
Computers in Industry 96 (2018) 86–97
BRCode: An interpretive model-driven engineering approach for
enterprise applications

Anderson Oliveira, Vinicius Bischoff, Lucian José Gonçales*, Kleinner Farias,
Matheus Segalotto
University of Vale do Rio dos Sinos (UNISINOS), 950, Unisinos Av. – Postal Address: 93.022-000, São Leopoldo, Rio Grande do Sul, Brazil

A R T I C L E I N F O

Article history:
Received 2 June 2017
Received in revised form 22 November 2017
Accepted 9 January 2018
Available online 5 February 2018

Keywords:
Interpretive MDE
Industry
Case study
Productivity
Profitability

A B S T R A C T

Many model-driven engineering (MDE) approaches have been proposed in recent studies. They claim to
improve software quality and productivity by raising the abstraction level at which developers work.
However, they often fall short of what was expected in terms of productivity, profitability, and Return on
Investment in real-world scenarios. This article proposes BRCode, which is an interpretive MDE approach
for fast-changing enterprise applications. A case study that involves the development of an Enterprise
Resource Planning (ERP) system enabled data collection based on 34 realistic scenarios in a Brazilian
company. This evaluation compared BRCode with a generative MDE (genMDE) approach. Our results
show that (1) genMDE required 93.75% more effort; and (2) genMDE and BRCode led to financial gains in
48% and 70% of the cases, respectively. On average, genMDE led to financial losses in most cases, while
BRCode roughly tripled financial gains; (3) BRCode had an ROI of 1.54, compared to 0.07 for genMDE,
which represents a difference of 93.37%. The results were encouraging and show the potential for using
BRCode to support software production companies in the turbulent business environment.

© 2018 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier .com/ locat e/compind
1. Introduction

The development of enterprise applications has occurred in
increasingly unstable business environments in industry. Usually,
complex and fast-changing customer requirements, pressures of
shorter development cycles, and rapidly advancing information
technologies are ever-present characteristics of most mainstream
projects [1]. In this turbulent context, software production
companies seek to use generative or interpretive model-driven
engineering (MDE) approaches for improving software quality and
developer productivity [2,3]. In [4], Hailpern and Tarr highlight
that these benefits might be achieved by raising the abstraction
level at which developers work.

Generative and interpretive MDE approaches are functionally
equivalent. Generative MDE approaches (genMDE) aim at
transforming model-to-model or model-to-code, while interpre-
tive MDE approaches focus on interpreting models or meta-data
to produce run-time applications [2]. Both approaches claim to
improve software quality and productivity by raising the
abstraction level at which developers work. However, they often
* Corresponding author.
E-mail addresses: andersonmo@edu.unisinos.br (A. Oliveira), viniciusbischof@edu.un

kleinnerfarias@unisinos.br (K. Farias), msegalotto@edu.unisinos.br (M. Segalotto).

https://doi.org/10.1016/j.compind.2018.01.002
0166-3615/© 2018 Elsevier B.V. All rights reserved.
fall short of what would be expected in terms of productivity,
profitability, and Return on Investment in real-world scenarios
[5]. Still, little has been reported about their effectiveness in
mainstream projects in industry. Even worse, current MDE
approaches have not provided stable architectures for supporting
software products in increasingly turbulent business environ-
ments. This instability goes beyond the limits of inconvenience
to developers and customers. The rework that is caused by
constant changes leads to a cost increase, which is often not
cheap.

Today, countless works report that the greater the number of
changes, the greater the likelihood that flaws and defects may arise
in software products [6]. Usually, the entire software architecture
must be changed to accommodate changes that would not affect
core requirements of an enterprise application. Despite this, MDE
approaches have been adopted, without empirical evidence about
their benefits or side-effects. For example, these approaches may
fail to increase the capability of the development team to develop,
ensure quality, and release enterprise systems more quickly, while
ensuring low development cost.
isinos.br (V. Bischoff), lucianj@edu.unisinos.br (L.J. Gonçales),

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2018.01.002&domain=pdf
mailto:andersonmo@edu.unisinos.br
mailto:viniciusbischof@edu.unisinos.br
mailto:lucianj@edu.unisinos.br
mailto:kleinnerfarias@unisinos.br
mailto:kleinnerfarias@unisinos.br
mailto:msegalotto@edu.unisinos.br
https://doi.org/10.1016/j.compind.2018.01.002
https://doi.org/10.1016/j.compind.2018.01.002
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind


Fig. 1. The generative MDE approach that was adopted by the company.

1 The four basic functions of persistent storage: create, read, update, and delete
(as an acronym CRUD).

A. Oliveira et al. / Computers in Industry 96 (2018) 86–97 87
This article, therefore, proposes BRCode, which is an interpre-
tive MDE approach for fast-changing enterprise applications.
Software developers benefit from using the BRCode approach
typically when performing development and maintenance tasks,
such as rendering data-driven user interfaces, elaborating archi-
tectural design, and delivering fast, low-cost enterprise applica-
tions. For this, BRCode provides a set of key features that leverage
the productivity of software developers by reusing ever-present
features in enterprise applications. For example, by automatically
rendering user interfaces from meta-data, developers might invest
more time designing databases and studying the business rules
more carefully.

A case study that involves development of an Enterprise
Resource Planning (ERP) system enabled data collection based on
34 realistic scenarios in a Brazilian company. Our results show that
(1) genMDE required 93.75% more effort; (2) genMDE and BRCode
led to financial gains in 48% and 70% of the cases, respectively.
On average, genMDE led to financial losses in most cases, while
BRCode roughly tripled financial gains; (3) BRCode had an ROI of
1.54, compared to 0.07 for genMDE, which represents a difference
of 93.37%. The obtained results are encouraging and show the
potential for using BRCode to support software production
companies in volatile business environments. Moreover, this
study is the first to perform an empirical study that compares
generative versus interpretive MDE approaches in real-world
settings. The empirical knowledge and insights that are generated
may serve as a basis for improving the current MDE approaches.

The remainder of this article is organized as follows. Section 2
describes the generative MDE approach that is used in our case
study. Section 3 introduces the BRCode and describes its
architecture and main features. Section 4 describes how the
proposed approach was evaluated through an empirical study in
industry. Section 5 presents the collected results. Section 6
contrasts this study with the current literature. Section 7 presents
some conclusions and discusses future studies.

2. Generative MDE approach

MDE approaches [4] aim at shifting the development focus from
code to models. Existing MDE approaches are based on code
generation or model interpretation [2]. Approaches of the first type
use models and transformers to represent high-level concepts of
abstraction and carry out sets of transformations, respectively.
The transformers can convert abstract models into less abstract
models (i.e., model-to-model transformations) or directly into
source code that might be compiled (i.e., model-to-text
transformations) [7]. The source code that is generated from
models might cover most of the platform's complexity and
configuration details. Consequently, software developers end up
concentrating their time on problems that are related to business
rules, for example. MDE approaches of the second type use run-
time interpretation to produce software that conforms to the
model. Typically, these MDE approaches produce an interpreter,
which is embedded in the application.

We will mainly focus our attention on the description of the
generative MDE approach that was adopted by the Brazilian
company in which BRCode was evaluated (Section 4). To facilitate
understanding of how this technique was used, Fig. 1 presents an
overall scheme that shows its main elements, which are described
as follows:

1. Repository: Software developers produce a data repository
based on the customer's requirements and create domain
models from these requirements. These models are pivotal to
creating the database of the application that is under develop-
ment. The Repository can be seen Fig. 1(1).

2. Runtime: The application is created based on meta-data that
are present in the database. Operations, such as CRUD1 (Create,
Read, Update, and Delete), and business rules are defined.
Transformers generate tables at the database and data-access
objects to manipulate these tables. The Runtime component is
shown in Fig. 1(2).

3. Template: Software developers can personalize user interface
components, such as data masks, combo boxes, styles, object
positions, effects, data fields, and database calls. They can also
configure how the application manages the information inputs
and transforms the retrieved data into a readable format for the
clients of the application. The Template component is exhibited
in Fig. 1(3).

4. Code Generator: The application structure is generated based
on the template and run-time inputs. For this, the code
generator converts these inputs into source code. This compo-
nent, which is shown in Fig. 1(4), plays a central role in
supporting the generative MDE approach that is used in our case
study (discussed in Section 4).

5. Output Files: These files are responsible by representing the
generated files throughout the generative process. The applica-
tion structure is generated, including the entity, business rules,



Fig. 2. Application architecture that was produced with the generative MDE
approach.

2 NET Application Architecture: https://www.microsoft.com/net/learn/architec-
ture.

88 A. Oliveira et al. / Computers in Industry 96 (2018) 86–97
and presentation layer. The software developers can configure
how additional functions will be generated. This component is
shown in Fig. 1(5).

The generated source code produces enterprise applications
based on the architecture exhibits in Fig. 2. The front-end layer
(Fig. 2(a)) represents the client side, where the client interacts
with the produced application. The technologies that are used in
this layer include HTML, CSS and JavaScript. The back-end layer
(Fig. 2(b)) consists of the server side, where the software
components that are responsible for implementing the business
rules, entity and data access are found. The database layer (Fig. 2(c))
contains the tables and queries that are used.

As the source code of the entire enterprise application is not
fully generated in generative MDE approaches, software devel-
opers need to manually edit it (as required) so that the desired final
source code can be obtained. Even though this approach has been
adopted to increase the productivity of the development team via
code generation, manual addition has been demonstrated to be a
time-consuming and error-prone task in practice.

The enterprise, where the case study (Section 4) was performed,
adopted this generative MDE approach with the objective of
reducing time to market and automating the development process.
However, this need to edit manually represented a critical
shortcoming from the perspective of software developers in the
context of realistic scenarios in industry, where time is short, and
budget is tight.

For example, software developers had to apply a great effort to
implement simple features, such as the personalization of views,
the implementation of the service calls, and the validation of the
data on the client side. These are features that are commonly
requested by customers. This resulted in (1) problems that are not
related to the domain problems, which required rework on the
software development; (2) difficulties in predicting the deploy-
ment date; and (3) investments in third-party tools for improving
the productivity. Consequently, this led to an increase in the
number of software developers, frequent extensions in the time of
quality assurance, which caused delays in deploying the applica-
tion, and a significant reduction in the company's profitability.

Moreover, the source code of enterprise applications is not
generated completely, as previously mentioned. That is, developers
often need to manually implement and edit the generated source
code, which is a time-consuming and error-prone task. In this
context, some problems have already been identified and reported
in the current literature. In [5], Hutchinson and colleagues
highlight a set of negative effects that may be due to the adoption
of generative MDE approaches, which are related to the following:

� Maintenance: The time that is required to maintain the software
may be increased due to the need to keep models/code in sync,
and the generated code may be difficult to understand;

� Productivity: Even though the effort to develop code may be
reduced by automatic code generation, the effort to develop
computer-readable models and implement model transforma-
tions is still relatively high; and

� Portability: Although the effort to migrate to a new platform can
be reduced by simply applying a new set of transformations, the
effort that is required to develop new transformations or
customize existing ones is still quite high.

Still, the development of enterprise applications requires
diverse skills and knowledge from the problem domain, business
rules, process and programming issues. It becomes difficult to
recruit an application developer who has the required knowledge
at low cost. The proposed approach addresses precisely this
question, as it is as pragmatic as possible of an approach, rather
than a fundamentalist approach, to increase the productivity of the
software developers.

3. The proposed approach

This section presents BRCode (Brazilian Code), which is an
interpretive MDE approach for supporting the development of
fast-changing enterprise applications. Section 3.1 gives an
overview of the development process that is adopted in our cases
studies. Next, Section 3.2 describes the proposed approach.
Section 3.3 introduces the key features of BRCode. Then, Section 3.4
presents the architecture of BRCode. Finally, Section 3.5 discusses
details about implementation aspects.

3.1. Overview of the development process

Fig. 3 presents an overview of the adopted development
process, along with the proposed approach. This process was used
with both MDE approaches to build enterprise applications. Each
step of this process is described as follows:

� Step 1: Requirement definition and specification. This step
aims at defining and specifying the customer's requirements
(Fig. 3(1)). The application scope is determined by defining
business rules, goals, constraints, and high-level operational
concepts. Software developers create a domain model to
represent the main concepts that are found in the problem
space. Based on this diagram, software developers generate the
application database.

� Step 2: Choice of MDE approach. The development team
chooses which MDE approach will be used in the project: the
generative MDE approach or the interpretive MDE approach
(Fig. 3(2)). As described in Section 2, the generative MDE
approach generates source code from domain models that are
created by software developers. The generated source code
follows the Microsoft Application Architecture2 (see Fig. 1).
This architecture is a standard enterprise software architecture
and was chosen by the company's software architects. If the
interpretive MDE approach is chosen, software developers need
to create the domain model of the application to be developed.
Developers register the modules, the interface, and the business
rules in the database.

https://www.microsoft.com/net/learn/architecture
https://www.microsoft.com/net/learn/architecture


Fig. 3. Overview of the development process.

A. Oliveira et al. / Computers in Industry 96 (2018) 86–97 89
� Step 3: Application test. In this step, the software developer
tests the application (Fig. 3(3)). Three kinds of tests are
performed: unit, integration and system tests. Jasmine, PHPUnit,
and Mocha are the main technologies that are used to test the
developed enterprise applications.

� Step 4: Homologation. This step aims at publishing the software
that is developed in a production environment (Fig. 3(4)). We
check whether the developed enterprise applications meet
customer requirements in a realistic production environment.
After the application has been approved, users test it in a realistic
production environment. This beta test is intended to detect
possible faults that were not detected in the test phase, as well as
to obtain a customer evaluation.

� Step 5: Deployment. After obtaining the initial acceptance by
the customer, the application needs to be prepared for
deployment (Fig. 3(5)). This step aims at performing activities
and using technologies, such as a version control system, to
deploy the application. Version control is used to store and track
changes to the enterprise application files.

� Step 6: Delivery. This step involves the delivery of the developed
application to the customer (Fig. 3(6)). The application is
evaluated by the customer in the production environment. If
any problem is identified, it will be reported to the development
team.

3.2. Interpretive MDE approach based on stable architecture

The proposed approach identifies concepts that remain
unchanged in the realms of the solution problem (e.g., style of
software architecture) and the domain problem (e.g., customer
Fig. 4. Structure of the enterprise applicati
requirements), and then shapes the enterprise application
architecture based on them. In this way, we avoid incorporating
unstable concepts into the enterprise application architecture [8],
which might cause changes that cut across the architectural
components. That is, minor changes might cause an endless cycle
of architecture refactoring [6].

In this sense, BRCode consists of a pragmatic way of using
concepts that remain unchanged in domain models to automati-
cally build enterprise applications, thereby avoiding human
interventions as much as possible; this strategy is commonly
used in generative approaches. The instances of this domain model
generate meta-data, which might be used to personalize customer
interfaces, implement web services, and validate data in the
user interfaces. These key features of BRCode are described in
Section 3.3. All applications that are developed using BRCode
follow the structure that is shown in Fig. 4 and discussed as
follows:

1. Database: The software developers produce the application's
database based on the domain model that was created
according to the application requirements. The defined meta-
data, e.g., database scheme, are formatted and interpreted
throughout all application layers (Fig. 4(1)).

2. Meta-data: The developers generate meta-data based on the
domain model that was created according to the customer
requirements. They can define meta-data in the database, which
are used throughout all layers of the application (Fig. 4(2)).
For example, suppose an entity person has an attribute name.
If a person should have a name, then this information can be
found in the meta-data, e.g., name.isNull = false. This information
serves to set up several parts of applications that are under
ons that are developed using BRCode.



90 A. Oliveira et al. / Computers in Industry 96 (2018) 86–97
development, such as the style of the web page, business layers,
data masks, and data types.

3. Code render: This component contains entities that remain
unchanged and operations for manipulating these entities,
which are organized through a stable architecture (Fig. 4(3)).

4. Interface render: This component renders views on the client
side (Fig. 4(4)). The views are not static; that is, they are
rendered based on the client requests. The views are rendered
according the configurations that are present in the database.
Developers set these view characteristics in the first step, during
database definition.

3.3. Key features of BRCode

Based on our practical experience, we have identified several
features that were common to all business applications that were
developed in our company. In addition, we determined that most
of the development effort and customer's change requests targeted
such features, and that the quality of the source code was directly
impacted by time-consuming, error-prone tasks of developers in
changing such features. Thus, we understood that increasing
the productivity and the quality of the applications would be
achieved through the automatic execution of the development and
maintenance of such features. The key features that are provided
are listed as follows:

1. Authentication and authorization feature. Two closely related
simple and easy-to-configure concepts are at the heart of
security for enterprise applications: authentication and autho-
rization. Authentication consists of the process of acquiring
users’ credentials and using those credentials to check the user's
identity. Authorization is the process of enabling an authenti-
cated user to access resources or functionalities of the
enterprise application. Applications that are developed using
the BRCode are fully supported by the authorization and
authentication mechanisms. In addition, the BRCode assures
that the authentication process must always precede to
authorization one, and still allows the authentication of users
as being anonymous. Usually, enterprise information systems
let anonymous users connect and use the application resources.
In this case, the BRCode authenticates the users as being
anonymous. The technique allows the definition of an access
profile and access permissions based on the profile in an easy
way. Therefore, developers with no knowledge of how to
implement authorization and authentication become capable of
developing applications with complete access control.

2. Mobile-friendly, mobile-optimization and responsive design
for enterprise applications. Several concepts that are related to
User Experience (UX) are still unclear to software developers,
such as mobile-friendly application, mobile optimization and
responsive design. Even worse, they do not know: how to
implement enterprise applications that support such concepts,
where mobile first design fits in, or even what the best design
strategy is for a particular enterprise application. Today, mobile-
friendly enterprise applications are often created just as a
reduced version of the enterprise application that is viewed on a
desktop. Even though these smaller versions can be functional
for mobile users, they end up not being as user friendly as they
could be since they were designed for desktop users. When the
enterprise applications are centered on mobile users upfront
and, therefore, are better optimized and more responsive, the
application resources (i.e., its functionalities) tend to be used
more frequently. In contrast, when the use interfaces are not
user-friendly, the use of enterprise applications on mobile
devices may become prohibitive. The proposed approach
provides mobile-friendly, mobile-optimized and responsive
design for enterprise applications. That is, all generated
applications support smart phones, tablets and desktops.
Another issue that is encountered is mobile optimization.
Although all mobile-optimized interfaces are mobile-friendly,
not all mobile-friendly interfaces are mobile-optimized. With
this in mind, our approach provides mobile-optimized appli-
cations by generating user interfaces for smaller screens up
front, as opposed to just reducing their content later. That is, our
mobile-optimization approach targets mobile users, rather than
desktop users. This retargeting avoids the user interfaces being
just shrunken-down versions of the desktop interfaces.

3. Multilingual and easy-to-customize approach for enterprise
applications. Today, enterprise applications need to be adapted
for users from different cultures or regions, or with different
languages. However, this adaption is a time-consuming task,
as developers need to make several adaptations to the source
code manually for each new language. The BRCode has a built-in
internationalization mechanism, which allows the enterprise
applications to have internationalization support. This means
that developers do not need to code; they just need to customize
the application's terms for a particular language.

4. Composite dashboard based on widgets. Enterprise applica-
tions often need to provide dashboards, which display strategic
information for decision makers. However, the fundamentalist
model-driven development approaches overlook the creation
of dashboards. Consequently, developers end up manually
creating monolithic dashboards based on data that are stored in
the database server. For this, a full-stack developer needs to
know what data should be retrieved from the database, which
architectural components should be created or modified to
obtain these data, and which UI (User Interface) components
must be used to display the retrieved data. With the BRCode,
an inexperienced developer can easily create a dashboard by
aggregating a set of widgets. Each widget is automatically
generated for exhibiting data regarding a particular entity that
are stored in the database. This results in a composite dashboard
that is formed by widgets, instead of a monolithic dashboard
that consumes data on the server. The developers who are using
the BRCode only need to specify what data (of a particular
entity) should be displayed in the dashboard.

5. CRUD operations, filter and pagination resource. The BRCode
provides the four basic functions that are related to data
persistence: create, read, update, and delete (namely, CRUD).
For this, sophisticated UI components are used to facilitate
viewing, searching, changing and deleting information. The
BRCode’s UI components are based on the front-end component
library Bootstrap. In addition, the functions of filter and
pagination are also supported at large. Users can filter data in
tables, reapply a filter to obtain updated data, or even clear a
filter to exhibit all of the data again. The pagination resource
offers a lightweight directive that covers the listing of large data
sets and the enabling and disabling of UI components properly.
The BRCode automatically generates all these functions.

6. Smart cache to boost performance. The interpretive MDE
approach analyzes and interprets software models at run time
without generating any source code; instead, templates are
sent as metadata to the application that interprets them.
The interpretation in this MDE approach does not require
any manual implementation to be executed; instead, a set
of predefined generic requirements are configured in the
metadata and executed at run time. The BRCode's components
are designed to transpose the meta-data structure, which is
responsible for storing the characteristics of the software
requirements. As BRCode works with the interpretive
MDE approach, its components are modeled to transpose the



Fig. 5. The proposed architecture which is composed of five layers.

A. Oliveira et al. / Computers in Industry 96 (2018) 86–97 91
meta-data structure, which is responsible for storing the
characteristics of the software requirements. The interpretation
of these models can negatively affect execution time perfor-
mance. However, this problem has been bypassed in BRCode
through a smart cache structure. In [9], the author supports that
this problem can be mitigated using cache. BRCode caches
strategic sectors of meta-data structures by sharing interpreted
meta-data structures at run time. In practice, the performance
gain has been significant. After the first user accesses a
functionality, BRCode interprets and generates the cache file,
and the next users of the same functionality benefit from the
shared cache. Another feature of the BRCode cache is that its
algorithm has the ability to detect when changes occur in the
base structure of the meta-data (identifying changes in
requirements), clear the cache of previously interpreted
structures that have become obsolete after the changes, and
keep the structures up to date based on the meta-data base
model. BRCode has a positive characteristic in relation to the
results that are reported in [2]. It is a widely known problem
that .NET does not support software updates and caches without
restarting its processes. This is because the code in the .Net
architecture needs to be restarted when changes to its code
update the GAC (Global Assembly Cache), which is a machine-
wide code cache that is found in each computer where the
common language run time is installed. BRCode has been
developed in .Net. However, it is possible to update the software
at run time without shutting down the system or even restarting
processes on the server. This feature is possible because of its
intelligent caching system, where it handles interpreted data
that do not affect the code structure of the .Net application.

3.4. Architecture of BRCode

All enterprise applications that are produced using BRCode are
based on a multi-layered architecture. As shown in Fig. 5, the
proposed architecture is composed of five layers. This architecture
consists of a client-server architecture in which the presentation,
business rule processing, and data management functions are
physically separated in the front-end and the back-end. Fig. 6
shows how this client-server architecture is structured in terms of
the front-end, back-end and database, and clarifies the differences
between the generative MDE and BRCode architectures. The front-
end layer runs on the client side, while the back-end and database
run on the server side. Each layer that is shown in Fig. 5 is described
as follows:
Fig. 6. Generative MDE and
1. Presentation Layer: This layer is responsible for formatting
information and delivering it to users. The presentation layer
contains responsive views that are created through the
interpretation of the meta-data that are received from the
layer below. An example of a feature of this layer is the rending
of meta-data for multiple views, e.g., smart phone, tablet and
desktop applications.

2. Business Rules Layer: This layer is implemented by core
elements of BRCode and focuses on business rules that are often
found in enterprise applications, such as filtering and searching.
Invariant and algorithms stay in this layer. Some of the business
rules are implemented directly in the database through triggers,
procedures, functions, constraints or meta-data about business
operations according to business needs. The internal schema
will be the product that is generated by the mapping that is
performed in the conceptual schema for a specific syntax,
which, in this case, is Structured Query Language (SQL). Some of
these are generic and involve the maintenance of concepts of
business, such as inclusion, exclusion, change, and research of a
concept of the business model.

3. Transversal Entity Layer: This layer is cross-cutting because it
contains functions of common interest for the presentation,
business, and data layers. It is responsible for managing
application objects between these layers. These objects contain
functions for delivering data collections from one layer to
another.

4. Data Access Layer: This layer performs the system's data access
operations. It separates the business rule layer from database
access operations. In addition, a smart cache reduces the
 BRCode architectures.



Fig. 7. An example of User Form, implemented using the generative MDE approach and the interpretive MDE approach.

3 https://www.asp.net/.
4 https://jquery.com/.

92 A. Oliveira et al. / Computers in Industry 96 (2018) 86–97
connections and transactions between the application and the
database. The data in the cache are checked and updated as new
settings are specified.

5. Data Layer: This layer is responsible for storing system data.
This layer also manages meta-data configuration. In this way,
this layer concentrates the meta-data of the business rules, the
interface, and the access permissions of users.

Fig. 6 shows the BRCode architecture in comparison to the
generative MDE architecture. The main differences are discussed as
follows:

� Front-end. Inthe generative MDE approach, developers need to
manually create a user interface for each new entity or
functionality, or even change them separately according to
change requests. In Fig. 6(a), two interfaces were created: one
for Client and one for Supplier. For example, if a ZIP code has to be
added to the Supplier interface, the developer will have to change
HTML, CSS, and JavaScript code. Suppose that every customer
must have an address. There are two options for implementing
this requirement: The first is to change the client interface with
the address attributes. The second is to create a new interface.
Again, in both cases, the developer would have to manipulate
HTML, CSS and JavaScript code. In the generative MDE approach,
most intangible concepts (e.g., client and supplier) and concepts
that are unlikely to remain stable over time are generated and
created manually. Thus, maintaining and evolving code becomes
an activity that consumes time and is prone to errors. In contrast,
in the BRCode approach, such concepts are represented in an
abstract way so that the source code can remain stable over time.
In Fig. 6(a), UI.BRCode represents a stable component. Instead of
having two interfaces, there is a single component that will render
the Client and Supplier interfaces at run time according to the
meta-data of the entities.

� Back-end. Both approaches have classes that concern domain
entities, business rules, and data access objects. In the generative
MDE approach, developers need to manually create entities,
business rules and data access objects for each new use case,
or change them to implement change requests. In Fig. 6(b),
there is an entity, a business rule and a data access object for
implementing functions that are related to Client or Supplier.
In addition, stable concepts are defined so that any change can be
made. Developers do not need to create domain entities,
business rules, and data access objects when new use cases
need to be implemented or change requests are required. This
stability is achieved through the following abstractions:
BRCodeEN,BRCodeBR, and BRCodeDA. These three abstractions
are stable concepts that remain unchanged over time. They
interpret meta-data that are organized in a data structure, such
as HashMap or List. Thus, change requests cause changes in the
meta-data, thereby avoiding any modification to the code.

� Database. Databases are located on servers and provide meta-
data for the application. In Fig. 6(c), the presence of meta-data is
the main difference between the generative MDE approach and
BRCode.

3.5. Implementation aspects

The technologies that were used followed performance,
modularity and usability requirements. BRCode was implemented
using the Visual Studio development platform, the C# language,
and ASP.NET — an open-source web framework for building
modern web apps and services with ASP.NET.3 We used ASP.NET
because it creates web applications based on HTML5, CSS, and
JavaScript that are simple, fast, and can scale to millions of users
[10]. The databases Microsoft Sql Server, MySQL and Oracle were
used.

Moreover, the usability of the user interfaces was achieved by
separating content (HTML), its presentation (CSS 3), and functions
(JavaScript). In addition, we used the most popular front-end
component library, which is called Bootstrap, to build responsive,
mobile-first projects on the web. Using Bootstrap, we could quickly
prototype user interfaces and build mobile-friendly, mobile-
optimized and responsive designs for Web enterprise applications.
For this purpose, BRCode makes use of many features of Bootstrap,
including Sass variables and mixins, a responsive grid system,
extensive prebuilt components, and powerful plugins that were
built on jQuery4 — an open-source cross-platform JavaScript
library that is designed to simplify the client-side scripting of
HTML.

Fig. 7 presents an illustrative example of user interfaces that
were implemented using the generative MDE approach (Section 2)
and the BRCode (Section 3). There is a clear difference between
them. First, 15 lines of code were required to implement the User
Form using the generative MDE approach, whereas just 8 lines

https://www.asp.net/
https://jquery.com/


Fig. 8. Variables related to productivity and profitability.

A. Oliveira et al. / Computers in Industry 96 (2018) 86–97 93
were required using the interpretive MDE approach, i.e., BRCode.
The generative MDE approach required four lines (lines 6–9) to
create the labels and input the texts that are found in the User
Form. In contrast, the interpretive MDE approach required only
one line (line 4). In line 4, the element brCode:ListFields consists of
the view components that are used to render all labels and input
texts based on the received meta-data.

If changes are requested, developers will invest more effort by
altering many lines of code. For example, if three new fields were
requested (such as first name, last name and phone) in this
interface, developers would have to manually change the interface
code. However, this change would not cause any change in the
interface that is implemented using the proposed approach. This
stability in the face of change requests helps to reduce mainte-
nance effort and increase code quality. In the following section, we
report a case study in industry for comparing the generative MDE
approach and the BRCode.

4. Case study

This section presents the main decisions that underlie the case
study that was carried out to evaluate the proposed technique.
In particular, we are concerned with investigating the impact of
the proposed approach (Section 3) on the development effort
and financial gains. Section 4.1 introduces the objective and
the explored research questions. Section 4.2 explains how the
analyzed variables were quantified. Section 4.3 presents the
evaluation procedures that were defined to achieve the study
objective and the research questions that were formulated. All
these methodological steps are based on the well-known guide-
lines that are presented in [11], which describe how to design and
conduct empirical studies.

4.1. Objective and research questions

This study seeks to investigate the effects of the proposed
technique on two variables: the development effort and the
financial gains. These effects are explored from the perspective of
developers in the context of the development of Enterprise
Information Systems in industry. The objective of this empirical
study is stated based on the GQM template [11], as follows:

Analyze MDE approaches
for the purpose of investigating their effects
with respect to productivity and profitability
from the perspective of software developers
in the context of software development in industry.
4.2. Variables and quantification methods

This section describes the dependent and independent
variables that are measured in our evaluation.

Independent variable. It indicates which MDE approach is used
and can assume one of two values: generative MDE (genMDE) and
interpretive MDE (BRCode).

Dependent variables. This study investigates the effects of
genMDE and BRCode on the following variables.

� General Effort (GenEffort): It describes the amount of effort
(in hours) that is required to produce the desired code. It is
composed of the effort that is needed to develop (DevEffort) plus
that to perform quality assurance (QualityEffort). Fig. 8 shows an
overview of the variables that are related to productivity.
DevEffort and QualityEffort are better described as follows:
– DevEffort: It consists of the effort that is invested by the
developers in analyzing the customer's requirements, creating
the software design, implementing this design, and testing and
deploying the produced software. A software system will only
be delivered when its quality is good. Therefore, testing is a
fundamental part of development. As shown in Fig. 8, DevEffort
represents the effort that is expended in using a generative or
interpretive MDE approach to produce the source code of the
application. Regardless of which MDE approach is used
(generative or interpretive MDE), the software development
process is error-prone, as developers manipulate the code
manually. Thus, the produced source code ends up requiring
future improvements after deployment (see Fig. 3). Code with
problems is known as produced code (CPC).

– QualityEffort: It consists of the effort that is invested in
implementing all improvements that are detected by the
customers, to produce the desired code (CDC) from CPC. These
improvements can range from changing the color of a UI
component to changes in the performance of running a
feature.

It is important to note that every project that was contracted
with the company had a period of 6 months of support. During
this period, customers could request improvements at no extra
cost. Note also that if the effort that is spent to assure quality is
low, then the general effort tends to be low as well. If the
DevEffort is low, but produces source code with several
improvements, then the effort to be invested in fixing such
problems tends to be high; hence, QualityEffort tends to assume a
high value.

� Profitability (Profit): It represents the financial gains of the
company per project. The profit is calculated based on
the estimated effort (EstEffort) and GenEffort. Fig. 8 shows the



Table 1
Descriptive statistics of the general effort.

Variable Method SD Min 25th Med 75th Max Mean % Diff

General
effort

genMDE 40.77 4.5 17.5 32.5 59 163 43.76 93.75%

BRCode 2.08 1 1 1 4 7 2.74

SD: standard deviation, Min: minimum, Med: median, Max: maximum, Diff:
difference.

94 A. Oliveira et al. / Computers in Industry 96 (2018) 86–97
equation that is used to compute Profit. The effort estimate was
calculated based on function points, regardless of the type of
MDE approach that was used in our case study (described in
Section 4.3). A function point can be briefly defined as a unit of
measurement that expresses the amount of functionality an
enterprise application provides to a user. Based on the equation
in Fig. 8, financial gains rise when EstEffort is higher than
GenEffort. That is, Profit represents the total effort that is saved. In
this work, the profit is quantified in hours.

� Profitability Rate (ProfitRate): The ratio of the number of
systems that generate profits in a project to the total number of
systems that are implemented in a project. The value of ProfitRate
ranges from 0 to 1.

� Return on Investment (ROI): It indicates the amount of time
that is needed to recover the investments in terms of hours.
Eq. (1) presents the ROI equation and the involved variables. ROI
can be applied to evaluate a project or a module in terms of
hours.

ROI ¼ EstEffort � ðDevEffort þ QualityEffortÞ
ðDevEffort þ QualityEffortÞ ð1Þ

4.3. Evaluation procedures

Context. We performed a case study at a software production
company in Brazil. The company specifies, develops and tests
enterprise information systems for construction companies, such
as ERP (Enterprise Resource Planning) systems. The company was
contracted to develop an ERP system that contains 17 modules,
using Microsoft's Visual Studio development platform and the C#
language. The technologies that were used followed portability
requirements, using the .NET framework. Initially, the system was
implemented using the generative MDE approach (described in
Section 2) in 2015. The development team (in both approaches)
was formed by three developers (with two years of experience
with software development) and a software architect (with 7 years
of experience). In 2017, the company was hired again to modernize
the system by producing responsive web applications. At this time,
the 17 modules of the ERP system were redeployed from scratch
using BRCode. A new development team with same level of
experience was allocated, which consisted of three developers and
a software architect. Since the development teams were different,
the learning effect was discarded. Both development teams
versioned the developed systems using the version control system
SVN.5 In addition, all information regarding the progress of project
management activities was recorded in a software project
management web application called RedMine.6

Quantitative analysis. We used descriptive statistics to identify
trends and analyze the distribution of the collected data.
Tables and Box-plot were employed to graphically illustrate the
results. The presence or lack of trends and patterns acted as a driver
for further investigations. In particular, we aimed at introducing
and presenting interesting aspects of the collected data, rather
than inferring correlation or producing a probabilistic formulation.
In addition, we analyzed possible outliers and, when acceptable,
they were removed. Outliers are extreme values of the measured
variables that may influence the conclusions of the study [11]. In
our study, the outliers that were identified did not represent
extraordinary exceptions; hence, they were not removed.
5 https://subversion.apache.org/.
6 http://www.redmine.org/. 
5. Results

This section presents the results that were obtained from the
analysis of the collected data. Section 5.1 presents the general
effort results. Section 5.2 presents the results that concern the
profitability. Section 5.3 presents the results about the profitability
rate. Finally, Section 5.4 presents the results that concern the
Return on Investment. The study data can be found in Table A.6
(in Appendix A).

5.1. General effort

Table 1 and Fig. 9 present the descriptive statistics and box plot,
respectively, of the general effort.

The values of the general effort were measured in minutes.
These statistics help us pinpoint the central tendencies, spreads of
values around them, and the difference between the means. The
general effort analysis involved an examination across cases of a
single variable, focusing on three characteristics: the distribution,
the central tendency, and the dispersion.

As previously mentioned (in Section 4.3), 34 modules were
developed: 17 using the generative MDE approach and 17 using the
BRCode. The central tendency was calculated using the two
most commonly used statistics: the mean and the median. The
most interesting result is that the general effort was, on average,
approximately 43.76 and 2.74 min using the generative MDE
approach and the BRCode, respectively. This means that the BRCode's
general effort is only 6.25% of that of the generative MDE approach.
That is, 93.75% of the general effort in the generative MDE
Fig. 9. General effort.

https://subversion.apache.org/
http://www.redmine.org/


Fig. 10. Profitability.

Fig. 11. Profitability rate.

A. Oliveira et al. / Computers in Industry 96 (2018) 86–97 95
approach represents extra effort that needs to be applied. The
median measures corroborate to this result: 40.77 and 2.08 min.
This implies that the general effort that is required for develop-
ment using the BRCode was very low compared to the generative
MDE approach. Hence, if software production organizations,
where resources and time are usually tight, were to use the
BRCode approach, they would significantly decrease the develop-
ment effort.

Table 1 shows that software developers usually applied more
effort to developing a module using the generative MDE approach.
The times that were spent were significantly higher compared to
the BRCode approach. For example, the max column shows that
developers spent 163 min using the genMDE, whereas developers
invested only 7 min using the BRCode.

In addition, we used the standard deviation and the 25th and
75th percentiles, which were computed to determine the
dispersion of the data around the reported tendency. The general
effort in the generative MDE approach tended not to concentrate
around the central tendency; instead, it spread out over a large
range of values. In BRCode, this spread did not exist.

Indeed, at 40.77 and 2.08 min, the standard deviation measures
indicated that the general efforts were notably different using the
generative MDE approach and the BRCode. This finding may help
software analysts better understand the general effort that is
required in using the generative MDE approach and the BRCode.
Today, software analysts make decisions essentially based on their
judgment, and check whether the actual general development
effort agrees with the expected value (or not).

5.2. Profitability

This section explores the effects of MDE techniques on the
profitability variable. Table 2 shows the descriptive analysis of
the profitability (profit). Fig. 10 shows the descriptive analysis of
the profitability (profit). Fig. 10 presents the box plot. The average
profit of the genMDE is a negative value. This is because the applied
effort was higher than the estimated effort, thereby causing bias in
the time that developers spent. Fig. 10 shows that the data of
BRCode are upper-skewed for values that are greater than zero.
Furthermore, the median is located on the top of the box plot,
which indicates that values concentrate in that region. In contrast,
the median for genMDE is zero, i.e., the half of values converge to
profits of time.

5.3. Profit rate

Fig. 11 shows the results on the profit rate, which refers to the
ratio of the number of modules with profit and the total number of
modules. The profit rate indicates the percentage of modules that
resulted in profit. The BRCode has a profit rate of 0.7 (70%) and the
generative MDE approach resulted in a profit rate of 0.48 (48%).
This means that the majority of modules that were developed in
the generative MDE approach did not return a profit.

5.4. Return on Investment (ROI)

Table 3 presents the descriptive analysis of the ROI. The
collected data highlight that the ROI that was obtained using the
Table 2
Descriptive statistics of the profitability.

Variable Treatment SD Min 25th 

Profitability genMDE 9.36 �19 �5.50 

BRCode 2.08 �3 0 

SD: standard deviation, Min: minimum, Med: median, Max: maximum, Diff: difference
BRCode is significantly greater than that obtained using the
generative MDE approach. The data indicate that software
development teams that use the generative MDE approach might
reduce the ROI by 96%, compared to the BRCode approach.

Fig. 12 presents the data distribution. The ROIs were evaluated
for the BRCode and the generative MDE approach. This graph
shows that the BRCode has a strong advantage over the
genMDE approach. The median for BRCode indicates the most
ROI values are concentrated in the top of the plot. In contrast, the
median for genMDE is very low. This indicates that half of the
values of the ROI for the generative MDE approach are between 0
and 0.5.
Med 75th Max Mean % Diff

0 3.5 19.5 �1.71 234.88%
3 3 3 1.26

.



Table 3
Descriptive statistics of Return on Investment (ROI).

Variable Treatment SD Min 25th Med 75th Max Mean % Diff

Return on Investment genMDE 0.36 3.3 �0.12 0 0.14 0.95 0.07 95.37%
BRCode 1.6 0.43 0 3 3 3 1.54

SD: standard deviation, Min: minimum, Med: median, Max: maximum, Diff: difference.

Fig. 12. Return on Investment.

96 A. Oliveira et al. / Computers in Industry 96 (2018) 86–97
6. Related work

Academia recognizes the importance of code generation from
software models, according to mapping studies that concern this
subject, such as [12–14]. Table 4 summarizes the main aspects of
the related mapping studies that we found. The data suggest that
extensive research has been conducted on MDE approaches, in
particular, regarding code generation. We briefly discuss these
articles as follows.
Table 4
Resume of the related mapping studies.

Articles Year Number of studies Search range 

Syriani et al. [12] 2017 440 2000–2015 

Seriai et al. [13] 2014 752 2000–2012 

Mehmood and Jawawi [14] 2013 65 1997–2012 

Table 5
Comparative table of related works.

Articles Proposes a MDE technique Valida

Rosales-Morales et al. [15] No Yes 

Hutchinson et al. [5] No Yes 

Buchmann and Westfechtel [16] Yes No 

Mikami et al. [17] Yes No 

Azadegan et al. [18] No Yes 

Sun et al. [19] No Yes 
Syriani et al. [12] selected 440 studies, which cover 15 years of
research on TBCG. TBCG refers to techniques that produce code
from high-level specifications, such as software models and
templates. They emphasized that researchers are still engaged in
producing template-based approaches. In addition, their results
imply that MDE approaches are being applied actively in software
projects. This indicates that the practice of MDE in industry no
longer presents crucial problems that need to be resolved.

Seriai et al. [13] analyzed research that was published over a 12-
year period on the validation of software visualization tools. Their
selection process found 752 articles. Their analysis of these articles
identified an absence of validation studies for visualization tools.
In other words, the evaluations that focus on the effectiveness of
current visualization tools are limited to qualitative studies.

Mehmood and Jawawi [14] mapped studies that focus on the
generation of aspect-oriented code from models. They selected 65
studies from 255 studies, which were published over a 15-year
period. The results show a concentration of new proposals. This
implies that this area is at the problem-solving stage.

Table 5 presents a comparison of related works. Experimental
works have been playing a key role in evaluating the effectiveness
of MDE approaches [5,15]. In [15], the authors performed a
comparative analysis of the Integrated Development Environ-
ments (IDEs) for MDE. They used a set of quality metrics to
evaluate these tools, such as effectiveness, productivity, safety, and
satisfaction. In [5], the authors evidence the productivity gains of
the MDE approach over the traditional and code-centric methods.

Some approaches were proposed with the objective of
generating code from software models. In [16], the authors
present a transformation tool for generating Java source code
from class diagrams and other Java source code. In this case,
the class diagrams are the models that drive the development.
This tool was built with the purpose of updating the class diagrams
from source codes interactively. This process is well known as
round-trip engineering. In this work, the database schema is the
artifact that is responsible for maintaining the integrity of
the stored data. Because of its critical function, proper testing of
Purpose

Analyse the TBCG state-of-art.
Raise the state-of-art about the validation of visualization tools.
Scrutinize the state-of-art about the code generation from aspect models.

tion Case Evaluates/discuss quality or performance variables

No Yes
No Yes
No No
No No
Yes Yes
Yes Yes



Table A.6
Study data.

Modules Effort estimation Development effort Quality assurance General effort Profitability

BRCode genMDE BRCode genMDE BRCode genMDE BRCode genMDE BRCode genMDE

M1 4 40 5 38.5 0 6 5 44.5 �1 �4.5
M2 4 60 3 55 1 13.5 4 68.5 0 �8.5
M3 4 20 3.5 18.5 1 7 4.5 25.5 �0.5 �5.5
M4 4 40 6 32.5 0 7.5 6 40 �2 0
M5 4 30 1 31 2 1.5 3 32.5 1 �2.5
M6 4 8 1 7.5 0 0 1 7.5 3 0.5
M7 4 8 1 4.5 0 0 1 4.5 3 3.5
M8 4 20 1 17.5 0 0 1 17.5 3 2.5
M9 4 80 1 76 0 0 1 76 3 4
M10 4 30 1 16 0 8 1 24 3 6
M11 4 36 4 36 0 17.5 4 53.5 0 �17.5
M12 4 5 1 7 0 0 1 7 3 �2
M13 4 8 1 5.5 0 0 1 5.5 3 2.5
M14 4 100 7 82 0 13 7 95 �3 5
M15 4 150 1 163 0 0 1 163 3 �13
M16 4 40 4 39 0 20 4 59 0 �19
M17 4 40 1 20.5 0 0 1 20.5 3 19.5

Total 68 715 42.5 650 4 94 46.5 744 21.5 �29

A. Oliveira et al. / Computers in Industry 96 (2018) 86–97 97
the database schema is an important task. Mikami et al. [17]
present an approach to the domain-driven development (DDD)
and use of an object-relational mapping (ORM) tool that has the
ability to evolve database schemes. The main purpose is to
encapsulate a business model in the global architectural context
and the logic of structuring the business at the design level.

Some case studies were found that consider productivity in an
enterprise environment. However, they did not evaluate the effects
that a new MDE technique has in relation to an older approach.
In [18], the authors carried out a case study of software models
before the beginning of the software process. In [19], the authors
evaluated some ERPs in an industrial environment.

7. Conclusion and future works

This article proposed the BRCode, which is an interpretive MDE
approach that is based on a stable architecture for improving the
developers’ productivity and the financial gains of companies.
The BRCode was evaluated through a case study at a software
production organization in Brazil. The case study involved two
development teams, who used either the generative MDE
approach or the BRCode to implement 17 modules of an enterprise
application. The results were encouraging and showed the
potential of the BRCode as a tool for fostering productivity and
financial gains in software production organizations.

BRCode is an evolving model. We have identified the following
future research directions: (1) allowing developers to create native
applications for Android and iOS in mobile devices; (2) adding a
feature to enable the development of user interfaces, using
emerging front-end technologies, such as ReactJS and AngularJS;
(3) allowing alternative implementations of features as micro-
services; (4) replicating and expanding the evaluation by applying
BRCode to the development of more complex enterprise applica-
tions in a company, focusing especially on software production
organizations; and (5) testing the BRCode with volunteers who will
answer a questionnaire based on the Technology Acceptance
Model (TAM) [20] to evaluate its usability.

Appendix A. Study data

Table A.6 shows the data collected in our study.
References

[1] M. La Rosa, M. Dumas, R. Uba, R. Dijkman, Business process model merging: an
approach to business process consolidation, ACM Trans. Softw. Eng. Methodol.
(TOSEM) 22 (2013) 11.

[2] M. Overeem, S. Jansen, An exploration of the ‘it’ in ‘it depends’: generative
versus interpretive model-driven development, MODELSWARD (2017) 100–
111.

[3] V. García Díaz, N. Valdez, E. Rolando, J.P. Espada, P.G. Bustelo, B. Cristina, J.M.
Cueva Lovelle, C.E. Montenegro Marín, A brief introduction to model-driven
engineering, Tecnura 18 (2014) 127–142.

[4] B. Hailpern, P. Tarr, Model-driven development: the good, the bad, and the
ugly, IBM Syst. J. 45 (2006) 451–461.

[5] J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen, Empirical assessment
of MDE in industry, 33rd International Conference on Software Engineering
(ICSE), IEEE, 2011, pp. 471–480.

[6] M.E. Fayad, A. Altman, Thinking objectively: an introduction to software
stability, Commun. ACM 44 (2001) 95–98.

[7] K. Czarnecki, U.W. Eisenecker, K. Czarnecki, Generative Programming:
Methods, Tools, and Applications, vol. 16, Addison Wesley Reading, 2000.

[8] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley
Longman Publishing Co., Inc., 2002.

[9] J. Buffenbarger, Amake: cached builds of top-level targets, Comput. Lang. Syst.
Struct. 50 (2017) 20–30.

[10] Microsoft, Asp.net, (2017) . https://www.asp.net/.
[11] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,

Experimentation in Software Engineering, Springer Science & Business Media,
2012.

[12] E. Syriani, L. Luhunu, H. Sahraoui, Systematic Mapping Study of Template-
Based Code Generation, (2017) arXiv preprint arXiv:1703.06353.

[13] A. Seriai, O. Benomar, B. Cerat, H. Sahraoui, Validation of software visualization
tools: a systematic mapping study, 2014 Second IEEE Working Conference on
Software Visualization (2014) 60–69.

[14] A. Mehmood, D.N. Jawawi, Aspect-oriented model-driven code generation: a
systematic mapping study, Inf. Softw. Technol. 55 (2013) 395–411 Special
Section: Component-Based Software Engineering (CBSE), 2011.

[15] V.Y. Rosales-Morales, G. Alor-Hernández, J.L. García-Alcaráz, R. Zatarain-
Cabada, M.L. Barrón-Estrada, An Analysis of Tools for Automatic Software
Development and Automatic Code Generation, Revista Facultad de Ingeniería
Universidad de Antioquia, 2015, pp. 75–87.

[16] T. Buchmann, B. Westfechtel, Using triple graph grammars to realise
incremental round-trip engineering, IET Softw. 10 (2016) 173–181.

[17] M.M. Mikami, K.M. Sandrino, M.S.M.G. Vaz, An approach to modeling and
evolution of database model through the entity framework code first, Iberoam.
J. Appl. Comput. 5 (2016).

[18] A. Azadegan, K.N. Papamichail, P. Sampaio, Applying collaborative process
design to user requirements elicitation: a case study, Comput. Ind. 64 (2013)
798–812.

[19] H. Sun, W. Ni, R. Lam, A step-by-step performance assessment and
improvement method for ERP implementation: action case studies in
Chinese companies, Comput. Ind. 68 (2015) 40–52.

[20] F.D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of
information technology, MIS Q. (1989) 319–340.

http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0005
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0005
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0005
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0010
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0010
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0010
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0015
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0015
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0015
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0020
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0020
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0025
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0025
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0025
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0030
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0030
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0035
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0035
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0040
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0040
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0045
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0045
https://www.asp.net/
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0055
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0055
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0055
http://arXiv:1703.06353
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0065
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0065
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0065
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0070
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0070
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0070
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0075
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0075
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0075
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0075
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0080
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0080
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0085
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0085
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0085
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0090
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0090
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0090
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0095
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0095
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0095
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0100
http://refhub.elsevier.com/S0166-3615(17)30301-9/sbref0100

	BRCode: An interpretive model-driven engineering approach for enterprise applications
	1 Introduction
	2 Generative MDE approach
	3 The proposed approach
	3.1 Overview of the development process
	3.2 Interpretive MDE approach based on stable architecture
	3.3 Key features of BRCode
	3.4 Architecture of BRCode
	3.5 Implementation aspects

	4 Case study
	4.1 Objective and research questions
	4.2 Variables and quantification methods
	4.3 Evaluation procedures

	5 Results
	5.1 General effort
	5.2 Profitability
	5.3 Profit rate
	5.4 Return on Investment (ROI)

	6 Related work
	7 Conclusion and future works
	Appendix A Study data
	References


