
Evaluating Composition Techniques for
Architectural Specifications: A Comparative Study

Ana Luisa Medeiros

 OPUS Research Group,
Computing Department,
Federal University of Rio
Grande do Norte (UFRN)

analuisa@ppgsc.ufrn.br

Kleinner Farias, Alessandro Garcia

OPUS Research Group,
Department of Informatics,

Pontifical Catholic University of Rio de
Janeiro (PUC-Rio),

{afgarcia,kfarias}@inf.puc-rio.br

Thais Batista

Software Engineering Team,
Computing Department,
Federal University of Rio

Grande do Norte (UFRN),
thais@ufrn.br

ABSTRACT
Techniques for composing architectural specifications are

emerging in order to facilitate software architecture evolution.

However, there is little empirical understanding on whether such

techniques scale when they are used to express different types of

architectural changes. This paper presents a first comparative

evaluation of two significantly-different composition techniques

for architectural descriptions. The first technique is fully based on

heuristic composition operators, while the second one demands

explicit composition specification. Several releases of a software

product line were used in our evaluation, and their designs were

expressed with an architectural description language, called

ACME. Some metrics were used to compute the number of

required modifications, syntactic conflicts, and semantic conflicts

in composed (output) models produced with both heuristic and

non-heuristic compositions. We observed that, in general, the

heuristic composition approach outperformed the non-heuristic

one mainly due to the narrow set of composition operators

supported by the latter.

Keywords

Software Architecture, ADLs, Metrics, Assessment, Model

Composition.

1. INTRODUCTION
Techniques for explicitly describing the composition of

architectural specifications are emerging [2] [12] [13]. These

techniques allow handling relations and compositions of

architectural models by embedding their specifications in

architectural description languages (ADLs). They can be used for

different purposes, such as reconciling architectural descriptions

developed in parallel by different development teams, or evolving

architectural descriptions with models of new features being

added to the architecture. However, such explicit compositional

ADL-based approaches have rarely been assessed and they have

not proven their value yet. For instance, it is not clear to what

extent these techniques scale when they are used to express

different types of architectural changes. They have not even

compared with general well-known heuristic approaches for

model composition [5] [6].

In this context, this paper presents an exploratory comparison of

two techniques for composing architectural descriptions: (i) a

conventional heuristic approach [1] [5] [6], where input models

are automatically composed and output models are generated

based on pre-defined algorithms, and (ii) a non-heuristic approach

[2], where the compositions of two input models are fully

described using a limited set of composition operators. The

architectural models are represented with either textual or

graphical notations. We evaluate these techniques in the context

of an evolving product-line architecture. The compositions of

architectural descriptions are used to represent the evolutions of

the target product-line software architecture.

The models of the target product line were based on the ACME

ADL [3]. This language was selected because, unlike most ADLs,

it is not domain-specific and provides generic structures to

describe a wide range of systems [3]. ACME is supported by tools

that provide a good basis for designing and manipulating

architectural descriptions and generating code. The key elements

of ACME are components, ports, roles, connectors, bindings and

attachments. Components are potentially composite computational

encapsulations that support multiple interfaces known as ports.

Ports are bound to ports on other components using first-class

intermediaries, called connectors, which consist of one or more

interfaces, called roles. Roles are directly attached to component

ports via attachments. The attachments section (configuration)

defines a set of port/role associations. The bindings provide a way

of associating a port with a component.

In our study, we have also used a suite of four metrics to analyze

the quality of the composed models produced by the techniques

that are being assessed. First, we have used three metrics [1] to

compute the rate of syntactic and semantic conflicts in the

composed architectural descriptions. These metrics were used to

quantify [1]: (i) the number of semantic clash conflicts, (ii) the

number of behavioral feature conflicts, and (iii) the number of

unmeaning model elements. Furthermore, we also measure the

number of changes required in the output model in order to

resolve the identified conflicts (and other design anomalies). This

change computation is important because it allow us to assess

which composition technique requires less effort to realize the

intended composed model.

The paper is structured as follows. Section 2 includes a

background about model composition and the techniques being

assessed. Section 3 presents the methodology used to compare the

heuristic and non-heuristic approaches. Section 4 reports the

results and their analyses. Section 5 presents related work and

threats to validity. Section 6 introduces some final remarks and

directions for future work.

2. BACKGROUND
This section presents the main concepts that are used throughout

the paper and which are fundamental to understand the results of

our comparative analysis.

2.1 Model Composition in a Nutshell
The term model composition can be defined as a set of activities

that should be accomplished to combine two (or more) input

models, MA and MB, in order to produce an output composite

model, MAB. Model composition techniques have a built-in model

composition strategy (e.g., override and merge) that are

responsible for defining the semantics of a model composition

relationship and specifying how the input models should be

manipulated in order to compose them. The composition

techniques can be either heuristic-based approaches, which rely

on “guessing” the semantics of model elements, or non-heuristic-

based approaches, which requires that modelers interpret the

semantics of the input model elements during the model

composition process. Non-heuristic-based approaches aim at, in

general, being semantic-preserving, meaning that modelers should

use the composition operators only if it is possible to preserve the

semantics of the existing elements in the input models. Each

technique produces an output model that can be differentiated by

the terms composed model (MCM) and intended model (MAB) (or

ideal model) to refer to the composition produced by an

composition algorithm and the composition that the developer

desires, respectively.

The main difference is that the composed model can have some

model composition conflicts [1] [4] e.g., semantic clash conflicts,

behavioral conflicts. Thus, to overcome these conflicts, the

designer needs to make some modifications into the composed

model in order to produce the intended model. We can basically

have two types of composition conflicts [1] [4]: (1) syntactic

conflicts, which arise when the composition algorithm results in a

model not conforming to the modeling language’s metamodel;

and (2) semantic conflicts, where the meaning of the composed

model does not match that of the intended model.

2.2 Heuristic Approach
The heuristic approach is based on two key activities: matching

model elements in the input models, and composing elements in

order to generate the output models. This paper focuses on two

well-established composition algorithms: override and merge in

the context of the architectural level. These algorithms were

chosen because they have been applied in a wide range of model

composition scenarios, such as model evolution, ontology merge,

and conceptual model composition. In addition, they have been

recognized as candidate algorithms in aspect-oriented model

composition (e.g., Theme/UML [5] [6]) and UML diagrams [8].

In the following, we briefly define these three algorithms, where

we assume two hypothetical input architectural models (systems),

A and B. We say that two elements from A and B respectively are

corresponding if they have been identified as equivalent in the

matching process. Matching can be achieved using any number of

standard heuristics, such as match-by-name [1] [4] [9].

Override (direction: A to B). For all pairs of the corresponding

architectural elements (components, roles, ports, bindings,

connectors and attachments) in A and B, Model A’s architectural

elements should override Model B’s corresponding architectural

element. Architectural elements not involved in the

correspondence remain unchanged and are inserted into the output

model.

Merge. For all corresponding architectural elements in A and B,

the elements should be combined. The combination depends on

the architectural element type. In this paper, we consider

components, ports, connectors, attachments and bindings – in this

case, the combination is to add the ports of A’s element to those

of B. Architectural elements in A and B that are not involved in a

correspondence match remain unchanged and are inserted into the

output model directly.

2.3 Non-Heuristic Approach
In a non-heuristic approach, the results of the composition are

originated from textual or graphical notations. No heuristic is used

to automatically realize the composition between models. In [2]

three strategies of compositions are introduced and incorporated

to xADL [7]. These relations are summarized in the following

definitions.

Unification. Elements are unified from several structural views

and the element to be unified needs the same element. After the

composition, the elements must have the same set of ports or the

software architecture needs to define the corresponding interfaces

or ports before composition. The unified elements can be

components, connectors, and bindings defined in multiple

structural views of the software architecture. A unified element in

the output (composed) model represents simultaneously those

elements that appear in different views (input models).

 Mapping. Individual elements or groups of elements called

subjects from one structural view are mapped to on a single

element of another structural view that are called target element.

The subjects elements are elements chosen to become subelements

of a target element in the composed (output) model. The points on

which the elements are connected to each other are the interfaces

or ports. These composition points are called joinpoints. The

corresponding interfaces or ports between the target and the

subject must be to define by architect.

 Refinement. A specific structural view (referred to as inner

structure) describes a substructure for an architectural component

(referred to as outer component) of another structural view. The

architect needs to specify corresponding interfaces or ports

(joinpoints) between the outer component and interfaces in the

inner structure.

Figure 1 illustrates an example using the refinement strategy. It

shows three structures (represented by Structure1,

Structure2 and Structure3). Applying the refinement, the

Structure2 refines ComponentA of Structure1, resulting

in Structure3. After composition, the Structure2

components are subelements of ComponentA. The joinpoints

(specification of relationship) between the structures are the

interfaces. For example, the interfaceup interface of

ComponentA is mapped on interface up of its subcomponent Z.

Figure 1. Example of Strategy Refinement with xADL

3. EVALUATION METHODOLOGY
We have carried out an exploratory comparison of heuristic and

non-heuristic techniques for composing architectural descriptions.

There was no sort of control of variables in our study. The goal of

this initial (pilot) assessment was to have a first understanding on

the usefulness of alternative composition techniques for allowing

us to express the evolution of ADL-based architectural

descriptions. With the outcomes of this comparison, we hope to

be able to start to derive some hypotheses on when/how to better

use such alternative composition techniques, and organize more

controlled experiments in the near future.

The following subsections describe the basic evaluation steps

carried out in our exploratory evaluation, including: (i) the

selection of the target application for comparing the use of

heuristic and non-heuristic architectural compositions (Section

3.1), (ii) the procedures to produce the composed architectural

descriptions with both architectural composition techniques

(Section 3.2), and (iii) the metrics used to evaluate the quality of

the output composed descriptions (Section 3.3).

3.1 Target Product Line
A software product line (SPL), called Mobile Media (MM) [11],

was selected as the target application in our comparative study.

We have chosen a product line because it is often natural [8] to:

(i) decompose the architectural elements that realize each SPL

feature in a separate architectural description (view), and (ii) then,

compose them with the base architecture (and other features) to

produce the specific product architecture descriptions. Mobile

Media supports the handling of photo, video, and music data on

mobile devices, such as mobile phones. This SPL was chosen

because its architecture has undergone different types of

evolutions, including additions of new features, change of a

mandatory to an alternative feature, and so forth [11].

The Mobile Media Architecture Descriptions. The Mobile

Media system was also interesting because each change set (for

each release available) was properly documented. All MM

evolutions have been recorded in an evolution description

document that is used to create the delta model [12], MB (Section

2.1), i.e., the description that specifies the new architectural

changes to be accommodated into the base architecture

description, MA. Therefore, the architectural MM artifacts were

instrumental to allow the investigation of potential problems on

the use of composition strategies (Section 2) for expressing

evolving architectural models of the SPL. In addition, the

architectural specifications were not fully complete and had some

ambiguities too, which was interesting as well. These

imperfections mimic how architectural descriptions are produced

in real-life projects. The original designers of the MM system

were available to address emerging concerns during both our pre-

study procedures and on the evaluation of the analysis results.

Figure 2 illustrates part of the MM architecture using the ACME

graphical notation. Furthermore, this figure represents one part of

the Mobile Media before composition and after application of the

refinement strategy (Section 2.3). Eight implementations (and the

respective architectural designs) of MM releases were available in

Java programming languages [9-11]. For the illustrated part of

the MM architecture, we will mainly use two components to

illustrate the results and discussions in this paper: (i) the

MediaControl component provides services to media

management, and (ii) the MediaAdditiontoAlbum that requires

services to include an additional type of media in the screen of the
Album.

Figure 2: ACME Representation of some Mobile Media components using Refinement Strategy

3.2 Producing the Architecture Compositions
For each release of MobileMedia, we have applied each of the

composition techniques described in Section 2. That is, we have

used the heuristic strategies (Section 2.2) to compose two input

architectural descriptions in order to produce a new release

description of the target SPL (Section 3.1). While one of the

inputs represented the current MM architecture, the other input

represented (for instance) the architectural elements of the new

feature being added. Similarly, we used the non-heuristic

technique to fully specify the compositions of the two input

descriptions and, then, generate the next release of the MM

architecture descriptions. The goal was to identify if the quality of

the output models, in terms of the metrics selected (Section 3.3),

were the same or different for the compositing techniques being

compared.

Example of Non-Heuristic Composition. Figure 2 represents

what happens with components and their relationships when the

refinement strategy (Section 2.3) is applied. We can observe that

bindings are removed. A number of bindings are affected by the

composition: (i) cancelProvBinding and cancelProv ports

between MediaControl and MediaCheckingMC

components; (ii) addNewNameProvBinding and

addNewNameProv components; (iii) getItemNameProvBinding

and getItemNameProv ports between MediaControl and

MediaManagementMC components; (iv) getNameProv

Binding and setNewItemReqBinding between Media

Control and MediaManagementMC components. A number of

roles involved in component connections are also modified. This

happens because we choose the refinement strategy. Therefore, we

needed to have another structural architectural view centralizing

components with similar functions. Hence, the following process

has been applied. The MediaAdditiontoAlbumScreen

component and its subcomponents are transformed in the inner

structure of the MediaControl component. So, bindings are

created or adapted to connect the MediaCheckingMC and

MediaManagementMC components with the MediaCheckingMA

and MediaManagementMA components and existing ports before

of the application of the refinement strategy in MediaControl of
systemMediaControl.

Example of Heuristic Composition. Figure 3 shows the

composition using the heuristic merge strategy. MM has two

‘subsystems’: (i) systemMobileMediaA encompasses the

specification of the MobileMedia part that is responsible for

controlling all the different types of media – this system is mainly

formed by the architectural components MediaControl and

MediaAdditiontoAlbum; and (ii) systemMobileMediaB

encompasses the additional architectural components with general

functionalities, such as control media, add media, capture media,

and so forth. The goal is to generate an output system that has

MediaControl, MediaAdditiontoAlbum and Media

Capturing components including ports that required and

provided new services. For example, the getCaptureMediaProv

and setCaptureMediaProv ports added to MediaControl

component and respective bindings to connect

MediaManagementMCa and MediaCapturing. The Merge

strategy was chosen in this case because the change scenario (in

this release) involved the addition of new architectural elements to

the model. If the override strategy was applied, this could imply in

some elements being undesirably deleted (i.e. overriden).

Figure 3. Partial ACME Representation of Mobile Media using Merge Strategy

3.3 Measuring the Architecture Compositions
This section presents the metrics used in our study in order to

quantify: (i) the modifications required to fix the composed

models (Section 3.3.1), and (ii) the composition conflicts arising

in the composed architectural descriptions (Section 3.3.2). These

metrics are particularly interesting because they work as indicators

of the imperfections present in the composed (output)

architectural descriptions. Therefore, they somehow indicate the

effort required by the architects to transform the output

description into the intended resulting architecture. The used

metrics were originally defined and validated in previous studies

[1] [4]. No major adaptation was required in order to apply these

metrics in the composed architectural models specified in ACME.

3.3.1 Quantifying Description Modifications

Number of Modifications of the Elements (NME). This metric

counts the number of modifications of the elements in the

architectural description. The number of modifications is an

indicator of what approach produces a model that requires the

architect to spend more time to fix the composed description. It is

likely the case that a description with higher number of required

modifications also contains more syntactic and semantic conflicts

to be resolved (Section 3.3.2).

NME = /M/, where M is the number of modifications of the

elements in a model after the composition process.

3.3.2 Quantifying Composition Conflicts

Number of Semantic Clash Conflicts (NSCC). NSCC is used to

calculate the number of semantic clash conflicts in a model. A

semantic clash conflict occurs when model elements have

different names, however, with the same semantics [1] [4]. For

example, a port of the component MediaManagementMC (Figure

2), named setNewNameProv, is responsible for adding the name

of the item related the Media; the presence of this port might

conflict with another port named addNewNameProv of the

MediaCheckingMC component which implements exactly the

same functionality. This metric is particularly interesting as its

results enable us to understand the rate of undesirable semantic

redundancy of an output model. It may also affect the output

model understandability and, in turn, complicate the ‘recovery’ of

the generated architecture (with respect to the intended

composition). This metric is given by the following formula [1]:

NSCC = /M/, where M is the number of Semantic Clash Conflicts.

Number of Behavioral Feature Conflicts (NBFC). NBFC counts

the number of behavioral conflicts emerging in an architectural

component specification. A behavioral feature conflict may occur

when a component: (1) has two (or more) ports that are used with

the same purpose; for example, when an MediaManagementMC

component that has a port named getItemName and other port

named getName (see Figure 2), and (2) refers to a port that no

longer exists, or exists under a different behavior (connection)

that is not expected; for example, when a port requires a service

but there is no port that provide the required service. This case

can occur in the output model (Figure 2) if it was generated using

the override strategy. The getCaptureMediaProv and

setCaptureMediaReq ports would not exist in the model

because ManagementMediaCM of the MediaControl

component of the systemMobileMediaB would be subscripted

by the ManagementMediaCM of MediaControl component of

the systemMobileMediaB. So, in the output model the

getCaptureMediaProv and setCaptureMediaProv ports

do not exist to provide services to the getCaptureMediaReq

and setCaptureMediaReq of the MediaManagementMCa

component of the systemMobileMediaA. This metric is

determined by the formula [1]:

NBFC = /B/, where B is the number of Behavioral Feature

Conflicts

Number of Unmeaning Model Elements (NUME). This metric is

applied to calculate the number of unmeaning model elements in a

description [1]. During the composition process, the model

elements are manipulated and sometimes they are artificially

isolated from the rest of the architecture specifications.

Unmeaning elements are architectural components, ports,

bindings and connections that, after the composition process,

become elements with no meaning or purpose. This metric is

given by the formula:

NUME= /U/, where U is the number of Unmeaning Model

Elements

4. COMPARATIVE ANALYSIS
This section presents the results of applying the conflict metrics

and counting the number of modifications (Section 3.3) to reach

the intended model during each evolution scenario of the

MobileMedia architecture (Section 3.1). Histograms are used to

provide an overview of the data collected in the measurement

process. These histograms allow us to make a fine-grained

comparative analysis of the composition techniques and derive

some observations of our comparison. In addition, each histogram

is dedicated to a particular composition technique (Section 2).

The Y-axis presents the values gathered for a particular metrics.

The X-axis specifies the evolution scenarios.

Figure 4 (a) and (b) illustrate the data produced by the conflict

metrics (the Number of Semantic Clash Conflicts (NSCC), the

Number of Behavioral Feature Conflicts (NBFC), and the Number

of Unmeaning Model Elements (NUME)), when applied to the

evolution scenario 2 [from R5 to R6]. We focus our attention on

this scenario because (1) it is richer than other change scenarios in

terms of number of modifications, (2) we observed that some

conflicts happened where they would not be expected, and (3) this

scenario presents a high number of information to realize the

compositions when compared to the other scenarios. This scenario

included other architecture capabilities to handle photo and music

media. In the other scenarios, there are no significant differences

between the values obtained for the two approaches. So we

considered this scenario an interesting source of information for

our comparative analysis. However, even though the differences

were not significant, it is important to point out that the collected

data in the scenario 1 [from R4 to R5] and 3 [from R6 to R7] also

confirm the conclusions derived from the scenario 2.

Surprisingly, we noticed that the non-heuristic approach showed a

higher number of conflicts when compared with the heuristic

approach, as would be expected otherwise (see Figure 4). The

problem is that the non-heuristic composition strategies are not

able to accommodate the required changes correctly – i.e., without

giving arise semantic, unmeaning or behavioral conflicts – into

the output model. To better understand this statement we will

concentrate our discussion on the example depicted in Figure 2,

where the merge strategy presents better results for the override

strategy (heuristic) than the combined use of non-heuristic

operators, i.e. the mapping, unification and refinement.

Figure 4 (a) illustrates the results obtained by applying the

conflict metrics to composed models, generated by the heuristic

operators in scenario 2 [from R5 to R6]. We can observe, based

on the values of NSCC, NBFC and NUME metrics, that the

heuristic approach worked better following the merge strategy

than the override strategy. The collected data shows that these

values occur because in the composition with the merge strategy

no subscription of elements appeared as in the strategy override;

in the merge strategy, such elements are combined. For example,

in Figure 3 (Section 3), we can observe MediaControl,

AdditionMediaToAlbumScreen in the

systemMobileMediaA. In systemMobileMediaB, beyond

these components, it also has the MediaCapturing component.

Hence, the composed model will have a combination of

components of the systemMobileMediaA and

systemMobileMediaB, including their inner ports, bindings,

connectors, attachments, and subcomponents. In particular, the

composed model will have the setCaptureMediaProv and

getCaptureMediaProv ports of the MediaManagementCM

components, bindings realized between the

setCaptureMediaProvBinding port of MediaControl and

setCaptureMediaProv port of the MediaManagementCM,

Furthermore, these ports were created to support the connection

between components architectural by ports (see Figure 2) in the

output model.

This scenario does not occur in the composition with the override

strategy. In this case, the output model would contain information

of the systemMobileMediaA and setCaptureMediaProv and

getCaptureMediaProv ports of the MediaManagementMC

components not would be added because MediaControl of

systemMobileMediaA would subscribe MediaControl of

systemMobileMediaB. Hence, we observe that this model, when

compared to the intended model, presents more semantic

conflicts. For example, the existing connector between

MediaManagementMC of the MediaControl and

MediaManagementMCa of the MediaCapturing would not be

in the output model; the same problem applies to the respective

bindings and ports. So, the use of the override operator would

generate more inconsistencies, lost information, and higher

amount of modifications.

When the generated model using override strategy is compared

with the intended model the behavioral conflicts arise. The main

reason is that there are references in some connectors to a port

that does not exist. This fact is also taken into account in the

NUME measure. Note that bindings and connections between the

ports of the ManagementMediaMC and ManagementMediaMCa

components are unmeaning. Hence the number of modifications

using the override strategy in the composed model is bigger than

using the merge strategy (see Figure 4 (a)). This situation can be

observed in Figure 3, where we would modify the composed

model adding two ports referenced in the connector cited

previously in the case of the override strategy.

Figure 5 (a), (b) and (c) shows the values of the NSCC, NBFC

and NUME metrics collected from the composed model produced

with the non-heuristic approach. The NUME measures are equal

to zero because descriptions of each strategy are correctly

matched. On the other hand, the NSCC and NBFC values in the

refinement strategy are higher than in the mapping/unification

strategy. This happens because similar elements are not removed

when the refinement strategy is used. For example, in Figure 2

we can see that bindings and connections were removed and

reallocated. When this model is compared with the intended

model, two conflicts are detected: (i) the connection between

addNewNameProv and addNewNameReq ports, and (ii) the

binding between the addNewNameProv port of the

ManagementMediaCM subcomponent and the addNewName

ProvBind port. Hence, when we use the refinement strategy in

the composition process, the number of changes in the composed

model is higher than when the mapping/unification strategy is

used (as shown in Figure 5 (b)). This example helps to explain the

higher NCSS and NBFC values of refinement and

mapping/unification when compared with the merge and override

heuristics. Furthermore, using refinement or mapping/unification,

a higher number of removals and reallocations of the elements is

realized.

Considering the number of modifications required to reach the

intended model, we observed that the heuristic approach

presented a lower measure than the non-heuristic approach in all

evolution scenarios (Figure 5 (c)). Note that this measure is

obtained by the sum of the number of modifications performed in

the scenarios 1 (from R4 to R5), 2 (from R5 to R6) and 3 (from

R6 to R7). Moreover, we also observed that the number of

modifications of the non-heuristic approach is higher than the

results collected from the composition produced following both

merge and override strategies.

In Figure 5 (a), we observed that the modifications in the

application of refinement, mapping and unification strategies of

non-heuristic approach are higher than those resulting of the

application of the merge and override heuristics. Based on the

data gathered and our experience in previous work [1] [4], this

outcome can be explained by the fact that the non-heuristic

approach did not preserve the semantic values of the model

element.

(a) (b)

Figure 4. (a) Comparation between Strategies of Composition of the Heuristic Approach in the Scenario

[R5->R6] ;(b) Comparation between Strategies of Composition of the Non-Heuristic Approach in the

Scenario [R5->R6].

 (a) (b)

 (c)

Figure 5. (a) Comparison between Strategies of Composition of the Non-Heuristic Approach for

Modifications; (b) Comparison between Strategies of Composition of the Heuristic approach for

Modifications; (c) Number of Modifications in the Releases of the Mobile Media for the two Approaches.

5. RELATED WORK AND

THREATS TO VALIDITY
Oliveira et al [1] presented a quantitative assessment on

applying conventional heuristics (Section 2.2) for composing

class models. However, they did not compare the effectiveness

of heuristic and non-heuristic techniques for architectural

descriptions. Furthermore, all studies related to model

composition, including [1], [4], [8], [9], are based on the use of

heuristic to realize the compositions. Boucké [2] proposes non-

heuristic composition strategies (Refinement, Mapping and

Unification) and applies them to architecture descriptions (in

several case studies) based on the xADL architectural

description language. In addition, the number of repetitions and

modifications in the output models of these cases studies were

computed to assess the effectiveness of their non-heuristic

approach. Different from their work, we compare their non-

heuristic approach with a set of model composition heuristics

and applied a different suite of metrics.

However, in our study some threats to validity can be obviously

identified, including: (i) imperfections in the architectural

description compositions as they are not realized in an automatic

fashion; (ii) we did not consider the partial results of important

metrics, such as time spent and effort to produce the

compositions because these partial results were initially obtain

and validity by few people; in fact, there is a inherent

complexity in the use of the composition strategies, mainly in

the non-heuristic approach, because architects need to specify a

number of details (e.g. exhaustive specification of relations; (iii)

we need to adapt the definitions of some strategies in the non-

heuristic approach because they did not originally address

certain elements supported by ACME; (iv) the manual

application of the metrics of conflicts and number of

modifications; and (v) the lack of best practice guidance to apply

the heuristic and non-heuristic composition strategies.

6. CONCLUSION AND FUTURE WORK
We presented a comparative study of composition techniques for

architectural descriptions. Our initial evaluation has

demonstrated that both heuristic and non-heuristic approaches

have different deficiencies related to the lack of support for

bindings and connections. These deficiencies tend to require

more modifications in the composed model by software

architects. In addition, we observed that the heuristic merge

generated fewer conflicts than the override strategy. For the non-

heuristic approach, the results show that the refinement strategy

in less efficient because it consistently causes different forms of

semantic conflicts. So, more changes are need when using this

strategy compared to the mapping/unification strategy. Finally,

in general, the heuristic approach outperformed the non-

heuristic approach in terms of conflicts and modifications

required.

As a direction to future work, we intend to perform the same

study with more realistic models. The goal is to compare the

results, found in this study, with those collected from the

evaluation of a real-world model composition. We believe that,

from this comparison, is possible to check whether our initial

conclusions can be confirmed or not. Furthermore, we observed

throughout the study that we need a new study to investigate

whether the metrics used are appropriate for their purpose or

not. Depending on the results, we evaluate the necessity of their

adaptation, use of other metrics or creation of new ones. Finally,

we concluded that new empirical studies are needed to make

composition an industrial reality.

7. REFERENCES
[1] Oliveira, K., Garcia, A. and Whittle, J. On the Quantitative

Assessment of Class Model Compositions: An Exploratory Study.

In: 1th ESMDE at MODELS, 2008.

[2] Boucké, N. Composition and relations of architectural models

supported by an architectural description language. PhD Thesis,

Katholieke Universiteite Leuven, October 2009.

[3] Garlan, D. Et. al. 1997. ACME: An Architecture Description

Interchange Language. In: Proceedings of CASCON '97, 1997.

[4] Farias, K., Garcia, A. and Whittle, J. Assessing the Impact of

Aspects on Model Composition Effort. In: AOSD´10, France,

March 2010 (to appear).

[5] Clarke, S. Composition of object-oriented software design models,

Ph.D. Thesis, Dublin City University, January, 2001.

[6] Clarke, S. and Walker, R. Generic Aspect-Oriented Design with

Theme/UML, Aspect- Oriented Software Development, pages 425–

458. Addison-Wesley, Boston, 2005.

[7] E. Dashofy, A. van der Hoek, and R. Taylor. A comprehensive

approach for the development of modular software architecture

description languages. ACM Transactions on Software

Engineering and Methodology (TOSEM), 14(2):199–245, 2005.

[8] Oliveira, K., Breitman, K. and Oliveira, T. A Flexible Strategy-

Based Model Comparison Approach: Bridging the Syntactic and

Semantic Gap. JUCS, vol. 15, no. 11, 2009.

[9] Oliveira, K., and Oliveira, T. Model Comparison – A Strategy-

Based Approach, In 20th SEKE, pp 912-917, San Francisco, 2008.

[10] Dashofy, E and Hoek, A, and R. Taylor. A comprehensive

approach for the development of modular software architecture

description languages. ACM TOSEM, 14(2):199-245, 2005.

[11] Figueiredo et. al, Evolving Software Product Lines with Aspects:

An Empirical Study on Design Stability, In: 30th ICSE’08, pages

261–270, Leipzig, Germany, 2008.

[12] Hendrickson, S. and Hoek, A: Modeling Product Line

Architectures through Change Sets and Relationships. Proc. ICSE

2007, pp. 189-198, Minneapollis, EUA, 2007.

[13] Nuseibeh, J. Kramer, and A. Finkelstein.Viewpoints:

 meaningful relationships are difficult. In ICSE ’03: Proc of the

 25th ICSE, pp. 676–681, Washington, USA, 2003.

