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ABSTRACT 
Techniques for composing architectural specifications are 

emerging in order to facilitate software architecture evolution. 

However, there is little empirical understanding on whether such 

techniques scale when they are used to express different types of 

architectural changes. This paper presents a first comparative 

evaluation of two significantly-different composition techniques 

for architectural descriptions. The first technique is fully based on 

heuristic composition operators, while the second one demands 

explicit composition specification. Several releases of a software 

product line were used in our evaluation, and their designs were 

expressed with an architectural description language, called 

ACME. Some metrics were used to compute the number of 

required modifications, syntactic conflicts, and semantic conflicts 

in composed (output) models produced with both heuristic and 

non-heuristic compositions. We observed that, in general, the 

heuristic composition approach outperformed the non-heuristic 

one mainly due to the narrow set of composition operators 

supported by the latter. 
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1. INTRODUCTION 
Techniques for explicitly describing the composition of 

architectural specifications are emerging [2] [12] [13]. These 

techniques allow handling relations and compositions of 

architectural models by embedding their specifications in 

architectural description languages (ADLs). They can be used for 

different purposes, such as reconciling architectural descriptions 

developed in parallel by different development teams, or evolving 

architectural descriptions with models of new features being 

added to the architecture. However, such explicit compositional 

ADL-based approaches have rarely been assessed and they have 

not proven their value yet.  For instance, it is not clear to what 

extent these techniques scale when they are used to express 

different types of architectural changes. They have not even 

compared with general well-known heuristic approaches for 

model composition [5] [6].  

In this context, this paper presents an exploratory comparison of 

two techniques for composing architectural descriptions: (i) a 

conventional heuristic approach [1] [5] [6], where input models 

are automatically composed and output models are generated 

based on pre-defined algorithms, and (ii) a non-heuristic approach 

[2], where the compositions of two input models are fully 

described using a limited set of composition operators. The 

architectural models are represented with either textual or 

graphical notations.  We evaluate these techniques in the context 

of an evolving product-line architecture. The compositions of 

architectural descriptions are used to represent the evolutions of 

the target product-line software architecture.  

The models of the target product line were based on the ACME 

ADL [3]. This language was selected because,  unlike most ADLs, 

it is not domain-specific and provides generic structures to 

describe a wide range of systems [3]. ACME is supported by tools 

that provide a good basis for designing and manipulating 

architectural descriptions and generating code. The key elements 

of ACME are components, ports, roles, connectors, bindings and 

attachments. Components are potentially composite computational 

encapsulations that support multiple interfaces known as ports. 

Ports are bound to ports on other components using first-class 

intermediaries, called connectors, which consist of one or more 

interfaces, called roles. Roles are directly attached to component 

ports via attachments. The attachments section (configuration) 

defines a set of port/role associations. The bindings provide a way 

of associating a port with a component.  

In our study, we have also used a suite of four metrics to analyze 

the quality of the composed models produced by the techniques 

that are being assessed. First, we have used three metrics [1] to 

compute the rate of syntactic and semantic conflicts in the 

composed architectural descriptions. These metrics were used to 

quantify [1]: (i) the number of semantic clash conflicts, (ii) the 

number of behavioral feature conflicts, and (iii) the number of 

unmeaning model elements. Furthermore, we also measure the 

number of changes required in the output model in order to 

resolve the identified conflicts (and other design anomalies). This 

change computation is important because it allow us to assess 

which composition technique requires less effort to realize the 

intended composed model.  

The paper is structured as follows. Section 2 includes a 

background about model composition and the techniques being 

assessed. Section 3 presents the methodology used to compare the 

heuristic and non-heuristic approaches. Section 4 reports the 

results and their analyses. Section 5 presents related work and 



threats to validity. Section 6 introduces some final remarks and 

directions for future work. 

2. BACKGROUND 
This section presents the main concepts that are used throughout 

the paper and which are fundamental to understand the results of 

our comparative analysis. 

2.1 Model Composition in a Nutshell  
The term model composition can be defined as a set of activities 

that should be accomplished to combine two (or more) input 

models, MA and MB, in order to produce an output composite 

model, MAB. Model composition techniques have a built-in model 

composition strategy (e.g., override and merge) that are 

responsible for defining the semantics of a model composition 

relationship and specifying how the input models should be 

manipulated in order to compose them. The composition 

techniques can be either heuristic-based approaches, which rely 

on “guessing” the semantics of model elements, or non-heuristic-

based approaches, which requires that modelers interpret the 

semantics of the input model elements during the model 

composition process. Non-heuristic-based approaches aim at, in 

general, being semantic-preserving, meaning that modelers should 

use the composition operators only if it is possible to preserve the 

semantics of the existing elements in the input models. Each 

technique produces an output model that can be differentiated by 

the terms composed model (MCM) and intended model (MAB) (or 

ideal model) to refer to the composition produced by an 

composition algorithm and the composition that the developer 

desires, respectively.  

The main difference is that the composed model can have some 

model composition conflicts [1] [4] e.g., semantic clash conflicts, 

behavioral conflicts. Thus, to overcome these conflicts, the 

designer needs to make some modifications into the composed 

model in order to produce the intended model. We can basically 

have two types of composition conflicts [1] [4]: (1) syntactic 

conflicts, which arise when the composition algorithm results in a 

model not conforming to the modeling language’s metamodel; 

and (2) semantic conflicts, where the meaning of the composed 

model does not match that of the intended model.  

2.2 Heuristic Approach 
The heuristic approach is based on two key activities: matching 

model elements in the input models, and composing elements in 

order to generate the output models. This paper focuses on two 

well-established composition algorithms: override and merge in 

the context of the architectural level. These algorithms were 

chosen because they have been applied in a wide range of model 

composition scenarios, such as model evolution, ontology merge, 

and conceptual model composition. In addition, they have been 

recognized as candidate algorithms in aspect-oriented model 

composition (e.g., Theme/UML [5] [6]) and UML diagrams [8]. 

In the following, we briefly define these three algorithms, where 

we assume two hypothetical input architectural models (systems), 

A and B. We say that two elements from A and B respectively are 

corresponding if they have been identified as equivalent in the 

matching process. Matching can be achieved using any number of 

standard heuristics, such as match-by-name [1] [4] [9]. 

Override (direction: A to B). For all pairs of the corresponding 

architectural elements (components, roles, ports, bindings, 

connectors and attachments) in A and B, Model A’s architectural 

elements should override Model B’s corresponding architectural 

element. Architectural elements not involved in the 

correspondence remain unchanged and are inserted into the output 

model.  

Merge. For all corresponding architectural elements in A and B, 

the elements should be combined. The combination depends on 

the architectural element type. In this paper, we consider 

components, ports, connectors, attachments and bindings – in this 

case, the combination is to add the ports of A’s element to those 

of B. Architectural elements in A and B that are not involved in a 

correspondence match remain unchanged and are inserted into the 

output model directly. 

2.3 Non-Heuristic Approach 
In a non-heuristic approach, the results of the composition are 

originated from textual or graphical notations. No heuristic is used 

to automatically realize the composition between models. In [2] 

three strategies of compositions are introduced and incorporated 

to xADL [7]. These relations are summarized in the following 

definitions. 

Unification.  Elements are unified from several structural views 

and the element to be unified needs the same element. After the 

composition, the elements must have the same set of ports or the 

software architecture needs to define the corresponding interfaces 

or ports before composition. The unified elements can be 

components, connectors, and bindings defined in multiple 

structural views of the software architecture. A unified element in 

the output (composed) model represents simultaneously those 

elements that appear in different views (input models).  

 Mapping. Individual elements or groups of elements called 

subjects from one structural view are mapped to on a single 

element of another structural view that are called target element. 

The subjects elements are elements chosen to become subelements 

of a target element in the composed (output) model. The points on 

which the elements are connected to each other are the interfaces 

or ports. These composition points are called joinpoints. The 

corresponding interfaces or ports between the target and the 

subject must be to define by architect. 

 Refinement. A specific structural view (referred to as inner 

structure) describes a substructure for an architectural component 

(referred to as outer component) of another structural view. The 

architect needs to specify corresponding interfaces or ports 

(joinpoints) between the outer component and interfaces in the 

inner structure.  

Figure 1 illustrates an example using the refinement strategy. It 

shows three structures (represented by Structure1, 

Structure2 and Structure3). Applying the refinement, the 

Structure2 refines ComponentA of Structure1, resulting 

in Structure3. After composition, the Structure2 

components are subelements of ComponentA.  The joinpoints 

(specification of relationship) between the structures are the 

interfaces. For example, the interfaceup interface of 

ComponentA is mapped on interface up of its subcomponent Z. 



 

Figure 1.  Example of Strategy Refinement with xADL 

3. EVALUATION METHODOLOGY 
We have carried out an exploratory comparison of heuristic and 

non-heuristic techniques for composing architectural descriptions. 

There was no sort of control of variables in our study. The goal of 

this initial (pilot) assessment was to have a first understanding on 

the usefulness of alternative composition techniques for allowing 

us to express the evolution of ADL-based architectural 

descriptions. With the outcomes of this comparison, we hope to 

be able to start to derive some hypotheses on when/how to better 

use such alternative composition techniques, and organize more 

controlled experiments in the near future. 

The following subsections describe the basic evaluation steps 

carried out in our exploratory evaluation, including: (i) the 

selection of the target application for comparing the use of 

heuristic and non-heuristic architectural compositions (Section 

3.1), (ii) the procedures to produce the composed architectural 

descriptions with both architectural composition techniques 

(Section 3.2), and (iii) the metrics used to evaluate the quality of 

the output composed descriptions (Section 3.3).    

3.1 Target Product Line 
A software product line (SPL), called Mobile Media (MM) [11], 

was selected as the target application in our comparative study. 

We have chosen a product line because it is often natural [8] to: 

(i) decompose the architectural elements that realize each SPL 

feature in a separate architectural description (view), and (ii) then, 

compose them with the base architecture (and other features) to 

produce the specific product architecture descriptions. Mobile 

Media supports the handling of photo, video, and music data on 

mobile devices, such as mobile phones. This SPL was chosen 

because its architecture has undergone different types of 

evolutions, including additions of new features, change of a 

mandatory to an alternative feature, and so forth [11].  

The Mobile Media Architecture Descriptions. The Mobile 

Media system was also interesting because each change set (for 

each release available) was properly documented. All MM 

evolutions have been recorded in an evolution description 

document that is used to create the delta model [12], MB  (Section 

2.1), i.e., the description that specifies the new architectural 

changes to be accommodated into the base architecture 

description, MA. Therefore, the architectural MM artifacts were 

instrumental to allow the investigation of potential problems on 

the use of composition strategies (Section 2) for expressing 

evolving architectural models of the SPL. In addition, the 

architectural specifications were not fully complete and had some 

ambiguities too, which was interesting as well. These 

imperfections mimic how architectural descriptions are produced 

in real-life projects. The original designers of the MM system 

were available to address emerging concerns during both our pre-

study procedures and on the evaluation of the analysis results. 

Figure 2 illustrates part of the MM architecture using the ACME 

graphical notation. Furthermore, this figure represents one part of 

the Mobile Media before composition and after application of the 

refinement strategy (Section 2.3). Eight implementations (and the 

respective architectural designs) of MM releases were available in 

Java programming languages [9-11].  For the illustrated part of 

the MM architecture, we will mainly use two components to 

illustrate the results and discussions in this paper: (i) the 

MediaControl component provides services to media 

management, and (ii) the MediaAdditiontoAlbum that requires 

services to include an additional type of media in the screen of the 
Album. 



 

Figure 2: ACME Representation of some Mobile Media components using Refinement Strategy 

 

3.2  Producing the Architecture Compositions 
For each release of MobileMedia, we have applied each of the 

composition techniques described in Section 2. That is, we have 

used the heuristic strategies (Section 2.2) to compose two input 

architectural descriptions in order to produce a new release 

description of the target SPL (Section 3.1). While one of the 

inputs represented the current MM architecture, the other input 

represented (for instance) the architectural elements of the new 

feature being added. Similarly, we used the non-heuristic 

technique to fully specify the compositions of the two input 

descriptions and, then, generate the next release of the MM 

architecture descriptions. The goal was to identify if the quality of 

the output models, in terms of the metrics selected (Section 3.3), 

were the same or different for the compositing techniques being 

compared. 

Example of Non-Heuristic Composition. Figure 2 represents 

what happens with components and their relationships when the 

refinement strategy (Section 2.3) is applied. We can observe that 

bindings are removed. A number of bindings are affected by the 

composition: (i) cancelProvBinding and cancelProv ports 

between MediaControl and MediaCheckingMC 

components; (ii) addNewNameProvBinding and 

addNewNameProv components; (iii) getItemNameProvBinding 

and getItemNameProv ports between MediaControl and 

MediaManagementMC components; (iv) getNameProv 

Binding and setNewItemReqBinding between Media 

Control and MediaManagementMC components. A number of 

roles involved in component connections are also modified. This 

happens because we choose the refinement strategy. Therefore, we 

needed to have another structural architectural view centralizing 

components with similar functions. Hence, the following process 

has been applied. The MediaAdditiontoAlbumScreen 

component and its subcomponents are transformed in the inner 

structure of the MediaControl component. So, bindings are 

created or adapted to connect the MediaCheckingMC and 

MediaManagementMC components with the MediaCheckingMA 

and MediaManagementMA components and existing ports before 

of the application of the refinement strategy in MediaControl of 
systemMediaControl. 

Example of Heuristic Composition. Figure 3 shows the 

composition using the heuristic merge strategy. MM has two 

‘subsystems’: (i) systemMobileMediaA encompasses the 

specification of the MobileMedia part that is responsible for 

controlling all the different types of media – this system is mainly 

formed by the architectural components MediaControl and 

MediaAdditiontoAlbum; and (ii) systemMobileMediaB 

encompasses the additional architectural components with general 

functionalities, such as control media, add media, capture media, 

and so forth. The goal is to generate an output system that has 

MediaControl, MediaAdditiontoAlbum and Media 

Capturing components including ports that required and 

provided new services. For example, the getCaptureMediaProv 

and setCaptureMediaProv ports added to MediaControl 

component and respective bindings to connect 

MediaManagementMCa and MediaCapturing. The Merge 

strategy was chosen in this case because the change scenario (in 

this release) involved the addition of new architectural elements to 

the model. If the override strategy was applied, this could imply in 

some elements being undesirably deleted (i.e. overriden). 

 



 
Figure 3. Partial ACME Representation of Mobile Media using Merge Strategy 

 

3.3 Measuring the Architecture Compositions  
This section presents the metrics used in our study in order to 

quantify: (i) the modifications required to fix the composed 

models (Section 3.3.1), and (ii) the composition conflicts arising 

in the composed architectural descriptions (Section 3.3.2). These 

metrics are particularly interesting because they work as indicators 

of the imperfections present in the composed (output) 

architectural descriptions. Therefore, they somehow indicate the 

effort required by the architects to transform the output 

description into the intended resulting architecture. The used 

metrics were originally defined and validated in previous studies 

[1] [4]. No major adaptation was required in order to apply these 

metrics in the composed architectural models specified in ACME. 

3.3.1 Quantifying Description Modifications 

Number of Modifications of the Elements (NME). This metric 

counts the number of modifications of the elements in the 

architectural description. The number of modifications is an 

indicator of what approach produces a model that requires the 

architect to spend more time to fix the composed description. It is 

likely the case that a description with higher number of required 

modifications also contains more syntactic and semantic conflicts 

to be resolved (Section 3.3.2).  

NME = /M/, where M is the number of modifications of the 

elements in a model after the composition process. 

3.3.2 Quantifying Composition Conflicts 
 

Number of Semantic Clash Conflicts (NSCC). NSCC is used to 

calculate the number of semantic clash conflicts in a model. A 

semantic clash conflict occurs when model elements have 

different names, however, with the same semantics [1] [4]. For 

example, a port of the component MediaManagementMC (Figure 

2), named setNewNameProv, is responsible for adding the name 

of the item related the Media; the presence of this port might 

conflict with another port named addNewNameProv of the 

MediaCheckingMC component which implements exactly the 

same functionality. This metric is particularly interesting as its 

results enable us to understand the rate of undesirable semantic 

redundancy of an output model. It may also affect the output 

model understandability and, in turn, complicate the ‘recovery’ of 

the generated architecture (with respect to the intended 

composition). This metric is given by the following formula [1]: 

NSCC = /M/, where M is the number of Semantic Clash Conflicts. 

 

Number of Behavioral Feature Conflicts (NBFC). NBFC counts 

the number of behavioral conflicts emerging in an architectural 

component specification. A behavioral feature conflict may occur 

when a component: (1) has two (or more) ports that are used with 

the same purpose; for example, when an MediaManagementMC 

component that has a port named getItemName and other port 

named getName (see Figure 2), and (2) refers to a port that no 

longer exists, or exists under a different behavior (connection) 

that is not expected; for example, when a port requires a service 

but there is no port that provide the required service. This case 

can occur in the output model (Figure 2) if it was generated using 

the override strategy. The getCaptureMediaProv and 

setCaptureMediaReq ports would not exist in the model 

because ManagementMediaCM of the MediaControl 

component of the systemMobileMediaB would be subscripted 

by the ManagementMediaCM of MediaControl component of 

the systemMobileMediaB. So, in the output model the 

getCaptureMediaProv and setCaptureMediaProv ports 

do not exist to provide services to the getCaptureMediaReq 

and setCaptureMediaReq of the MediaManagementMCa 

component of the systemMobileMediaA. This metric is 

determined by the formula [1]: 

NBFC = /B/, where B is the number of Behavioral Feature 

Conflicts    
 

Number of Unmeaning Model Elements (NUME). This metric is 

applied to calculate the number of unmeaning model elements in a 

description [1]. During the composition process, the model 

elements are manipulated and sometimes they are artificially 

isolated from the rest of the architecture specifications. 



Unmeaning elements are architectural components, ports, 

bindings and connections that, after the composition process, 

become elements with no meaning or purpose. This metric is 

given by the formula: 

NUME= /U/, where U is the number of Unmeaning Model 

Elements     

4. COMPARATIVE ANALYSIS 
This section presents the results of applying the conflict metrics 

and counting the number of modifications (Section 3.3) to reach 

the intended model during each evolution scenario of the 

MobileMedia architecture (Section 3.1). Histograms are used to 

provide an overview of the data collected in the measurement 

process. These histograms allow us to make a fine-grained 

comparative analysis of the composition techniques and derive 

some observations of our comparison. In addition, each histogram 

is dedicated to a particular composition technique (Section 2). 

The Y-axis presents the values gathered for a particular metrics. 

The X-axis specifies the evolution scenarios.  

Figure 4 (a) and (b) illustrate the data produced by the conflict 

metrics (the Number of Semantic Clash Conflicts (NSCC), the 

Number of Behavioral Feature Conflicts (NBFC), and the Number 

of Unmeaning Model Elements (NUME)), when applied to the 

evolution scenario 2 [from R5 to R6]. We focus our attention on 

this scenario because (1) it is richer than other change scenarios in 

terms of number of modifications, (2) we observed that some 

conflicts happened where they would not be expected, and (3) this 

scenario presents a high number of information to realize the 

compositions when compared to the other scenarios. This scenario 

included other architecture capabilities to handle photo and music 

media. In the other scenarios, there are no significant differences 

between the values obtained for the two approaches. So we 

considered this scenario an interesting source of information for 

our comparative analysis. However, even though the differences 

were not significant, it is important to point out that the collected 

data in the scenario 1 [from R4 to R5] and 3 [from R6 to R7] also 

confirm the conclusions derived from the scenario 2.  

Surprisingly, we noticed that the non-heuristic approach showed a 

higher number of conflicts when compared with the heuristic 

approach, as would be expected otherwise (see Figure 4). The 

problem is that the non-heuristic composition strategies are not 

able to accommodate the required changes correctly – i.e., without 

giving arise semantic, unmeaning or behavioral conflicts – into 

the output model. To better understand this statement we will 

concentrate our discussion on the example depicted in Figure 2, 

where the merge strategy presents better results for the override 

strategy (heuristic) than the combined use of non-heuristic 

operators, i.e. the mapping, unification and refinement. 

Figure 4 (a) illustrates the results obtained by applying the 

conflict metrics to composed models, generated by the heuristic 

operators in scenario 2 [from R5 to R6]. We can observe, based 

on the values of NSCC, NBFC and NUME metrics, that the 

heuristic approach worked better following the merge strategy 

than the override strategy. The collected data shows that these 

values occur because in the composition with the merge strategy 

no subscription of elements appeared as in the strategy override; 

in the merge strategy, such elements are combined. For example, 

in Figure 3 (Section 3), we can observe MediaControl, 

AdditionMediaToAlbumScreen in the 

systemMobileMediaA. In systemMobileMediaB, beyond 

these components, it also has the MediaCapturing component. 

Hence, the composed model will have a combination of 

components of the systemMobileMediaA and 

systemMobileMediaB, including their inner ports, bindings, 

connectors, attachments, and subcomponents. In particular, the 

composed model will have the setCaptureMediaProv and 

getCaptureMediaProv ports of the MediaManagementCM 

components, bindings realized between the 

setCaptureMediaProvBinding port of MediaControl and 

setCaptureMediaProv port of the MediaManagementCM, 

Furthermore, these ports were created to support the connection 

between components architectural by ports (see Figure 2) in the 

output model.  

This scenario does not occur in the composition with the override 

strategy. In this case, the output model would contain information 

of the systemMobileMediaA and setCaptureMediaProv and 

getCaptureMediaProv ports of the MediaManagementMC 

components not would be added because MediaControl of 

systemMobileMediaA would subscribe MediaControl of 

systemMobileMediaB. Hence, we observe that this model, when 

compared to the intended model, presents more semantic 

conflicts. For example, the existing connector between 

MediaManagementMC of the MediaControl and 

MediaManagementMCa of the MediaCapturing would not be 

in the output model; the same problem applies to the respective 

bindings and ports. So, the use of the override operator would 

generate more inconsistencies, lost information, and higher 

amount of modifications.   

When the generated model using override strategy is compared 

with the intended model the behavioral conflicts arise. The main 

reason is that there are references in some connectors to a port 

that does not exist. This fact is also taken into account in the 

NUME measure. Note that bindings and connections between the 

ports of the ManagementMediaMC and ManagementMediaMCa 

components are unmeaning. Hence the number of modifications 

using the override strategy in the composed model is bigger than 

using the merge strategy (see Figure 4 (a)). This situation can be 

observed in Figure 3, where we would modify the composed 

model adding two ports referenced in the connector cited 

previously in the case of the override strategy. 

Figure 5 (a), (b) and (c) shows the values of the NSCC, NBFC 

and NUME metrics collected from the composed model produced 

with the non-heuristic approach. The NUME measures are equal 

to zero because descriptions of each strategy are correctly 

matched. On the other hand, the NSCC and NBFC values in the 

refinement strategy are higher than in the mapping/unification 

strategy. This happens because similar elements are not removed 

when the refinement strategy is used.  For example, in Figure 2 

we can see that bindings and connections were removed and 

reallocated. When this model is compared with the intended 

model, two conflicts are detected: (i) the connection between 

addNewNameProv and addNewNameReq ports, and (ii) the 

binding between the addNewNameProv port of the 

ManagementMediaCM subcomponent and the addNewName 

ProvBind port. Hence, when we use the refinement strategy in 

the composition process, the number of changes in the composed 

model is higher than when the mapping/unification strategy is 

used (as shown in Figure 5 (b)). This example helps to explain the 



higher NCSS and NBFC values of refinement and 

mapping/unification when compared with the merge and override 

heuristics. Furthermore, using refinement or mapping/unification, 

a higher number of removals and reallocations of the elements is 

realized. 

Considering the number of modifications required to reach the 

intended model, we observed that the heuristic approach 

presented a lower measure than the non-heuristic approach in all 

evolution scenarios (Figure 5 (c)). Note that this measure is 

obtained by the sum of the number of modifications performed in 

the scenarios 1 (from R4 to R5), 2 (from R5 to R6) and 3 (from 

R6 to R7). Moreover, we also observed that the number of 

modifications of the non-heuristic approach is higher than the 

results collected from the composition produced following both 

merge and override strategies. 

In Figure 5 (a), we observed that the modifications in the 

application of refinement, mapping and unification strategies of 

non-heuristic approach are higher than those resulting of the 

application of the merge and override heuristics. Based on the 

data gathered and our experience in previous work [1] [4], this 

outcome can be explained by the fact that the non-heuristic 

approach did not preserve the semantic values of the model 

element.  

 

 

(a) (b) 

Figure 4. (a) Comparation between Strategies of Composition of the Heuristic Approach in the Scenario 

[R5->R6] ;(b) Comparation between Strategies of Composition of the Non-Heuristic Approach in the 

Scenario [R5->R6]. 

 

 (a)  (b) 

  (c) 

Figure 5. (a) Comparison between Strategies of Composition of the Non-Heuristic Approach for 

Modifications; (b) Comparison between Strategies of Composition of the Heuristic approach for 

Modifications; (c) Number of Modifications in the Releases of the Mobile Media for the two Approaches. 



5. RELATED WORK AND 

THREATS TO VALIDITY 
Oliveira et al [1] presented a quantitative assessment on 

applying conventional heuristics (Section 2.2) for composing 

class models. However, they did not compare the effectiveness 

of heuristic and non-heuristic techniques for architectural 

descriptions. Furthermore, all studies related to model 

composition, including [1], [4], [8], [9], are based on the use of 

heuristic to realize the compositions. Boucké [2] proposes non-

heuristic composition strategies (Refinement, Mapping and 

Unification) and applies them to architecture descriptions (in 

several case studies) based on the xADL architectural 

description language. In addition, the number of repetitions and 

modifications in the output models of these cases studies were 

computed to assess the effectiveness of their non-heuristic 

approach. Different from their work, we compare their non-

heuristic approach with a set of model composition heuristics 

and applied a different suite of metrics.  

However, in our study some threats to validity can be obviously 

identified, including: (i) imperfections in the architectural 

description compositions as they are not realized in an automatic 

fashion; (ii) we did not consider the partial results of important 

metrics, such as time spent and effort to produce the 

compositions because these partial results were initially obtain 

and validity by few people; in fact, there is a inherent 

complexity in the use of the composition strategies, mainly in 

the non-heuristic approach, because architects need to specify a 

number of details (e.g. exhaustive specification of relations; (iii) 

we need to adapt the definitions of some strategies in the non-

heuristic approach because they did not originally address 

certain elements supported by ACME; (iv) the manual 

application of the metrics of conflicts and number of 

modifications; and (v) the lack of best practice guidance to apply 

the heuristic and non-heuristic composition strategies. 

6. CONCLUSION AND FUTURE WORK 
We presented a comparative study of composition techniques for 

architectural descriptions. Our initial evaluation has 

demonstrated that both heuristic and non-heuristic approaches 

have different deficiencies related to the lack of support for 

bindings and connections. These deficiencies tend to require 

more modifications in the composed model by software 

architects. In addition, we observed that the heuristic merge 

generated fewer conflicts than the override strategy. For the non-

heuristic approach, the results show that the refinement strategy 

in less efficient because it consistently causes different forms of 

semantic conflicts. So, more changes are need when using this 

strategy compared to the mapping/unification strategy. Finally, 

in general, the heuristic approach outperformed the non-

heuristic approach in terms of conflicts and modifications 

required.  

As a direction to future work, we intend to perform the same 

study with more realistic models. The goal is to compare the 

results, found in this study, with those collected from the 

evaluation of a real-world model composition. We believe that, 

from this comparison, is possible to check whether our initial 

conclusions can be confirmed or not. Furthermore, we observed 

throughout the study that we need a new study to investigate 

whether the metrics used are appropriate for their purpose or 

not. Depending on the results, we evaluate the necessity of their 

adaptation, use of other metrics or creation of new ones. Finally, 

we concluded that new empirical studies are needed to make 

composition an industrial reality. 
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