistent [Dingel 2008]. Finally,
some previous works investigate the effect of using UML diagram and its profiles with
different purpose. In [Ricca 2010], Ricca et. al. carried out a series of four experiments
to assess how developer´s experience and ability influence Web application
comprehension tasks supported by UML stereotypes. Although they have found that the
use of UML models provide real benefits for some typical software engineering
activities, none has investigated the peculiarities of UML models in the context of
model composition.

6. Threats to Validity

As our study was of exploratory nature, it is not aim here to generalize results. However,
we discuss a number of threats that can well inform researchers that plan to replicate our
study in more controlled settings. External validity threats concern mainly limitations to
generalize the results of the study to a broader context. The main threats are: (i) the use
of single target application, and (ii) the use of specific metrics to compute the model
composition effort. Obviously, more investigations involving other applications with
compositions of larger UML models are required. Moreover, the results might be
specific to component models of SPL architectures similar to the one used in this study.
Finally, we have minimized the threats by establishing guidelines, periodic reviews with
developers of the architectural models, and by engaging them in the discussions.

7. Conclusions and Future Work

In this paper we empirically investigate the impact of stability on model composition
effort. The main finding was that the presence of stable model tends to minimize the
inconsistency rate and alleviate the inconsistency resolution effort. This observation was
derived from statistic analysis of empirical data that have shown a significant correlation
between the independent variable (stability) and the dependent variables (conflict rate
and effort). The developers can have estimation about both the composition conflicts
and their resolution effort given a stability measure of the output composed model.

Proceedings of 8th Experimental Software Engineering Latin American Workshop ESELAW 2011

ISBN pending 85

 This paper is the first study that investigates the extent of the impact of design
stability on model composition. Hence, further empirical studies are still required to
evaluate the impact of stability on model composition in real-world settings. The main
reason is that we need to better understand if stable composed models have some gain or
not: (i) when produced by other composition algorithms, and (ii) with respect to the time
spent to identify the conflicts rather than the effort to resolving them. We hope that the
issues outlined throughout the paper encourage researchers to replicate our study in the
future under different circumstances.

References
Clarke, S., Composition of Object-Oriented Software Design Models, Ph.D. Thesis,

Dublin City University, January, 2001.

Dingel, J., Diskin, Z., and Zito, A., Understanding and Improving UML Package Merge.
Journal of SoSym, 7(4):443–467, 2008.

Farias et al. Empirical Evaluation of Effort on Composing Design Models. In: ICSE’s
Doctoral Symposium, pp. 405-408, 2010.

Figueiredo et al. Evolving Software Product Lines with Aspects: An Empirical Study on
Design Stability. In: ICSE’08, pp. 261–270, 2008.

France, R. and Rumpe, B., Model-Driven Development of Complex Software: A
Research Roadmap. In: FuSE at ICSE’07, pp. 37–54, 2007.

Kelly, D., A Study of Design Characteristics in Evolving Software Using Stability as a
Criterion, IEEE TSE, 32(5):315–329, 2006.

Martin, R., Agile Software Development, Principles, Patterns, and Practices, Prentice
Hall, 2002.

Meyer, B., Object-Oriented Software Construction, 1st ed. Prentice-Meyer, Hall,
Englewood Cliffs, 1988.

Norris, N., and Letkeman, K., Governing and managing enterprise models: Part 1.
Introduction and concepts, IBM Developer Works, http://
www.ibm.com/developerworks/rational/library/09/0113_letkeman-norris, 2010.

Oliveira et al. On the Quantitative Assessment of Class Model Compositions: An
Exploratory Study. In: ESMDE at MODELS, 2008.

OMG. Unified Modeling Language: Infrastructure version 2.2. Object Management
Group, February 2008.

Results, Evaluating the Effects of Stability on Model Composition Effort: an
Exploratory Study, http://www.kleinnerfarias.com/eselaw2011, 2011.

Ricca et. al., How Developers’ Experience and Ability Influence Web Application
Comprehension Tasks Supported by UML Stereotypes: A Series of Four
Experiments, IEEE TSE, 96(1):96–118, 2010.

Wohlin et. al., Experimentation in Software Engineering: an Introduction, Kluwer
Academic Publishers, Norwell, USA, 2000.

Proceedings of 8th Experimental Software Engineering Latin American Workshop ESELAW 2011

ISBN pending 86

